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Abstract In this paper, an arbitrary finite-time tracking 
control (AFTC) method is developed for magnetic 
levitation systems with uncertain dynamics and external 
disturbances. By introducing a novel augmented sliding-
mode manifold function, the proposed method can 
eliminate the singular problem in traditional terminal 
sliding-mode control, as well as the reaching-phase 
problem. Moreover, the tracking errors can reach the 
reference value with faster convergence and better 
tracking precision in arbitrarily determined finite time. In 
addition, a fuzzy-arbitrary finite-time tracking control (F-
AFTC) scheme that combines a fuzzy technique with 
AFTC to enhance the robustness and sliding performance 
is also proposed. A fuzzy logic system is used to replace 
the discontinuous control term. Thus, the chattering 
phenomenon is resolved without degrading the tracking 
performance. The stability of the closed-loop system is 
guaranteed by the Lyapunov theory. Finally, the 
effectiveness of the proposed methods is illustrated by 
simulation and experimental study in a real magnetic 
levitation system. 
 
Keywords Finite-time Control, Magnetic Levitation 
Systems, Sliding-mode Control, Fuzzy Logic System 
 
 

1. Introduction  
 
Magnetic levitation (Maglev) has been successfully 
implemented for many applications, such as frictionless 
bearings, high-speed trains, vibration isolation systems, 
and wafer distribution systems [1-4]. In this article, a 
Maglev system (ML) suspends an object in the air without 
any mechanical contact. This kind of system is an 
inherently unstable open loop and is highly nonlinear; 
thus, design of the controller for the ML for regulation 
and output trajectory tracking is very challenging. Most 
design approaches are based on the linearized model for 
the nominal operating point, such as the proportional-
integral-differential (PID) technique, the feedback 
linearization technique, and the exact linearization 
technique [5-8]. Some nonlinear controllers have been 
reported in the literature [9-13]. However, most of these 
have been tested only in simulation, and few articles are 
devoted to the issue of output tracking tasks with 
complex reference trajectories such as rest-to-rest or 
sinusoidal. All of the methods applied in a real 
experiment had the initial position in or very near to a 
reference trajectory, and the magnitude of the set-point or 
sinusoidal trajectory was often small. In addition, the 
magnetic ball levitation system is only ensured margin 
stability or asymptotical stability, and the finite-time 
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stability for this system has never been mentioned, even 
in simulation. 
 
Sliding-mode control (SMC) provides a robust and 
invariant property for uncertainties and external 
disturbances. It has been widely used in practical systems 
such as robot manipulators, DC-DC converters, motors, 
and magnetic levitation systems [9,14-17,31]. However, 
the SMC method is not able to guarantee invariance 
properties during the reaching phase, during which 
parameter uncertainties exist [15]. Moreover, this method 
uses a linear sliding surface; thus, the tracking error can 
only guarantee asymptotic convergence to zero. 
 
Terminal sliding-mode control (TSMC) is a variant of SMC 
that can obtain finite-time stability. By employing a 
nonlinear sliding surface, TSMC offers attractive properties 
such as finite-time error convergence, fast convergence, 
and high precision [19]. TSMC schemes are also applied in 
some real applications [21,22]. However, the traditional 
TSMC methods cannot deliver the same convergence 
performance when the states are far from the equilibrium 
point; singularity is also a problem of the traditional TSMC 
method [20]. To overcome these drawbacks, some new 
TSMC methods were proposed [23-25]. The TSMC in [25] 
was proposed for a second-order system. This method not 
only avoids the singular problem, but also entirely 
eliminates the reaching-phase problem regardless of the 
initial states. Therefore, the system is always in sliding mode, 
and the invariance property is guaranteed at all times. 
Moreover, the tracking error convergence time to zero is a 
finite time that can be set arbitrarily. However, this method 
has never been implemented in any real system. 
 
The above-mentioned control approaches, i.e., SMC, 
TSMC and some variant TSMCs, employ high-frequency 
control switching that causes the unavoidable chattering 
phenomenon, which can lead to damage of actuators and 
of the system itself. Therefore, the chattering attenuation 
issue has become a popular topic. Some methods have 
been proposed for resolving this issue, such as the use of 
quasi-sliding mode, low pass filters, sliding sector 
method, and fuzzy-SMC [18,26-28,31]. The fuzzy-based 
schemes avoid the chattering problem without degrading 
the tracking performance. 
 
In this article, novel finite-time control methods are 
implemented in a real ML including arbitrary finite-time 
tracking control (AFTC) and fuzzy-arbitrary finite-time 
tracking control (F-AFTC). Our proposed methods utilize 
a novel augmented sliding hyper-plane function and so 
guarantee that the tracking errors reach zero in a finite 
amount of time. In addition, the singular problem and the 
reaching-phase problem are resolved. In the F-AFTC 
method, the fuzzy technique is combined with the AFTC 
method to attenuate the chattering phenomenon.  

The study is organized as follows. In Section 2, the system 
description and problem statement are given. The design 
procedures and the stability analysis of the proposed 
AFTC and F-AFTC methods are explained in detail in 
Section 3. In Section 4, the numerical simulation and 
experimental results of the ML are provided to 
demonstrate the reliability, validity, applicability and 
effectiveness of the proposed AFTC and F-AFTC schemes. 
Finally, some conclusions are drawn in Section 5.  
 
2. System Description and Problem Statement 
 
Consider the ML given in Figure 1, in which a 
ferromagnetic ball-bearing of mass m  is placed along the 
vertical axis of the electromagnet at distance .x  The 
control signal is voltage, which is converted into current 
via a driver. The current passing through the 
electromagnetic coil will generate an electromagnetic 
force to attract the ball-bearing. The resultant of the 
electromagnetic force and gravitational force will induce 
a vertical motion of the ball-bearing. The measured 
position is determined from an array of infrared 
transmitters and detectors.  
 

Figure 1. Magnetic levitation system diagram 
 
The system’s dynamic equation can be obtained as in 
[29,30]: 
 

 ( , )mx mg f x i= −  (1) 
 
where g denotes the acceleration due to the gravity, and 

( , )f x i  is the magnetic control force, calculated as 
 

 
2

( , ) if x i k
x

 =  
 

 (2) 

 
where k is a constant related to the mutual inductance of 
the ball and coupling coefficients.  
 
The current, i , is linearly related to input voltage u  as 
follows: 
 

 i Cu=  (3) 
 

Substituting (2) and (3) into (1) and defining the 
parameter 2( * ) / ,k C mα = we obtain 
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 2
2x g u

x
α= −  (4) 

 
The parameter α is not precisely known, but it can be 
obtained by the estimated methods. In addition, Eqs. (2) 
and (3) can also be obtained by reasonable assumptions. 
Thus, system (4) can be rewritten in general form as 
 

 2
2

ˆ
( , )x g u d x t

x
α= − +  (5) 

 
where α̂  is the estimation of ,α  and ( , )d x t  is a function 
of total uncertainty and external disturbance. 
 
Assumption 1: We suppose that the uncertain term is 
bounded and is given by 
 
 ( , )d x t D≤  (6) 

 
where D  is a positive constant. 
 
The control objective of this article is to design a 
controller for system (1) such that the output y x=  
precisely tracks the reference trajectory, ( ).dx t  
 
Assumption 2: It is also assumed that Î( )dx t R is a twice 
continuously differentiable function in terms of .t  
 
3. Design of the AFTC and F-AFTC Controllers  
for Magnetic Levitation Systems 
 
3.1 Design of Sliding-Mode Surface 
 
We define the tracking error as ( ) ( ) ( ).de t x t x t= −  Thus, a 
novel function-augmented sliding hyper-plane, ( )s t , is 
defined as follows: 
 

 /1( ) ( ) ( )p qs t t tε ε
β

= +   (7) 

 
where ( ) ( ) ( )t e t tε ν= − , β  is a positive constant, and p  
and q  are positive odd integers that satisfy the following 
condition: < <1 / 2p q . In addition, n( )t  satisfies the 
following assumption: 
 
Assumption 3: Considering the augmenting function 
n + ( ) : ,t R R n n n ¥Î ¥ Î 2( ) [0, ), ( ), ( ) ,t t tC L  the support 

of n( )t  is a bounded interval [0, ]T  for 0T > , and 

n = =( ) ( )(0) (0)( 0,1,2).i ie i  ¥2[0, )C  represents the set of all 
twice continuously differentiable functions defined on 
[0, ).¥  
 

The augmenting function, n( )t , is defined as  
 

 

5

0

0
( )

0

k
k

k
a t if t T

t
if t T

n =

ìïï £ £ïï=íïï >ïïî

å  (8) 

 

where the coefficients ka  can be found based on 
Assumption 3. This case involves all six unknown 
parameters. From Assumption 3, n= =( ) ( )( 0,1,2)i ie i  
gives us three equations: 
 

 
n
n

=
= 

(0) (0)
(0) (0)

e
e

 

 n= (0) (0)e  (9) 
 
Moreover, Assumption 3 also supposes the continuously 
differentiable property of the augmenting function, n( )t . 
Thus, at instant t T= , three more equations are obtained:  
 

 
-

=

=

=

=

å

å

5

0
5

1

1

0

0

k

k

k
k

k
k

a T

ka T
 

 
=

-- =å
5

2

2

( 1) 0k
k

k

k k a T  (10) 

 

As a result, we can easily find the coefficients ka  as 
follows: 
 

 

= = =

æ ö÷ç ÷= - - -ç ÷ç ÷çè ø
æ ö÷ç ÷= + +ç ÷ç ÷çè ø

 

 

 

3 2

2

3

4 3 2

0 1

4

1(0), (0), (0),
2

10 6 3 / 2(0) (0) (0) ,

15 8 3 / 2(0) (0) (0) ,

a e a e a e

a e e e
TT T

a e e e
T T T

 

 
æ ö÷ç ÷= - - -ç ÷ç ÷çè ø

 
5 5 4 3

6 3 1 / 2(0) (0) (0) .a e e e
T T T

 (11) 

 

Remark 1: Assumption 3 and the definition in (7) imply 
that = 0s  at the initial instant. 
 
Remark 2: From Assumption 3 and ( ) ( ) ( ),t e t tε ν= −  it is 
obvious that ε ε= =(0) (0) 0 . 
 
3.2 Design of Arbitrary Finite-Time Controller (AFTC) 
 
In order to achieve the control objective for a nonlinear 
system (5), an arbitrary finite-time control method is 
described in Theorem 1. 
 
Theorem 1: For ML (5), if the control signal is designed as 
(12), the tracking error, ( )e t , will converge to zero in 
finite time T . 
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 ( )
2

( )
ˆ eq s

xu t u u
α

= +  (12) 

 
where  

 2 /( ) ( ) p q
eq d

qu g x t t
p

ν β ε −= − − +    (13) 

 ( )sgn( )su D sη= +  (14) 
 
Here, η  is a positive constant, and 
 

 
1 0,

sgn( ) 0 0 ,
1 0.

for s
s for s

for s

 >
= =
− <

 (15) 

 
Proof: Consider the following Lyapunov candidate 
function: 
 

 21
2

V s=  (16) 

 
Differentiating V with respect to time and substituting (5) 
and (7) into it yields 
 

 
( )

/ 1

/ 1

1

1 ( )

p q

p q
d

pV ss s
q

ps x x t
q

ε ε ε
β

ε ε ν
β

−

−

 
= = + 

 
 

= + − − 
 

    

    
  

 / 1 2
2

ˆ1 ( , ) ( )p q
d

ps g u d x t x t
q x

a
e e n

b
-

é ùæ ö÷çê ú÷= + - + - -ç ÷ê úç ÷çè øê úë û
    (17) 

 
Substituting Eqs. (12), (13) and (14) into Eq. (17) leads to 
 

  / 1 2 /1 ( , ) ( )sgn( )p q p qp qV s d x t D s
q p

e e b e h
b

- -
é ùæ ö÷çê ú÷ç= + - - + ÷ê úç ÷÷çè øê úë û

     

 / 11 ( , ) ( )sgn( )p qp d x t s D s s
q
e h

b
- é ù= - +ê úë û  (18) 

 

Because p  and q  are positive odd integers and 

1 / 2,p q< < then / 1 0.p qε − ≥ In addition, using Assumption 
1, Eq. (18) yields 
 

 he
b

-£- £  / 11 0p qpV s
q

 (19) 

 

Therefore, V  is a negative semi-definite function, i.e., 
( ) (0).V t V£  Moreover, from the initial condition, 

(0) 0s = , as in Remark 1, ( ) 0, 0,V t t= " ³  which is 
equivalent to = ∀ ≥( ) 0, 0s t t . From Remark 2, 

(0) (0) 0ε ε= = ; thus, it is easily shown that ( ) 0, 0t tε = ∀ ≥  
or ( ) ( ).e t tν≡  Consequently, if the function, ( )tν , is 
defined as (8), i.e., ( ) 0, ,t t Tν = ∀ ≥  the tracking error, ( )e t , 

will reach zero in finite time T, i.e., ( ) 0, .e t t T= ∀ ≥  
This completes the proof of Theorem 1. 
 
Remark 3: It has been shown that ( ) 0, 0t tε = ∀ ≥  indicates 
the constant existence of the sliding mode with no 
accompanying reaching phase. 
 
Remark 4: The control effort in Eq. (13) does not include 
any term that causes the singular problem. 
 
In order to eliminate the chattering phenomenon that is 
caused by the sign function term in (14), a saturation 
function is often used to replace the (.)sign function in 
conventional sliding-mode methods. However, this 
replacement degrades the tracking performance. In order 
to overcome this drawback, the fuzzy logic technique is 
applied.  
 
3.3 Design of Fuzzy-Arbitrary Finite-Time Controller (F-AFTC) 
 
Theorem 2: For ML (5), if the control signal is designed as 
(20), where equ  is defined as (13), and fsk D> , then the 

tracking error, ( )e t , will converge to zero in finite time T . 
 

 ( )
2

( )
ˆ eq fs fs

xu t u k u
α

= +  (20) 

 
where fsk  is the normalization factor of the output 

variable, and fsu  is the output of the fuzzy sliding-mode 

control (FSMC) [9,31]: 
 
 ( )fsu FSMC s=  (21) 
 

where FSMC(s) presents the functional characteristics of 
the fuzzy linguistic decision schemes. The input and 
output variables of FSMC are s  (sliding surface) and .f su  
The membership functions of input linguistic variable s  
and the membership functions of output linguistic 
variable f su  are shown in Figure 2. These functions are 
divided into seven fuzzy functions of negative big (NB), 
negative medium (NM), negative small (NS), zero (ZE), 
positive small (PS), positive medium (PM) and positive 
big (PB). The fuzzy logic system employs the fuzzy rule 
base in Table 1 [31], the minimum inference engine, the 
singleton fuzzier, and the centre average defuzzier [32]. 
 

s NB NM NS ZE PS PM PB 

f su  PB PM PS ZE NS NM NB 
 

Table 1. Rule-base 
 
Proof: For Theorem 2, the Lyapunov candidate function 
is chosen as in (16); we also use the time derivative 

4 Int J Adv Robot Syst, 2014, 11:157 | doi: 10.5772/58986



expressed as Eq. (17). By substituting Eqs. (13) and (20) 
into (17), with / 1 0,p qe - ³ we obtain the following: 
 

  ( )/ 11 ( , ) f s s
p

f
qpV d x t s k u

q
e

b
-= -   

 ( )/ 11 p q
fs

p D s k s
q

ε
β

−≤ −  (22) 

 
Obviously, if we choose ,f sk D>  it can be concluded that 

0.V ≤  Therefore, the analysis is the same as that at the 
end of subsection 3.2; it is known that the tracking error, 

( )e t , will converge to zero in finite time. The proof of 
Theorem 2 is known. 
 

Figure 2. Membership functions of fuzzy sets: (a) input variable 
and (b) output variable .f su  

 
4. Numerical Simulation and Experimental Results 
 
In this section, the effectiveness of the proposed AFTC 
and F-AFTC methods are validated by numerical 
simulation and experimental study of an ML. For both 
the numerical simulation and experiment, we consider 
system (5) with the following nominal parameters [29,30]: 
 

 
2

5 2 2

9.81 [( / )], 1.05 [( / )],
0.02[( )], 2.48315625.10 [( / )].

g m s C A V
m kg K Nm A−

= =
= =  

    (23) 

 
Then, α = 2 2ˆ 0.00136884 [( . ) / ( . )]N m kg V . We employ two 
reference signal types: set-point and sinusoidal trajectory, 
given by 
 

 1( ) 15( )dx t mm=  (24) 
 
 2( ) 15 3sin(0.4 ) ( )dx t t mmπ= +  (25) 
 

4.1 Numerical Simulation 

In this subsection, simulation results are given to 
demonstrate the superior performance of the proposed 
method compared to the TSM method in [25]. 
 
Considering system (5), the uncertainty and external 
disturbance, ( , ),d x t should be considered. From the 
experimental results in [30], we assume a real value of 

0.00134557.α =  Equation (25) implies that 

min 12( ),x mm=  and the control voltage maximum is 

max 4.5( ).u V<  Therefore, a reasonable assumption of the 
uncertain term is given by 
 

 2
min

2
max

ˆ
( , ) 3.3ud x t D

x
α α−

≤ = =  (26) 

 
In this simulation, the initial condition is 0 26( )x mm= . 
The proposed AFTC method in (12) and the TSM method 
proposed in [25] are simulated with a set-point reference 
signal (24).  
 
The TSM controller in [25] is designed as 
 

 ( )
2

1 ( ) ( ')sgn( )
ˆ d

xu g x t D sν βε η
α

= − − + + +    (27) 

 
where ( )tν is designed as in (8), 'η  is a positive scalar, 

1( ) ( ) ( ),de t t x x tε ν ν= − = − −  and the sliding surface in this 
method is .s ε βε= +  
 
For this simulation, to eliminate chatter, the (.)sign  
function is replaced by a saturation function given by 
 

 
( )

( )
sign s if s

ssat s if s

φ

φ φ
φ

 ≥
= 

<


 (28) 

 
where φ  is a sufficiently small positive constant. 
 
The parameters for both methods are selected as in Table 
2. The simulation results are shown in Figure 2. As can be 
seen in Figure 2, the control performance is good for both 
methods, and the tracking error approaches zero within 

0.2( ),T s= which is satisfied according to the chosen 
convergent time. Thus, our proposed AFTC method is 
superior to the TSM method in [25] as it has higher-
precision tracking, less control effort, and improved 
behaviour in the transient period. The main reason for 
these improvements is that our method utilizes a 
nonlinear hyper-plane as in Eq. (7) instead of a linear 
hyper-plane as in [25]. 
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Control 
schemes 

Parameters 

AFTC 0.2, 5, 3, 5; 4, 0.001T p q Dβ η φ= = = = + = =

TSM 
[25] 

0.2, 5, ' 4, 0.001.T Dβ η φ= = + = =  

Table 2. Controller parameters for numerical simulation 
 

 
Figure 3. The numerical simulation results of the set point control: 
(a) output tracking, (b) control input, and (c) sliding surface 

4.2 Experimental Results 

The ML used in this work and designed by Feedback 
Instrument [29] is shown in Figure 4. This ML is composed 
of a mechanical unit (denoted with 1 in Figure 4), an 
analogue control interface (denoted with 2 in Figure 4), a 
PCI1711 I/O card (within the computer case in Figure 4), 
and a feedback SCSI adapter box (denoted with 3 in Figure 
4). The control law implemented in the PC uses software 
tools from MathWorks Inc., such as MATLAB/Simulink, 
Control Toolbox, Real Time Workshop (RTW), Real Time 
Windows Target, and Microsoft Visual C++ Professional. 
The steps necessary to obtain the executable file from the 

control law model are shown in Figure 5 [29]. The control 
method is designed in the MATLAB/Simulink 
environment. Real Time Workshop builds a C++ source 
program from Simulink. C++ compilers compile and link 
the code created by RTW in order to produce an executable 
program. Real Time Windows Target communicates with 
the executable program and interfaces with the hardware 
device though the I/O board. Real Time Windows Target 
manages the two-way signal flow to and from the model 
and to and from the I/O board. 
 

Figure 4. Experimental platform 
 

 

Figure 5. Tools for control system development 
 
The real values of the experimental platform are as in (23) 
with a nominal value 2 2ˆ 0.00136884 [( . ) / ( . )]N m kg Vα = . 
The experiment describes the implementation of the 
AFTC method using a saturation function and the 
implementation of the F-AFTC scheme.  
 
The AFTC method (12) is implemented for the reference 
trajectories, (24) and (25), and the saturation function (28) 
is employed. The F-AFTC method is designed as in (20). 
The parameters of the AFTC method and F-AFTC method 
for the experiment are chosen as in Table 3. 
 

Control 
schemes 

Parameters 

AFTC 0.2, 5, 3, 5; 4, 0.001T p q Dβ η φ= = = = + = =  

F-AFTC 0.2, 5, 3, 5, 10.f sT p q kβ= = = = =  

Table 3. Controller parameters for experiment 
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Figure 6. The set point control for Case E1: (a) output tracking, 
(b) control input, and (c) sliding surface 
 

 

 
Figure 7. The sinusoidal-trajectory tracking control: (a) output 
tracking, (b) control input, and (c) sliding surface 
 
The experimental results are depicted in Figure 6 and 
Figure 7. The results indicate the excellent performance of 
the proposed AFTC and F-AFTC controllers. It is 
observed from Figures 6(a) and Figure 7(a) that the 
convergence time is satisfied, which implies that the 
actual outputs converge to the reference trajectories 
within 0.2( ).T s=  In other words, the system output 
responses well track the reference trajectories after the 
finite time, .T  However, the tracking performance of the 
F-AFTC is better than that of the AFTC.  
 
Figures 6(c) and 7(c) show the sliding hyper-planes, ( ),s t  
which show that the system states are always on in the 
sliding hyper-plane, i.e., the overall system is in sliding 
mode all of the time. 
 
5. Conclusions  
 
This article has established the AFTC and F-AFTC methods 
for tracking control of a real ML. It has been verified that 
the proposed methods with the novel nonlinear hyper-
plane have better performance than the conventional 
method. The proposed methods not only avoid the 
reaching-phase problem and the singular problem, but also 
achieve a highly precise tracking performance. In addition, 
the controllers cause the tracking errors to converge to zero 
in finite time, and the relaxation time, T, can be set 
arbitrarily. This is the first successful implementation of 
these achievements in a real system. This paper also 
contributes simpler and more efficient nonlinear control 
methods that can be employed as good solutions for the 
stabilization and tracking control of MLs. It should be 
noted that the proposed method could be easily extended 
to multi-input multi-output (MIMO) nonlinear systems. 
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