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ABSTRACT: Assuming pro rata reductions in baseflow resulting from urban
development may not be valid in all urbanizing watersheds. Anthropogenic
offsets or compensatory contributions to baseflow (e.g., net exfiltration from
sewer lines, wastewater effluents, and lawn irrigation) may mask or confound
fundamental changes in hydrologic pathways. These offsets illustrate the com-
plexities of urban flow processes and the need for improved understanding to
mitigate urban development impacts. The authors used two dissimilar auto-
mated baseflow separation algorithms and Monte Carlo techniques to evaluate
urban baseflow and estimation uncertainty using data from a representative
urban watershed in the central United States. Three uncertainties affecting trend
determinations were assessed, including algorithm structure, precipitation–
runoff relationships, and baseflow algorithm parameterization. Results indicate
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that, despite ongoing population growth and development, annual streamflow
metrics in the authors’ representative watershed have not significantly increased
or decreased (p . 0.05) from 1967 to 2010. However, several streamflow
metrics featured shallow insignificant (p . 0.05) slopes in the direction hy-
pothesized for an urbanizing (less pervious) watershed, including a downward
slope for baseflow index (BFI) and increases in runoff volume coefficient.
Median annual baseflow estimations differed by 29% between techniques (85.3
versus 118.9mmyr21). In the absence of direct tracer measurements, uncer-
tainties associated with precipitation–runoff relationships, algorithm structure,
and parameterization should be included in analyses evaluating alterations from
baseline hydrologic conditions in urban watersheds. To advance application of
separation algorithms for urban watersheds and support regulatory reductions in
runoff volume, future work should include calibration of model parameters to
available hydrogeologic and tracer data.

KEYWORDS: Urban watersheds; Hydrology; Baseflow; Modeling uncertainty

1. Introduction

Urban waterways and resident aquatic communities are exposed to several an-
thropogenic stressors or risks that may occur less frequently or be entirely absent in
watersheds that have predominantly rural but mixed land uses (Walsh et al. 2005;
Wenger et al. 2009). Hydrogeomorphic impacts stemming from reapportionment
of freshwater supplies in urbanizing environments include (but are not limited to)
channel incision, streambed sedimentation, increased contaminant transport, al-
tered hydrologic connectivity, and habitat degradation (Paul and Meyer 2001;
Lerner 2002; Sophocleus 2002). Aquatic habitat and biota in natural systems are
sustained between runoff events by groundwater contributions to streamflow,
termed ‘‘baseflow’’ (Sophocleus 2002). Reductions in recharge caused by imper-
vious surfaces were hypothesized as rationale for declining baseflows in selected
urban environments (Bernhardt and Palmer 2007; O’Driscoll et al. 2010). How-
ever, as Lerner (Lerner 2002) and Meyer (Meyer 2005) explicate, the assumption
of pro rata reductions in baseflow resulting from increased impervious surfaces
may not be valid in all urbanizing watersheds. Rather, anthropogenic offsets or
compensatory contributions to baseflow (e.g., net exfiltration from sewer lines,
wastewater effluents, and lawn irrigation) may mask or confound fundamental
changes in hydrologic pathways on a case-specific basis (Lerner 2002). Notwith-
standing the potential for site-specific confounding variables, baseflow reduction
due to urbanization has been cited in recent total maximum daily load (TMDL)
studies as a significant stressor (MDEP 2006; VTDEC 2006; VTDEC 2009) con-
tributing to water quality and aquatic life impairments.

As set forth by the National Research Council (NRC 2008), the use of stream-
flow volume or impervious cover may be a useful TMDL surrogate where unknown
agents or processes are causing freshwater impairment. Volume-based flow re-
duction TMDLs provide an example of a growing trend in which changes in hy-
drologic response or streamflow alteration, including assumed baseflow reductions,
have been cited as an aquatic life stressor (U.S. EPA 2011). In addition to changes
in flow regime, TMDL documents often provide a suite of other possible aquatic
life stressors including (but not limited to) narrow riparian corridors, warmer water
temperatures, toxic contaminants, increased sedimentation, and stream channel

Earth Interactions d Volume 17 (2013) d Paper No. 5 d Page 2



scour (U.S. EPA 2011). Detailed hydrologic analyses are needed to more clearly
identify urban hydrological, water quality, and biological stressors. Improved
understanding will result in greater certainty and successful outcomes of pollu-
tion control measures [e.g., source or transport interruption, and best manage-
ment practices (BMPs) (Mostaghimi et al. 2001; Pazwash 2011].

Separating groundwater flow from quick flow contributions to measured
streamflow time series has been achieved using several methods including tradi-
tional graphical analyses (Barnes 1939), isotopic analyses (Ellins et al. 1990;
Genereux and Hooper 1998; Tetzlaff and Soulsby 2008), geochemical or in situ
chemical signatures (Newbury et al. 1969; Wels et al. 1991; Kish et al. 2010),
various analytical methods (Brutsaert and Nieber 1977; Birtles 1978), and auto-
mated algorithms applied to streamflow time series (Nathan and McMahon 1990;
Chapman 1999; Eckhardt 2008). Automated methods of baseflow computation
were recently applied by Meyer (Meyer 2005), Brandes et al. (Brandes et al. 2005),
and Esralew and Lewis (Esralew and Lewis 2010) to evaluate streamflow metric
trends within a variety of land uses, aquifer types, and stream connectivity scenarios.
Application of automated separation algorithms typically proceeds following cali-
bration to presumed baseflows supported by recession analysis (Tallaksen 1995).
Selecting the location where baseflow dominates the hydrograph is often a con-
founding process (Vogel and Kroll 1996). Sujono et al. (Sujono et al. 2004) indicated
that a more objective method of wavelet transform appears promising. Once
properly parameterized, automated methods are widely accepted to be more ob-
jective and reproducible (Nathan and McMahon 1990; Arnold and Allen 1999;
Furey and Gupta 2001) and therefore preferable over more subjective graphical
methods. In addition to algorithm structure, the timing and magnitude of precip-
itation is a key determinant and uncertainty in evaluating hydrologic response.

The relationship between precipitation input and catchment response was de-
scribed by several researchers as nonlinear resulting from partial source behavior,
seasonal changes in soil moisture, event magnitude, spatial scale, preferential flow
paths, and saturation excess frequencies (Goodrich et al. 1997; Kokkonen et al.
2004; Kusumastuti et al. 2007; McDonnell et al. 2007; McGrath et al. 2007).
Quantifying changes in hydrologic response solely attributable to time should
therefore also consider and adjust for effects induced by precipitation inputs.
Recent baseflow trend analyses performed by Brandes et al. (Brandes et al. 2005)
and Esralew and Lewis (Esralew and Lewis 2010) addressed precipitation effects
through normalization or adjustment by residual.

Helsel and Hirsch (Helsel and Hirsch 2002) described a two-step residual
analysis approach to adjust for precipitation effects. The two-step approach can be
selected over the one-step multiple regression approach described by Helsel and
Hirsch (Helsel and Hirsch 2002) to support graphical depiction and improve un-
derstanding of the effect of precipitation on trend slopes and time series variability.
In the absence of calibration to more direct tracer-derived estimates of baseflow (e.g.,
Gonzales et al. 2009), algorithm parameters remain constrained to a range of values
cited in the literature. Propagating parameter uncertainty into streamflow metric
estimates and trend determinations can be facilitated by Monte Carlo techniques.
Instead of deriving streamflow metrics with a single set of base case or ‘‘best esti-
mate’’ of baseflow separation parameters, Monte Carlo techniques specify algorithm
inputs as random numbers generated from prescribed statistical distributions
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(Morgan and Henrion 2003). Application of Monte Carlo analyses to constrain and
thus better understand uncertainties in hydrologic analyses was discussed or used
by several authors, including Smith and Hebbert (Smith and Hebbert 1979), Beven
(Beven 1993), Beven and Freer (Beven and Freer 2001), and Peters and van Lanen
(Peters and van Lanen 2005).

The overarching objective of the following work was to evaluate three sources of
uncertainty in annual hydrologic trend analyses in a central U.S. case study:
nonlinear precipitation effects, structure of baseflow separation algorithm, and
parameter variability. To achieve these objectives, we employed two dissimilar
baseflow separation techniques using data collected in a representative urban
watershed in the central United States. The first separation technique was a two-
parameter recursive filter derived by Eckhardt (Eckhardt 2005) and the second was
a two-parameter algorithm proposed by Wittenberg (Wittenberg 1999) that as-
sumes a nonlinear aquifer storage–outflow relationship. Trends, behavior, and
uncertainty of hydrologic response predicted by these two algorithms are de-
scribed. The working assumption was that an analysis considering the uncertainties
referenced above will improve our ability to identify streamflow alteration over
time, thereby quantitatively supporting development decisions and science-based
policy.

2. Materials and methods

2.1. Study site

Information required to fulfill the objectives of this work were supplied by
means of a case study analysis in the Hinkson Creek watershed (HCW) located
within the lower Missouri–Moreau River basin (LMMRB) in central Missouri
(Figure 1 and Table 1). Hinkson Creek flows through a catchment basin of ap-
proximately 231 km2. The creek flows approximately 42 km in a southwesterly
direction ultimately flowing into the Missouri River approximately 8 miles away.
Elevation ranges from 177 to 274m above mean sea level (MSL) in the headwaters.
Hinkson Creek is classified as a Missouri Ozark border stream located in the
transitional zone between glaciated plains and Ozark natural divisions (Thom and
Wilson 1980). Average annual temperature and precipitation (30-yr record) are
approximately 148C and 1082mm, respectively. The HCW is a representative ur-
ban watershed given its growing residential composition (ca. 108 500 residents)
with progressive commercial expansion. Current land use in the watershed is ap-
proximately 34% forest; 38% pasture or cropland; 25% urban area; and the re-
maining land area is wetland, open, or shrub/grassland areas. A U.S. Geological
Survey (USGS) gauging station (USGS 06910230) has collected stage data in-
termittently in the HCW since 1966 (Figure 1).

Soil types range from loamy till with a well-developed clay pan in the uplands
(Chapman et al. 2002) to thin cherty clay and silty to sandy clay in lower reaches.
Soils are generally underlain by Mississippian series limestones (Burlington for-
mation) and Pennsylvanian series sandstones (Cherokee group) (Unklesbay 1952;
Miller and Vandike 1997). Lithology of the Burlington formation is white to tan
fossiliferous limestone having layered chert nodules, whereas the Cherokee group is
a mix of sandstone, shale, underclay, and thin limestone beds (Miller and Vandike
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1997). Mississippian limestones are estimated to directly underlay 40% (91 km2)
of HCW soils and are located primarily near the watershed outlet (Starbuck
2007; Figure 1). Hinkson Creek intermittently flows over bedrock outcroppings
throughout its course and is frequently bounded by floodplains composed of
Haymond silt loams (Unklesbay 1952; Young et al. 2001). Surficial geology near
the USGS gauge 06910230 is a cherty clay solution residuum often corresponding
to the Weller–Bardley–Clinkenbeard (CBC) association (USGS 1996; Young et al.
2001). Although karst features have not been well documented in lower Hinkson
Creek, the CBC association is linked with sinkholes and caves in the adjacent

Figure 1. The Hinkson Creek watershed located in central Missouri.
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Bonne Femme watershed located to the southeast of the HCW (Wicks 1997; Lerch
et al. 2005).

2.2. Precipitation

Hydroclimate data from two nearby climate stations (231790 and 231791)
catalogued by the Midwest Regional Climatic Center (MRCC 2010) were used to
assess temporal changes in hydrologic response and selection of streamflow re-
cession segments for the HCW. Station 231790 representing precipitation for the
1966–69 period was located approximately 5.1 km northwest of the Hinkson Creek
USGS gauge and within the footprint of the historic Columbia Municipal Airport.
Data from 1969 through 2010 was measured at station 231791, the current location
of the Columbia Regional Airport, located 16.3 km to the southeast of the Hinkson
Creek USGS gauge (Figure 1).

2.3. Land use and population

Human population data since 1970 for the city of Columbia and Boone County,
Missouri, areas were queried from U.S. Census Bureau databases. Four land-use
and land-cover (LULC) geospatial datasets were used in assessing changes in
urban land use with time. The earliest is a 1976 layer (Harlan 1997) developed from
land-surveyor notes developed by the U.S. Geological Survey that classifies LULC
at the level II scale of Anderson et al. (Anderson et al. 1976). Three Landsat
Thematic Mapper (TM) datasets for periods of 1991–93, 2000–04, and circa 2006
were used to estimate recent land-use changes. Land-cover classifications differ

Table 1. Characteristics of the Hinkson Creek watershed located in central Missouri.

Characteristic Description

USGS gauge 06910230 Location: 38855939.90N, 92820923.80W
Datum elevation: 177.9m MSL
Period of record: n 5 22 calendar years
1967–81
1987–90
2008–10

Mean annual: 1.75m3 s21 (CV 5 0.71)
Flow: 0.83mmday21

Watershed area Total: 231 km2; Upstream of gauge: 181 km2

Quaternary geology (upstream of gauge) (USGS 1996) Clay loam till (74%)
Alluvium (11%)
Sandy clay (6%)
Thin cherty clay (8%)
Solution residuum

Surface bedrock Mississippian limestone (40%)
Pennsylvanian sandstone (60%)

2006 land cover Row crop (8%)
Grassland/pasture (30%)
Urban (26%)
Forest (34%)
Other (2%)
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among available TM coverages. In an attempt to compare like classifications, urban
land-use changes were grouped into one category identified here as urban/built out
(UBO). Land uses described by UBO include urban impervious (nonvegetated), high
building density urban (some vegetation, majority as imperviousness), and low
building density (residential and developed open space) with moderate vegetation.

The population of Boone County increased from 80 911 in 1970 to 162 642 in
2010 (Figure 2). During the same period, the population of the city of Columbia
grew from 58 812 to 108 500. Expressed as a percentage of the entire HCW area,
UBO has increased from approximately 12% in 1976 to 26% in 2006. Given
alternative LULC classifications and uncertainty, we estimate current (2006 LULC)
impervious area (IA) is approximately 10% in the HCWas described by the sum of
high and medium density urban classifications and visual confirmation using high-
resolution aerial photography. While researchers have linked IA with aquatic deg-
radation (see review by Booth et al. 2002), Jones et al. (Jones et al. 2005) emphasized
that IA is a broad indicator of pollution potential and relationships to biologic in-
tegrity are uncertain. In this work, our estimate of IA in the HCW is provided only as
means of comparison to other urbanizing catchments.

2.4. Baseflow separation and parameterization

Selection and parameterization of automated baseflow methods require selection
of an aquifer storage–discharge model (e.g., linear, nonlinear), a consistent means

Figure 2. Population and urbanized area of the Hinkson creek watershed located in
central Missouri from 1960 to 2010. The urbanized area estimated from
1993 land-use classification is not shown as areas identified as grassland or
pasture in 1993 are subsequently categorized as low density urban in later
coverages.
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of criteria for parsing recession limbs, a procedure for quantifying recession pa-
rameters, and numerical methods necessary to apply the algorithm to a specific
streamflow time series (Moore 1997; Rutledge 1998; Sujono et al. 2004; Tallaksen
1995). Selections for this work are detailed in the following paragraphs. Separation
algorithms and Monte Carlo analyses were implemented in Microsoft Excel and,
where necessary, programmed in Visual Basic language.

The Eckhardt (Eckhardt 2005) separation method [Equation (1)] is a recursive
low-pass digital filter that Eckhardt (Eckhardt 2008) described as including the
assumption of a linear storage–outflow relationship [Equations (2) and (4)],

bt 5
(12BFImax)kbt211 (12 k)BFImaxyt

12 kBFImax
, (1)

where bt is the baseflow at time step t, BFImax is the maximum rate of baseflow
relative to streamflow if time series magnitude remains constant, k is the baseflow
recession constant, bt21 is the baseflow at time step t 2 1, and yt is the measured
streamflow at time step t. Note that bt is subject to the Boolean constraint of bt� yt.
The recession constant k is widely used in recession analysis to describe the slope
between adjacent streamflows. According to Maillet (Maillet 1905) and described
by several others (Tallaksen 1995; Chapman 1999; Sujono et al. 2004; Eckhardt
2008), streamflow that consists entirely of baseflow following a recharge event can
be described by

bt 5 b0 exp
2(t/t) 5 b0k

t , (2)

where b0 is the initial streamflow at the beginning of baseflow recession and t is the
groundwater residence time, which is interpreted as the inverse ratio of storage to
outflow in a linear reservoir in

b5
1

t
5 aS , (3)

where S is the groundwater storage and a5 1/t . The recession constant k has been
determined by a variety of methods (e.g., Tallaksen 1995; Sujono et al. 2004). In
this analysis, we used the correlation method described by Eckhardt (Eckhardt
2008) to obtain k 5 0.965 from the envelope line of a master recession curve
(Figure 3) with a lag interval of 1 day. The resulting master recession curve shows a
total of 24 recession segments identified in the streamflow time series with a
minimum length of 10 days (Nathan and McMahon 1990; Vogel and Kroll 1996;
Arnold and Allen 1999) and beginning no less than 2 days following the hydro-
graph peak. Precipitation was accounted for as per Furey and Gupta (Furey and
Gupta 2001). The BFImax parameter is presumably related to area-weighted av-
erage aquifer characteristics, where BFImax 5 0.8 for perennial streams with po-
rous aquifers, BFImax 5 0.5 for ephemeral streams with porous aquifers, and
BFImax 5 0.25 for perennial streams with hard-rock aquifers (Eckhardt 2008). A
stream is considered ephemeral if measurable surface flow is absent less than 10%
of the time (Eckhardt 2008). On this basis, Hinkson Creek was considered a pe-
rennial stream (10th percentile yt 5 0.01m3 s21). While use of tracers to calibrate
separation parameters is desirable (see Gonzales et al. 2009), such data are often
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absent, leaving determination of baseflow parameters or metrics dependent on the
weight of evidence and/or geologic interpretation (e.g., Bloomfield et al. 2009).
Derivation of BFImax within a heterogeneous geologic setting such as the HCW is
challenged by higher yield of carbonate hard-rock aquifers in lower reaches near
the USGS gauge that were associated with fast-response and conduit characteris-
tics of karst (Padilla et al. 1994; Lerch et al. 2005). In contrast to the geology of the
Burlington formation, Pennsylvanian sandstones (well yield 5 3.8–76 Lmin21;
Miller and Vandike 1997) overlaid by clay loam till exhibit moderate to low per-
meabilities (K 5 10211 to 1027m s21; Sharp 1984) throughout middle and upper
reaches (with some exceptions) of the HCW. An areal-weighted BFImax value of
0.62 (0.5 3 60% 1 0.8 3 40%) was reasoned by assuming a 0.5 value for 60% of
the HCW and an intermittent stream course underlaid by Pennsylvanian sandstone
and limestone. The remainder of the catchment (40%) where soils are underlaid
primarily by the Burlington formation (yield 5 57–1893Lmin21; Miller and
Vandike 1997) was assumed to have a porous aquifer value of 0.8 justified by
karstic associations (Wicks 1997). A weighted BFImax 5 0.62 produced baseflow
time series having realistic appearance during a typical recession season (summer)
hydrograph (Figure 4).

Increases in the calculated recession constant k [Equation (2)] with time along
the recession (an indication of nonlinearity) were noted by several authors (Vogel

Figure 3. Master recession curves derived using correlation methods for Hinkson
Creek located in central Missouri, 1966–2010 (n5 24 recession segments;
248 correlations).
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and Kroll 1996; Moore 1997; Wittenberg 1999; Furey and Gupta 2001). As sys-
tematic increases in k were also observed in several Hinkson Creek recessions, a
baseflow separation algorithm incorporating a nonlinear storage–outflow rela-
tionship was applied in addition to the Eckhardt (Eckhardt 2005) filter.

Wittenberg (Wittenberg 1999) proposed a nonlinear separation algorithm
[Equation (4)] that is applied backward in time as

bt215

�
bb21
t 1

Dt(b2 1)

ab

�(1/b21)

, (4)

where b and a are the exponent and coefficient, respectively, of the nonlinear
storage relationship [Equation (5)] credited to Coutagne (Coutagne 1948),

S5abbt . (5)

Application of Equation (4) to streamflow time series requires two Boolean conditions.
The first addresses the situation when backward computed recession limbs intercept
the rising limb of hydrographs. For time steps where baseflow exceeds total stream-
flow during recharge events, the baseflow hydrograph is calculated as one time step
into the future using the forward-difference [Equation (6)] version of Equation (4),

bt 5 b0

"
11

b12b
0 (12b)

ab
t

#(1/b21)

. (6)

As nonlinear storage parameters a and b are stationary, individual recessions
where baseflow computed with Equation (4) is greater than total streamflow are

Figure 4. Streamflow and computed baseflow during the 1989 summer recession
period for Hinkson Creek located in central Missouri.
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unavoidable. Therefore, as with the Eckhardt filter, the Boolean constraint of bt �
yt was forced.

Acceptable fit of separation parameters a 5 3.80 and b 5 0.77 was obtained
through least squares optimization of computed and measured recession outflow
volumes according to Equation (7) as used by Wittenberg (Wittenberg 1999),

a5

P
(bt211 bt)Dt

2
P

(bbt212 bbt )
. (7)

Parameter estimation [root-mean-square error (RMSE)5 0.14, r2 5 0.95, and n5
272] fit was quantified by comparison of measured and computed baseflow rates
(Figure 4) according to the forward nonlinear recession [Equation (6)] using a 5
3.80 and b5 0.77. Avalue of b. 0.5 suggests that macropores (Wittenberg 1999),
possibly related to karst development, may be influencing recession behavior.
Nonlinear storage parameters a and b are values derived from recession limbs
pooled over high and low evapotranspiration seasons and were not derived sepa-
rately by season (e.g., Wittenberg 2003).

Effective groundwater recharge (GWRE) (Chapman 1999; Wittenberg 2003)
was computed from both algorithms according to Equation (8) to assess the rea-
sonableness of computed baseflows,

GWREt 5 St 2 St211

ðt
t21

(b) dt (8)

where St and St21 are groundwater storage at times t and t 2 1 computed with
Equations (3) and (5). Equation (8) can be further expanded (see Wittenberg 2003)
to explicitly include groundwater abstractions (A) and evapotranspiration (ET) as

GWREt 5 St 2 St211

ðt
t21

(b1A1ET) dt . (9)

2.5. Streamflow variables and statistical analyses

Annual (January–December) hydrograph characteristics evaluated to detect ur-
banization effects in the HCW included baseflow and runoff volumes, the runoff
coefficient (event runoff/precipitation), baseflow index (BFI; baseflow volume/
streamflow volume), baseflow yield (baseflow volume/precipitation volume), and
effective groundwater recharge (as per Spinello and Simmons 1992; Rose and
Peters 2001; Wittenberg 2003; Brandes et al. 2005; Meyer 2005).

Monotonic changes in precipitation and computed baseflow and runoff statistics
with respect to time were evaluated using the Mann–Kendall test (Hirsch et al.
1991). The Mann–Kendall S test is a nonparametric measure of monotonic trend
that is resistant to outliers or skew (Helsel and Hirsch 2002). The Kendall S is
related to the tau-b correlation coefficient t that falls within a range of 1.0 to21.0
reflecting a perfect positive and negative monotonic trend, respectively (Helsel and
Hirsch 2002). Two-tailed tests of the null hypothesis H0 (trend absent) using the S
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statistic (adjusted for ties) were conducted at a 5 0.05 or 95% confidence to
identify trends (p � 0.05). Where significant trends were detected, the monotonic
slope of the relation was provided as the Kendall–Theil T robust line (Conover
1980). In this work, t was used more frequently than S because the operational
range (1.0 to 21.0) is analogous to the commonly used Pearson’s r. The tau-b
correlation statistic was used to describe several relationships in this work in-
cluding the following: precipitation versus streamflow metric, parameter sensitiv-
ity, and streamflow metric versus time. In addition, streamflow metric differences
between baseflow separation method were tested pairwise where possible using the
Wilcoxon signed-rank test (Helsel and Hirsch 2002).

The influence of exogenous variables, such as precipitation, has been reported by
others conducting baseflow time trend analyses (Brandes et al. 2005; Esralew and
Lewis 2010). Removal of exogenous effects, termed adjustment, was considered if
a significant (p � 0.05) correlation between a streamflow metric and precipitation
was detected according to Kendall’s tau-b coefficient and, for comparison, the
more familiar Pearson’s linear r correlation coefficient. The purpose of adjustment
was to better isolate changes in streamflow metrics due to time, rather than changes
in a significant covariate(s) over time. If significant exogenous influence was de-
tected, analyses proceeded in two steps described in Helsel and Hirsch (Helsel and
Hirsch 2002): 1) regress streamflow metric against precipitation using locally
weighted scatterplot smoothing (LOWESS) (Cleveland and Devlin 1988) tech-
nique and then 2) conduct a Mann–Kendall hypothesis test on the LOWESS error
residuals and time to identify temporal trends.

2.6. Baseflow separation algorithm performance and sensitivity

Two algorithm performance metrics were adopted for this evaluation. The first
was proposed by Furey and Gupta (Furey and Gupta 2001) and includes the percent
of time that predicted baseflow exceeds total streamflow p1. This metric was also
used by Peters and van Lanen (Peters and van Lanen 2005). As noted in the
previous section, Boolean contraints were imposed on both algorithms to prevent
predicted baseflow from exceeding streamflow. While this physical constraint is
useful in deriving base-case streamflow metrics, it restricts parameter assessment.
Therefore, performance metrics were implemented on time series not subject to the
Boolean constraint, termed unconstrained baseflow, for each algorithm. A second
performance metric p2 included comparison [as RMSE: Equation (10)] of un-
constrained baseflow to total streamflow values occurring 10 days or more fol-
lowing initiation of recession [target recession values (TRVs)] during n 5 24
selected limbs previously described. In selecting these TRVs, the intent was to
minimize the influence of interflow in evaluating performance of baseflow algo-
rithms,

RMSE5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn
i51

(bm2 bp)
2

s
, (10)

where bm is the streamflow measured during recession (assumed 100% baseflow)
and bp is the unconstrained baseflow predicted by the algorithm. Sensitivity of
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streamflow metrics to algorithm parameters were assessed as per Kendall’s tau-b, a
nonparametric correlation measure previously described.

2.7. Monte Carlo simulation and parameterization

The Monte Carlo software add-in Yet Another Software Add-In, version W
(YASAIW; Pelletier 2009) was used to generate random baseflow algorithm pa-
rameters and store propagated estimates of annual streamflow metrics. Precipita-
tion adjusted and unadjusted nonparametric time trends (as Kendall’s tau-b) were
calculated from annual streamflow metrics during Monte Carlo iterations. Values
of tau-b generated at each iteration were stored in memory allowing a trend hy-
pothesis test be conducted for each of n 5 2000 iterations. In addition to tau-b,
algorithm parameters, streamflow metrics, LOWESS predictions, and residuals
were stored to supply necessary modeling inputs for later algorithm sensitivity
analyses. Algorithm performance metrics previously described were also stored in
memory from each modeling run. Statistical distributions and parameters needed
for Monte Carlo inputs are described in the following paragraphs.

The Eckhardt (Eckhardt 2005) filter is described by two parameters: the baseflow
recession constant k and BFImax. Eckhardt parameters are discussed in referenced
order. As summarized by Nathan and McMahon (Nathan and McMahon 1990),
streamflow recession rates attributable to baseflow typically range from 0.93 to
0.995, while interflow k values (0.70–0.94) slightly overlap baseflow at higher re-
cession rates. In an analysis of 23 sites in Massachusetts, Vogel and Kroll (Vogel and
Kroll 1996) estimated the long-term k to range from 0.86 to 0.96 using six different
recession constant estimators. In the absence of a range of k values determined for
Missouri or site-specific direct tracer measurements, kwas randomly selected from a
uniform distribution and constrained to a range of 0.93–0.995 (Table 2). The BFImax

parameter is not physically based but rather an a priori estimate of the long-term
baseflow proportion of total streamflow (Eckhardt 2008). Notwithstanding the
BFImax 5 0.92 derived through calibration to geochemical tracers by Gonzales et al.
(Gonzales et al. 2009), we selected BFImax from a uniform distribution within the
potential range of 0.25–0.80 described by Eckhardt (Eckhardt 2008).

Parameters b and a of the Wittenberg (Wittenberg 1999) algorithm were
determined through nonlinear least squares regression using the System Statistics

Table 2. Monte Carlo input parameter ranges, distributions, and best parameter
sets. The term m is the mean, and s is the parameter standard deviation, approxi-
mated as ASE.

Baseflow algorithm
parameters Distribution

Initial distribution
parameters

Best parameter sets

p1 p2

min 5 0.930 min 5 0.93 min 5 0.93
k Uniform max 5 0.995 max 5 0.96 max 5 0.95

min 5 0.25 min 5 0.25 min 5 0.25
Eckhardt BFImax Uniform max 5 0.80 max 5 0.35 max 5 0.80

m 5 3.80 min 5 2.74 min 5 4.21
a Normal s 5 0.333 max 5 3.62 max 5 5.04

m 5 0.77 min 5 0.71 min 5 0.68
Wittenberg b Normal s 5 0.031 max 5 0.89 max 5 0.84
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(SYSTAT) 11 platform. With this approach, we employed uncertainty bounds for b
and a parameters (Table 2) presuming asymptotic normality (Bates and Watts
1988). For the current analysis, the 95% asymptotic confidence interval around b
(0.77 6 0.062) and a (3.8 6 0.666) were adopted and described by asymptotic
standard errors (ASE) of 0.031 and 0.333, respectively (Table 2).

3. Results and discussion

3.1. Precipitation

Precipitation during the period of analysis varied from 601mm (1981) to
1583mm (1993). Cumulative annual precipitation measured at station 231791 did
not exhibit a significant monotonic two-sided time trend (S5 102, p 5 0.307, and
n 5 44) during the 1967–2010 period. However, precipitation was significantly
(p� 0.05) correlated to all streamflow metric trend analyses. With the exception of
the Eckhardt BFI (r2 5 0.34), precipitation explained greater than 50% of the
variation (r2 . 0.5) in annual streamflow metrics.

Nonlinear relationships between precipitation inputs and annual LOWESS
streamflow metrics were evident in results, with the exception of BFI (Figure 5).
Annual streamflow metrics yielded by precipitation inputs tended to increase in the
range of 900–1000-mm (change point) annual cumulative precipitation. The
physical basis for nonlinear behavior including (but not limited to) saturation ex-
cess frequencies, soil macropore activity, or event magnitude were expressed by
several authors (Goodrich et al. 1997; Kokkonen et al. 2004; Kusumastuti et al.
2007; McDonnell et al. 2007; McGrath et al. 2007). Quantifying the causes or
mechanisms of nonlinear behavior in the HCW is beyond on the scope of the
current work. However, the observed nonlinear relationships and change points
detected by both algorithms underscore the dependence of streamflow metrics on
precipitation inputs. To quantify changes in streamflow metrics attributable to
factors other than precipitation, such as time, we removed the exogenous effects of
water inputs from HCW time series. The inference being that temporal changes in
precipitation adjusted time series could reflect effects of urbanization.

3.2. Algorithm performance and parameter sensitivity

The Wittenberg algorithm performed better than the Eckhardt filter across
perturbed parameter ranges during n 5 2000 iterations. The overprediction fre-
quency p1 for the Wittenberg algorithm [median p1 5 14.8%; interquartile range
(IQR) 5 14.6%–15.0%] was significantly less (p � 0.05) than produced by the
Eckhardt filter (median p1 5 64.4%; IQR 5 58.5%–69.4%). The RMSE p2 pro-
duced by the two algorithms for n 5 56 TRVs was significantly less (p � 0.05) for
the Wittenberg algorithm (median RMSE 5 0.013mmday21; IQR 5 0.012–
0.014mmday21) than the Eckhardt filter (median RMSE5 0.299mmday21; IQR5
0.225–0.418mmday21). While the Wittenberg outperformed the Eckhardt filter in
this analysis, the model does not explicitly address all uncertainties related to karst
features. There is currently no direct evidence of such features in the study wa-
tershed; however, the question provides impetus for future investigations. The
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Figure 5. Relationships depicted by LOWESS between Annual precipitation and
streamflow metrics calculated from base-case Eckhardt (black) and
Wittenberg (gray) separation algorithms for Hinkson Creek gauge
06910230 (1967–2010; n 5 22 comparisons) located in central Missouri.
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RMSE p2 was most sensitive to the recession constant (k tau-b 5 0.69; BFImax

tau-b5 0.24) for the Eckhardt filter and to a (a tau-b520.88, b tau-b5 0.11) in
the Wittenberg algorithm.

The superior performance of the Wittenberg algorithm for estimating baseflows
in the HCW time series is attributed to algorithm structure and parameterization
methodology. The Eckhardt method uses a recession constant derived from a
master recession curve, limited to a range of 0.93–0.995 in Monte Carlo simula-
tions, and BFImax subjectively related to an aquifer–stream relationship. Witten-
berg parameters (a and b) are calculated directly from observed streamflow time
series via least squares nonlinear regression. On this basis, we propose that im-
provements of Eckhardt algorithm performance metrics could be achieved by using
nonlinear regression to determine k and BFImax (e.g., Vogel and Kroll 1996;
Chapman 1999).

Acceptable input ranges useful in future studies may be evaluated through in-
spection of parameters sets yielding the lowest values of p1 and p2. In this eval-
uation, the lowest (i.e., best) 5% fromMonte Carlo iterations (Peters and van Lanen
2005) revealed that best parameter sets differed by performance metric (Table 2).
For example, the value of a yielding the lowest p1 values ranged from 2.7 to 3.6
(median5 3.2), whereas minimizing p2 yielded a range of 4.2–5.0 (median5 4.4).
Differences of BFImax were more severe, with p1 minimized values ranging from
0.25 to 0.35 (median 5 0.28) compared to p2 minimized values of 0.25–0.80
(median 5 0.71). These divergent sensitivities suggest that a more robust suite of
performance metrics or fitness measures should be developed to evaluate algorithm
performance.

3.3. Long-term hydrologic response

Median annual streamflow (220mm; n5 22 years) recorded at gauge 06910230
(USGS site) in the HCW was estimated to be 23% of median annual precipitation
(949mm; n 5 22) during comparable periods of record, suggesting an annual
surface water balance dominated by the ET processes. Median annual baseflow
(Table 3) differed by algorithm (p � 0.05), with the Eckhardt equation
(85.3mmyr21) predicting 29% less volume than Wittenberg (118.9mmyr21).
This difference predictably propagated to residual metrics calculated from base-
flow predictions. That is, the Eckhardt algorithm predicted relatively lower base-
flow metrics and therefore greater runoff compared to the Wittenberg method.
Long-term baseflow and runoff computed by each algorithm were significantly
different at p� 0.05 for base-case estimates (Table 3) and Monte Carlo simulations
(Figure 6). Long-term medians produced from Wittenberg Monte Carlo simula-
tions did not differ from base-case values. Greater parameter uncertainty of the
Eckhardt algorithm resulted in Monte Carlo analysis generating a lower annual BFI
(0.32) and higher RC (0.14) than base-case values. Density functions produced by
each algorithm are useful in describing hydrologic response metrics (Figure 6).

The variance and shape of long-term streamflow metric distributions of each
algorithm were markedly different (Figure 6) and thus emphasize the effect of
algorithm structure on hydrologic response. Wittenberg metrics were significantly
less variable; kurtotic; and, in the case of runoff metrics, bimodal. Bimodal
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elevated runoff response was produced by infrequent predictions of reduced baseflow
that occurred when awas low, bwas high, and they were not constrained by Boolean
(forward recession) truncation. Median annual hydrologic response produced by
the Wittenberg algorithm was considerably less sensitive to parameter variability
(|tau-b| � 0.29) compared to Eckhardt algorithms (|tau-b| 5 0.16–0.84) (Table 4).
This reduced sensitivity is the result of a and b switching correlation signs (1 to2
and2 to1) during backward to forward computed recessions. For example, during
periods when recessions are computed backward and do not exceed streamflow (i.e.,
long recession periods), a is negatively correlated and b is positively correlated with
computed baseflow. When backward predicted baseflow exceeds streamflow, base-
flow is computed as a forward recession. Parameters a and b switch signs during
forward recessions resulting in positive and negative correlations, respectively. The
duration and frequency of unconstrained predicted baseflows lead to net correlations
listed in Table 4: several of which feature tau-b values near zero. Changes in cor-
relation sign during backward and forward application of the nonlinear Wittenberg
algorithm appear to serve as a buffer against parameter uncertainty.

Eckhardt algorithm estimates of hydrologic response were considerably more
variable than Wittenberg, reflecting a wider range of parameter uncertainty de-
termined by uniform distributions and the influence of BFImax. While a, b, and k
were fitted or derived from measured data (recession limbs), the BFImax parameter
is an estimated qualitative value that exerts significant influence (|tau-b 2 b| 5
0.75–0.84) in our analysis (Table 4). The range of BFImax uncertainty (0.25–0.80)
dictates the wide range of long-term hydrologic response, yielding a BFI ranging
from 0.19 to 0.46 for HCW time series (Figure 7). Calculated baseflow differences
between algorithms cannot solely be attributed to the sensitivity of the BFImax

parameter (Figure 7) as baseflow values produced by BFImax 5 0.8 (maximum
value) did not reach annual estimates of the Wittenberg algorithm. We note that
sensitivities of computed baseflows reach a local minimum near BFImax 5 0.5
where the computed condition number (CN) (Chapra 1997; Lenhart et al. 2002)
drops to CN 5 10.65 to 10.68 from maximums that occur near BFImax 5 0.8
(Figure 7). Differences in the parameterization approach and algorithm structure
produce statistically significant differences (p � 0.05) in hydrologic response in
this evaluation. Future studies investigating predictive uncertainty introduced by
algorithm structure is therefore warranted.

Table 3. Annual base-case streamflow metrics calculated with Eckhardt and Wit-
tenberg algorithms for gauge 06910230 (1967–2010; n5 22 comparisons) located in
Columbia, Missouri.

Eckhardt Wittenberg

Streamflow metric Median* IQR** Median* IQR**

Baseflow volume (mm) 85.3 153.3–46.0 118.9 185.0–69.7
Runoff volume (mm) 131.6 304.4–75.6 101.6 272.0–55.4
Effective recharge (mm) 89.6 47.7–152.0 120 70.1–185.5
Runoff coefficient (%) 0.13 0.23–0.10 0.1 0.21–0.07
Baseflow index (%) 0.37 0.39–0.33 0.51 0.57–0.44
Baseflow yield (%) 0.08 0.13–0.06 0.12 0.16–0.09

* Wilcoxon Zsr 5 64.11 (p � 0.00; n 5 22; large sample approximation).
** The interquartile range is 75th–25th percentile.
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Figure 6. Density functions of median annual (n 5 22 years) streamflow metrics
calculated from Eckhardt (black) and Wittenberg (gray) separation al-
gorithms for Hinkson Creek (1967–2010; n 5 4,000 medians derived from
84000 annual estimates) located in central Missouri. Arrows demarcate
base-case estimates.
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As discussed, automated separation methods are more objective and reproducible
than graphical methods. However, the accuracy or precision of those methods as
compared against or calibrated to more direct measurements of baseflow (e.g., iso-
topes, geochemical signatures, etc.) are generally absent for urbanizing watersheds.
To advance application and accuracy of separation algorithms, we propose that fu-
ture evaluations include calibration of model parameters to direct measurements at

Table 4. Sensitivity of annual streamflow metrics expressed as Kendall’s tau-b cor-
relation measure calculated from n 5 2000 annual medians for the Hinkson Creek
watershed, Columbia, Missouri.

Eckhardt Wittenberg

Streamflow metric BFImax k a b

Baseflow volume (mm) 0.77 20.22 20.29 20.23
Runoff volume (mm) 20.78 0.22 0.07 20.05
Effective recharge (mm) 0.84 20.16 20.24 20.22
Runoff coefficient (%) 20.75 0.25 0.07 20.06
Baseflow index (%) 0.76 20.24 20.06 20.04
Baseflow yield (%) 0.79 20.22 20.06 20.02

Figure 7. Sensitivity of median annual (n5 22 years) baseflowand baseflow Index to
Eckhardt BFImax parameter (1967–2010) for Hinkson Creek, located in
central Missouri.
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local and regional scales (e.g., Tetzlaff and Soulsby 2008; Gonzales et al. 2009)
and relate those calibrated parameters to generally available hydrogeologic data
(e.g., Bloomfield et al. 2009).

3.4. Trend analyses

The objective of this investigation included evaluation of sources of uncertainty
in annual hydrologic trend analyses using a central U.S. representative watershed:
nonlinear precipitation effects, structure of baseflow separation algorithm, and
parameter variability. To those ends, we employed two baseflow separation tech-
niques to characterize trends, behavior, and uncertainty of hydrologic response to
land use over time predicted by the two algorithms. Case-study results indicate that
annual streamflow metrics have not significantly (p � 0.05) increased or decreased
with time from 1967 to 2010 in the HCW as computed by either of two dissimilar
baseflow separation algorithms (Table 5 and Figure 8). Several streamflow metrics
not adjusted for precipitation influences featured shallow but insignificant (p .
0.05) slopes in the direction hypothesized for an urbanizing (less pervious) wa-
tershed, including a downward slope for BFI and increases in runoff volume and
coefficient. As shown in Figure 5, all HCW streamflow metrics were significantly
correlated to precipitation. Therefore, it is not surprising that precipitation adjusted
streamflow metric slopes switched direction (four of six metrics) or decreased in
magnitude (Table 5 and Figure 8).

Algorithm parameter combinations produced by Monte Carlo simulation did not
yield significant time trends for streamflow time series following removal of pre-
cipitation influences. The lowest p value (highest significance) achieved for any
streamflow metric iteration was p 5 0.07 (tau-b 5 20.28) for the adjusted BFI
annual time series computed from the Wittenberg algorithm (Figure 9). While the
maximum |tau-b| resulted in a p value approaching significance, temporal corre-
lations for the adjusted Wittenberg BFI averaged p 5 0.31 (|tau-b| ; 0.16), well
less than necessary to reject the null hypothesis. Iterations of the Wittenberg al-
gorithm are predominately either increasing (runoff and runoff coefficient) or
decreasing (baseflow and BFI) while adjusted Eckhardt temporal correlations av-
eraged closer to zero (Figure 9). Despite the lack of significant trend resultant from
either algorithm, the Wittenberg method that performs best according to p1 and p2

measures may serve as a harbinger of hydrologic changes yet to come.

3.5. Implications for the HCW and other urbanizing watersheds

Statistically significant monotonic changes in annual baseflow or runoff met-
rics were not detected in HCW time series either as base-case estimates or as
maximum values that incorporated parameter uncertainties. However, following
reduction of time series variance through precipitation adjustment, a parabolic
pattern emerged for several streamflow metrics (Figure 8). For example, adjusted
baseflows from both algorithms showed declines in volume from the late 1960s
through the 1980s, followed by an increase in recent years (2008–10). This
pattern also appears in annual runoff volume, runoff coefficient, and effective
recharge time series. Despite limited data in recent years (n 5 3 annual metrics),
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there is ample anecdotal information to suggest this parabolic pattern may reflect
real hydrologic changes.

During the 1970s and 1980s, approximately 54 distributed wastewater treatment
facilities (WWTFs) were gradually closed and eventually routed to a regional
facility outside the HCW that was constructed in 1983. The estimated cumulative
dry weather design flow for the regional facility is approximately 10 million gal-
lons per day (MGD). Effluent from WWTFs represents artificial baseflow (Lerner
2002) and the export of 10 MGD (77mm annually) may to some extent explain the
decline in baseflow volumes from the late 1960s to 1980s (Figure 8). In addition to
export of WWTF flows, the establishment of public water supply districts and
drinking water wells in the 1960s and 1970s in Boone County (Sturgis 2011) may
have influenced regional baseflow patterns.

Increases in computed baseflow for the 2008–10 period from apparent minima
in the 1980s could be attributed to exfiltration from expanded drinking water,
stormwater, and wastewater conveyance networks necessary to serve the growing
Columbia and Boone County populations (Figure 2). Lerner (Lerner 2002) sug-
gested that up to 300mmyr21 of recharge can be attributed to subsurface infra-
structure. We contend that parabolic (nonmonotonic) patterns in baseflow could be
the result of gradual effluent loss followed by an increase in conveyance exfiltra-
tion. Isotope signatures, solute balances, and numerical modeling are presented
by Lerner (Lerner 2002) and Sidle and Lee (Sidle and Lee 1999) as methods to
quantify infrastructure contributions to baseflow and recharge.

Detention, seepage, and timed maintenance releases from urban lakes and ponds
are potential but contextually unquantified processes in HCW time series. Removal
and/or construction of wetlands, ponds, or lakes could alter historic runoff and thus
baseflow regimes (LeBlanc et al. 1997; Kochendorfer and Hubbart 2010). Similar
to impervious surfaces, detention and retention facilities and other urban ponds

Table 5. Monotonic trend analysis statistics for annual streamflow metrics calcu-
lated with Eckhardt and Wittenberg algorithms for the Hinkson Creek watershed
(1967–2010; n5 22 comparisons) located in Columbia, Missouri. Here, t is Kendall’s
tau-b statistic, T is Kendall–Theil slope (metric/year), and pyr is the two-sided p value
of time slope.

Eckhardt Wittenberg

Streamflow
metric

Native units (precipitation adjusted) Native units (precipitation adjusted)

t T Pyr t T Pyr

Baseflow
volume (mm)

0.14 (20.07) 1.02 (20.14) 0.37 (0.69) 0.09 (20.11) 0.88 (20.25) 0.57 (0.49)

Runoff
volume (mm)

0.13 (0.00) 2.36 (0.03) 0.40 (0.99) 0.18 (0.06) 1.88 (0.20) 0.26 (0.74)

Effective
recharge (mm)

0.13 (20.03) 1.12 (20.05) 0.43 (0.87) 0.10 (20.10) 1.00 (20.34) 0.54 (0.54)

Runoff
coefficient (%)

0.13 (20.07) 0.11 (20.05) 0.40 (0.67) 0.15 (20.02) 0.14 (20.01) 0.34 (0.91)

Baseflow
index (%)

20.10 (20.04) 20.05 (20.02) 0.55 (0.84) 20.20 (20.13) 20.24 (20.11) 0.21 (0.43)

Baseflow
yield (%)

0.12 (20.07) 0.10 (20.02) 0.46 (0.67) 0.07 (20.12) 0.05 (20.04) 0.69 (0.46)
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have replaced roots, leaf litter, and forest canopies that once dominated many urban
landscapes (Hubbart et al. 2011). Further, urban lakes exhibit many differences
from other lakes (Birch and McCaskie 1999) in that they are shallower and tend to
be hypertrophic. Knowledge of urban lakes management effects on baseflows and

Figure 8. Base-case monotonic time trends for native and adjusted annual
streamflow metric time series for Hinkson Creek (1967–2010) located in
central Missouri. Note baseflow yield and effective recharge are not
shown.
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urban aquatic ecosystem health remains poor. Future studies should therefore seek
to investigate the effects of lakes to better assess the water balance, baseflow
regime (Lerner 2002), and health of aquatic ecosystem health in urban areas (Birch
and McCaskie 1999).

These pathways and algorithm differences underscore the complexities of iden-
tifying quantitatively hydrologic changes and specifying volume reductions in ur-
banizing watersheds. The Ecological Limits of Hydrologic Alteration (ELOHA)
framework proposed by Poff et al. (Poff et al. 2010) is an iterative and adaptive
process whereby changes in hydrologic response are related to changes in aquatic
biota (i.e., TMDL and stressor–response analysis). An initial component of ELOHA
framework requires quantifying hydrologic alteration compared to baseline (pre-
development) conditions. The trend analysis presented in this paper did not detect
statistically significant changes in evaluated streamflow metrics over the available
period of record (1966–2010) in the HCW. These results should be interpreted
cautiously in the context of the ELOHA framework for several reasons including
the following: 1) the first year of gauged streamflows (1966) does not reflect a
predevelopment (historical) condition, 2) ecology-based metrics such as those
considered by Henriksen et al. (Henriksen et al. 2006) or Richter et al. (Richter
et al. 1996) were not included in the trend analysis, and 3) streamflows evaluated at
annual time steps may not capture seasonal hydrograph changes that are critical to
life cycle needs (i.e., reproduction periods etc.). However, as described by Booth
et al. (Booth et al. 2002) and Brown (Brown 2010), a natural flow regime may not

Figure 9. Precipitation adjusted annual time trends for each of n5 2000 Monte Carlo
simulations for Hinkson Creek located in central Missouri. Note the base-
flow yield and effective recharge are not shown.
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be achievable in some developed watersheds. Therefore, time series start dates,
such as in the HCW (1966), may be required to represent a suitable or best-
available baseline.

4. Conclusions
We evaluated three sources of uncertainty in annual hydrologic trend analyses:

nonlinear precipitation effects, structure of baseflow separation algorithm, and
parameter variability. Precipitation accounted for greater than 50% of the variation
in five of six hydrologic response metrics. The relationship between streamflow
metrics (except BFI) and annual precipitation featured a change point at 900–
1000mm where streamflow per unit precipitation increased. Hydrologic response
metrics produced by two baseflow separation algorithms having dissimilar as-
sumptions and structures produced statistically different (p� 0.05) estimates (29%
difference) and distributions of streamflow metrics. The nonlinear storage algo-
rithm developed by Wittenberg produced more precise estimates of streamflow
metrics than the Eckhardt model based on Monte Carlo simulation of parameter
uncertainty. While neither algorithm yielded a statistically significant (p � 0.05)
monotonic temporal trend, the best-performing Wittenberg model achieved com-
paratively greater p values (stronger relative trend) in directions expected for an
urbanizing watershed (i.e., lower baseflows and greater runoff). For these reasons,
we conclude the Wittenberg algorithm provides a more reliable estimate of hy-
drologic response in our representative urban watershed.

In the absence of direct tracer measurements (a common and broadly applicable
data gap) to serve as calibration targets, we conclude that uncertainties associated
with precipitation relationships, algorithm structure, and parameter uncertainty
should be included in trend analyses seeking to evaluate deviations from baseline
or reference hydrologic conditions (i.e., streamflow alteration). This article pro-
vides a methodology other investigators could follow wishing to evaluate streamflow
alteration in urban watersheds and therefore advances the capacity for science-based
policies. Further, hydrologic pathways (i.e., urban recharge and WWTP flows)
characteristic of urbanizing environments may confound or challenge investigators
seeking to quantify temporal changes. We note that baseflow separation algorithms
do not intrinsically describe the source of baseflow or runoff. We therefore contend
that detecting hydrologic alteration in urbanizing watersheds may require more
comprehensive considerations of urban hydrologic processes and techniques in-
cluding use of stable isotope methodologies.
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