
 

 

Introduction 
 
Ovarian cancer (OC) is the fifth cause of cancer-
related death in women in North America, the 
second most common gynecological cancer, 
and the leading cause of death from gynecologi-
cal malignancies [1]. Although OC may arise 
from all cell types composing the ovaries, 
epithelial carcinomas arising from the surface 
epithelium are by far the most common (85-
90% of all OC) [1]. Early detection of cancer pa-
tients remains an important objective in the 
field because over 70% of patients with OC are 
diagnosed at late stage disease, with dissemi-
nation of tumor implants throughout the perito-
neal cavity [1-3]. Only 10-15% of these patients 

maintain a complete response to the initial ther-
apy. The five-year survival of patients that pre-
sent with late stage disease, which is the case 
for most patients, remains at < 30% with a 
mean survival of 39 months [4]. Recurrence is 
associated with incurable diseases in most 
cases. Thus, the main obstacle to an effective 
treatment is the failure of the initial chemother-
apy to eradicate a sufficient number of tumor 
cells to prevent disease recurrence. In this con-
text, deficiency in the apoptotic cascade among 
tumor cells is a key hallmark of OC.  
 
The current standard treatment for advanced 
OC consists of cytoreductive surgery and che-
motherapy. Paclitaxel combined with platinum-
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Abstract: Ovarian cancer (OC) is the leading cause of death from gynecological malignancies. Although most patients 
respond to the initial therapy when presenting with advanced disease, only 10-15% maintain a complete response 
following first-line therapy. Recurrence defines incurable disease in most cases. Despite improvements with conven-
tional chemotherapy combinations, the overall cure rate remained mostly stable over the years. Increased long-term 
survival in OC patients will only be achieved through a comprehensive understanding of the basic mechanisms of 
tumor cell resistance. Such knowledge will translate into the development of new targeted strategies. In addition, 
because OC is considered to be a heterogeneous group of diseases with distinct gene expression profiles, it is likely 
that different approaches to treatment for distinct sub-types will be required to optimize response. One of the new 
promising anti-cancer therapies is the tumor necrosis factor-related apoptosis-inducing ligand (TRAIL). TRAIL has the 
ability to selectively induce apoptosis in tumor cells with little toxicity to normal cells. Death receptor ligands such as 
TRAIL rely on the activation of the apoptotic signaling pathway to destroy tumor cells. TRAIL induces the formation of 
a pro-apoptotic death-inducing signaling complex (DISC) via its death receptors, TRAIL receptor 1 (TRAIL R1) and 
TRAIL receptor 2 (TRAIL R2). The formation of the DISC activates caspase-8 which requires further signal amplifica-
tion through the mitochondrial pathway for an efficient activation of effector caspases in OC cells. The initial enthusi-
asm for TRAIL has been hampered by accumulating data demonstrating TRAIL resistance in various tumor types in-
cluding OC cells. There is, therefore, a need to identify markers of TRAIL resistance, which could represent new hits 
for targeted therapy that will enhance TRAIL efficacy. In addition, the identification of patients that are more likely to 
respond to TRAIL therapy would be highly desirable. In this review, we discuss the different molecular and cellular 
mechanisms leading to TRAIL resistance in OC. In particular, we address the mechanisms involved in intrinsic, ac-
quired and environment-mediated TRAIL resistance, and their potential implication in the clinical outcome. 
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based regimen is the standard first-line chemo-
therapy used for all patients with OC [5]. OC can 
be considered a chemosensitive neoplasm as 
the majority (80%) of patients initially respond 
to the combination of paclitaxel and platinum-
based drugs [6]. However, 90% of the patients 
that initially responded will eventually develop 
chemotherapy-resistant diseases [6]. Although 
rarely curative, patients that do not respond to 
the first-line chemotherapy are given second-
line and third-line regimens of chemotherapy in 
an attempt to prolong life and palliate symp-
toms. Despite evidence of considerable hetero-
geneity in their histological phenotypes and mo-
lecular profiling [7-9], most cases of OC are 
treated in a similar fashion. It became apparent 
with recent progress that the focus should be 
towards the development of new targeted thera-
pies capable of exploiting the molecular and 
genetic characteristics of individual tumor sub-
types. Clearly, the development of more effec-
tive combined initial strategies that would re-
duce the incidence of recurrence is highly desir-
able. In addition, the discovery of novel and ef-
fective therapy against chemotherapy-resistant 
OC is a high priority.  
 
At the moment, there is a rapid development of 
novel compounds that target key components in 
signal transduction pathways associated with 
cell growth, tumor vascularity, apoptosis and 
invasive potential of cancer cells. One such 
molecule is TRAIL. The TRAIL pathway has been 
extensively studied in vitro and in vivo, and 
molecules targeting this pathway have become 
attractive candidates for anticancer treatment 
[10]. Preclinical studies in mice provided the 
first evidence that the soluble form of recombi-
nant TRAIL suppresses the growth of human 
tumor xenografts with no apparent systemic 
toxicity [11]. More recently, recombinant TRAIL 
has entered clinical trials for the treatment of 
various malignancies [12, 13]. Although pub-
lished phase 1/2 studies have indicated toler-
ated toxicity, the therapeutic efficiency was lim-
ited [14]. In addition to the soluble ligand, sev-
eral agonistic antibodies targeting TRAIL R1 or 
TRAIL R2 have been developed and entered into 
clinical trials in parallel including OC patients 
[10, 15-18]. These agonistic antibodies may be 
more effective than the soluble TRAIL at eradi-
cating tumors for several reasons, one of them 
being the prolonged half-life time in vivo com-
pared to the recombinant proteins [19-22]. 
While soluble TRAIL can bind to all five recep-

tors, including decoy receptors which can con-
tribute to TRAIL resistance, selective agonistic 
antibodies help to avoid this unwanted effect. 
Another potential advantage of TRAIL and its 
agonistic antibodies is the fact that they induce 
apoptosis independently of the p53 tumor sup-
pressor gene [10], which is frequently inacti-
vated in OC cells. Thus, therapies targeting the 
TRAIL cascade may be effective against cancer 
cells that have acquired resistance to conven-
tional chemotherapy via p53 inactivation. How-
ever, tumor cells have developed various 
mechanisms to escape the apoptosis induced 
by TRAIL. This underscores the need to under-
stand the mechanisms of TRAIL resistance, and 
based on this knowledge, identify and validate 
novel combinations that could be used with 
TRAIL to potentiate its therapeutic efficacy. The 
issue of developing new combination therapies 
for OC is important because OC cells are prone 
to develop multiple strategies to evade apop-
tosis.  
 
This review focuses on the TRAIL signaling cas-
cade and the various mechanisms that OC cells 
may develop to suppress TRAIL cytotoxicity. The 
role of the cancer-associated microenvironment 
in TRAIL resistance is also discussed.  
 
TRAIL and death receptors 
 
TRAIL is a member of the TNF ligand super-
family of cytokines and it is a type II transmem-
brane protein expressed by cells of the immune 
system. The extracellular domain of TRAIL can 
be shed from the cell surface by cysteine prote-
ases to produce soluble TRAIL. Both the soluble 
and the membrane-bounded TRAIL can trigger 
apoptosis by interacting with TRAIL receptors 
expressed by target cells. TRAIL binds to multi-
ple receptors including TRAIL R1 (DR4), TRAIL 
R2 (DR5), TRAIL R3 (DcR1), TRAIL R4 (DcR2) 
and osteoprotegerin (OPG) [23-27]. Only TRAIL 
R1 and TRAIL R2 are able to transmit an apop-
totic signal. Two additional receptors TRAIL R3 
and TRAIL R4 act as decoy receptors and are 
incapable of transmitting an apoptotic signal. 
Both TRAIL R1 and TRAIL R2 contain death do-
mains (DD) in their intracellular portion [28]. In 
contrast, TRAIL R3 lacks the DD whereas TRAIL 
R4 has a truncated non-functional DD and 
therefore both are unable to transmit an apop-
totic signal. Soluble TRAIL also binds with low 
affinity to soluble OPG, which is a decoy recep-
tor for RANKL that blocks the RANK-RANKL in-
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teraction and limits osteoclastogenesis [29]. 
OPG binding to TRAIL may regulate differentia-
tion and survival of mature osteoclast [30]. In-
terestingly, conditioned medium from prostate 
and breast cancer cells that contained high lev-
els of OPG were found to inhibit TRAIL-induced 
apoptosis in vitro [31, 32]. OC ascites also con-
tain high levels of OPG (Lane et al., unpublished 
data). These data suggest that OPG might po-
tentially counteract the anti-tumor activity of 
TRAIL in vivo.  
 
The selectivity of TRAIL for tumor cells can be 
explained, at least in part, by higher levels of 
TRAIL R1 and TRAIL R2 in tumor cells and the 
relative high levels of decoy receptors in normal 
cells [33, 34]. Indeed, normal cells such as hu-
man foreskin fibroblast HS27 and lung fibro-
blast WI38 were found to have extremely low 
expression of TRAIL R1 mRNA and protein, and 
were resistant to TRAIL-induced apoptosis [35]. 
In contrast to the initial belief, at least in vitro, 
the cytotoxic effects of TRAIL are not limited to 
transformed cells. For example, human normal 
urothelial cells [36], human prostate cells [37], 
human primary keratinocytes [38], and human 
epithelial ovarian cells [39] were shown to be 
susceptible or partially susceptible to TRAIL-
induced apoptosis in vitro. In some of these 
normal cells, sensitivity to TRAIL was associated 
with low expression of anti-apoptotic decoy re-
ceptors [37]. Although these data raise con-
cerns about TRAIL safety when deliver systemi-
cally; in preclinical models, recombinant soluble 
TRAIL has demonstrated good anticancer activ-
ity and no systemic toxicity [40]. Published 
phase 1/2 studies with TRAIL agonists have 
also generally indicated a good tolerance. 
 
Apoptotic TRAIL signaling 
 
There are two main pathways that initiate the 
apoptotic cascade: the extrinsic and the intrin-
sic pathway (Figure 1). The extrinsic pathway is 
triggered when TRAIL binds to TRAIL R1 or TRAIL 
R2. Receptor trimerization, along with the sub-
sequent oligomerization and clustering of the 
receptors, leads to the recruitment of the adap-
tor protein Fas-associated protein with death 
domain (FADD). FADD allows the recruitment of 
the inactive pro-caspase-8 or –caspase-10 via a 
shared death effector domain (DED) leading to 
the formation of the DISC. In some cells, upon 
autoactivation at the DISC, activated caspase-8 
and 10 cleave and directly activate the effector 

caspases (caspase-3, -6, -7) leading to the exe-
cution of apoptosis including membrane bleb-
bing, inter-nucleosomal DNA fragmentation and 
nuclear shrinkage (type I cells) [41]. A protein 
called cellular FLICE-inhibitory protein (c-FLIP) 
shares structural homology with pro-caspase-8 
and possesses a death effector domain that 
lacks protease activity. In specific conditions, its 
structure allows c-FLIP to be recruited to the 
DISC where it inhibits the processing and activa-
tion of pro-caspase-8. Although many isoforms 
of c-FLIP have been identified, only three are 
expressed in human cells [42]. They consist of 
two short variants, c-FLIPS and c-FLIPR, and a 
long splice variant, c-FLIPL. Both c-FLIPL and c-
FLIPS contain two DEDs and compete with pro-
caspase-8 for association with FADD [43]. De-
pending on the level of c-FLIPL expression, its 
function at the DISC will vary. When present in 
high amounts, c-FLIPL will exert an anti-
apoptotic effect at the DISC [44]. When present 
in low amounts, it may heterodimerize with cas-
pase-8 at the DISC and promotes apoptosis 
[45]. c-FLIP is thus seen as a major inhibitor of 
the extrinsic pathway of apoptosis. In other cells 
(so called type II cells), amplification of the sig-
nal via the intrinsic or mitochondrial pathway is 
necessary for efficient apoptosis. The intrinsic 
pathway is usually triggered in response to DNA 
damage, hypoxia or oncogene overexpression. 
As a sensor of cellular stress, p53 is a critical 
initiator of the intrinsic pathway. In response to 
cellular damage, p53 translocates from the cy-
toplasm to the nucleus where it promotes the 
transcription of pro-apoptotic members of the 
Bcl-2 family. Pro-apoptotic Bcl-2 family mem-
bers such as Bax and Bak form pores in the 
outer mitochondrial membrane causing the re-
lease of cytochrome c and other apoptogenic 
factors such as apoptosis inducing factor (AIF) 
and SMAC/DIABLO into the cytoplasm. Cyto-
chrome c, along with apoptosis protease activat-
ing factor-1 (APAF-1) and pro-caspase-9 form 
the apoptosome. Within the apoptosome, clus-
tered pro-caspase-9 gets activated and it 
cleaves downstream effector caspases, leading 
to the hallmarks of apoptosis [46]. The release 
of SMAC/DIABLO from the mitochondria pro-
motes apoptosis by binding to and neutralizing 
members of the family of inhibitor of apoptosis 
proteins (IAPs), which can block caspase-3 ac-
tivity through its baculovirus IAP repeat do-
mains. Although the extrinsic and intrinsic path-
ways are activated by different mechanisms, 
these two pathways are interconnected (Figure 
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1). In type II cells, activated caspase-8 cleaves 
pro-apoptotic Bcl-2 family member Bid to form 
truncated Bid (tBid), which can then interact 
with Bax/Bak. This interaction increased the 
release of cytochrome c from the mitochondria. 
Thus, Bid provides a connection between extrin-
sic and intrinsic pathways (so called mitochon-
drial amplification step). The reasons that deter-
mine whether tumor cells rely of type I or II sig-
naling is not well understood. It has been pro-
posed that the levels of c-FLIP and XIAP relative 
to caspase-8 and SMAC/DIABLO might be im-
portant determinants [35].  
 
Bcl-2 family proteins are involved in the regula-
tion of apoptosis by controlling mitochondrial 
membrane permeability. Several studies have 

demonstrated that these proteins can interact 
with each other and these interactions can neu-
tralize their pro- or anti-apoptotic functions. The 
balance between anti- and pro-apoptotic mem-
bers dictates the fate of cell survival or death. 
Pro-apoptotic Bcl-2 members can be divided 
into 2 groups according to their function and the 
number of BH domains that they possess. Pro-
teins containing BH domains 1-3 are known as 
multidomain pro-apoptotic proteins such as 
Bax, Bak and Bok [47]. BH-3-only pro-apoptotic 
proteins such as Bik, Bid, Bad, Bim, Bmf, Noxa, 
Puma and others can form homo- and/or hetero
-dimers with the multidomain proteins Bax and 
Bak to promote their activation. Anti-apoptotic 
proteins such as Bcl-2, Bcl-XL and Mcl-1 can 
also form hetero-dimeric interactions with Bax 

Figure 1. Apoptotic TRAIL signaling. Binding of TRAIL to death receptors (TRAIL R1, TRAIL R2) leads to the recruitment 
of the adaptor molecule, FADD. Pro-caspase-8 binds to FADD leading to DISC formation and resulting in its activation. 
Activated caspase-8 directly activates executioner caspases (caspase-3, -6, and -7) (type I cells) or cleaves Bid (type II 
cells). Translocation of the truncated Bid (tBid) to the mitochondria promotes the assembly of Bax-Bak oligomers and 
mitochondria outer membrane permeability changes. Cytochrome c is released into cytosol resulting in apoptosome 
assembly. Active caspase-9 then propagates a proteolytic cascade of effector caspases activation that leads to mor-
phological hallmarks of apoptosis. Further cleavage of pro-caspase-8 by effector caspases generates a mitochondrial 
amplification loop that further enhances apoptosis. When FLIP levels are elevated in cells, caspase-8 preferentially 
recruits FLIP to form a caspase-8-FLIP heterodimer which does not trigger apoptosis. 



Ovarian cancer TRAIL resistance 

 
 
79                                                                                                                   Am J Cancer Res 2012;2(1):75-92 

and Bak, thereby neutralizing their pro-apoptotic 
activity. Anti-apoptotic proteins can form hetero-
dimers with BH-3-only proteins and this interac-
tion may neutralize the pro-survival function of 
anti-apoptotic proteins. Thus, TRAIL-induced 
apoptosis can be regulated at multiple levels 
involving both the extrinsic and intrinsic path-
ways (Figure 1).  
 
A number of studies showed that TRAIL can also 
trigger non-apoptotic pathways [48]. Under cer-
tain circumstances, engagement of TRAIL recep-
tors can lead to the formation of a secondary 
signaling complex by promoting the recruitment 
of RIP1, TRAF2 and NEMO/IKK-γ, which is capa-
ble of activating nuclear factor-κB (NF-κB) and 
MAP kinase pathways thereby promoting cell 
survival [49] (Figure 2). NF-κB activation pro-
motes the transcription of anti-apoptotic pro-
teins such as Mcl-1, IAPs and c-FLIP leading to 
the inhibition of apoptosis. Recently, it was 
demonstrated that myc oncogene decreases 
the expression of Mcl-1 and IAPs by blocking 
TRAIL-mediated NF-κB activation [50]. Myc can 

also transactivate TRAIL R2 or suppress the 
transcription of c-FLIP thereby enhancing TRAIL-
induced apoptosis [51]. The biological implica-
tions of alternative TRAIL signaling cascades 
remain controversial and further work is re-
quired to understand how this could influence 
the outcome of ongoing trials with TRAIL or its 
agonists.  
 
TRAIL cytotoxicity in ovarian cancer 
 
The therapeutic potential of TRAIL has been 
evaluated in OC. Early studies have shown that 
OC cell lines displayed variable sensitivity to 
recombinant TRAIL [39, 52-54]. Although TRAIL 
resistance was a common finding in these stud-
ies, interestingly, resistance to chemotherapy 
did not correlate with TRAIL resistance. This 
suggests that TRAIL could be useful in patients 
that have developed resistant disease to cis-
platin and paclitaxel [55]. Furthermore, several 
studies demonstrated that the combination of 
TRAIL with cisplatin was more efficient than 
either molecule alone [52-56]. One possible 

Figure 2. Non-apoptotic TRAIL signaling. In cells that resistant to TRAIL-induced apoptosis, TRADD, TRAF2 and RIP1 
bind to the receptor. This complex signals through NF-κB, p38 and JNK pathway resulting in the up-regulation of tar-
get genes involved in anti-apoptotic function and proliferation. 
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explanation for these findings is the fact that 
cisplatin was shown to up-regulate cell surface 
expression of TRAIL receptors in tumor cells 
[54]. Conflicting results were reported regarding 
the prognostic value of TRAIL expression in OC 
cells. Lancaster et al. reported that high TRAIL 
expression in tumor cells was associated with a 
more favorable outcome in a cohort of 120 pa-
tients [57]. In contrast, Horak et al. did not find 
such an association in a smaller cohort of 68 
patients [58]. However, they showed using tis-
sues microarray immunostaining that stromal 
TRAIL expression was a strong predictor of over-
all survival [58]. Interestingly in this study, al-
most 50% of the analyzed tumors expressed 
elevated levels of c-FLIPL and about 80% of tu-
mors displayed low expression of TRAIL R1 and/
or TRAIL R2, which could contribute to the pro-
tection of OC cells from TRAIL-induced apop-
tosis. Furthermore, this group reported that epi-
genetic silencing of TRAIL R1 occurred in 8% to 
27% of OC tumor samples [59]. In another 
study, higher expression of TRAIL R1 in OC cells 
isolated from ascites was associated with a 
worse outcome [60]. Although these data may 
suggest that TRAIL sensitivity is altered in a sig-
nificant proportion of ovarian tumors, recent 
evidence demonstrated that TRAIL agonists can 
induce substantial cytotoxicity in ovarian tu-
mors. Estes et al. evaluated the cytotoxicity of 
TRAIL R2 monoclonal antibody (TRA-8) in nine-
teen chemotherapy-naive primary ovarian tumor 
samples (stage III/IV) [61]. They showed that 
TRA-8 induced dose-dependent cytotoxicity in 
most samples tested. Increased cytotoxicity was 
observed when TRA-8 was used in combination 
with chemotherapeutic drugs [61]. The potential 
of TRA-8 was further evaluated in a xenograft 
mouse model of OC. When used alone, TRA-8 
produced only a modest benefit in terms of tu-
mor growth inhibition [61]. However, animals 
treated with the combination of carboplatin, 
docetaxel and TRA-8 demonstrated a better 
outcome when compared to carboplatin and 
docetaxel only. Enhanced tumor cell apoptosis 
and survival of treated animals has also been 
observed when soluble TRAIL was combined 
with cisplatin in an OC xenograft mouse model 
[22].  
 
Because TRAIL cytotoxicity in OC cells relies on 
the activation of both the extrinsic and the in-
trinsic apoptotic pathways, the combination of 
TRAIL with growth factor inhibitors [52, 62], 
molecules that modulates pro- or anti-apoptotic 

proteins [63-65], and proteasome inhibitors has 
been evaluated [66]. Many studies have shown 
that proteasome inhibitors are able to induce 
apoptosis in various tumor cells both in vitro 
and in vivo [67, 68]. These studies provided the 
basis for introducing proteasome inhibitors into 
the clinic, notably for multiple myelomas and 
mantle cell lymphomas [68, 69]. In addition, 
there is evidence in various tumor models that 
proteasome inhibitors enhance the sensitivity of 
tumor cells to TRAIL [70-72]. Several studies 
have shown that proteasome inhibitors enhance 
TRAIL-induced apoptosis in OC cell lines and 
primary OC cells [73, 74]. The combination of 
proteasome inhibitors and TRAIL agonists could 
offer a new therapeutic strategy for patients 
with refractory advanced OC.  
 
The enhanced efficacy of TRAIL in combination 
with other agents in preclinical models is en-
couraging and suggests that combination thera-
pies with TRAÌL probably represent the best 
clinical option at this point. As it will be dis-
cussed below, given the various pathways that 
may contribute to TRAIL resistance in OC, a 
combination of molecules that targets critical 
steps in the TRAIL signaling cascade is likely to 
be the most efficient approach.  
 
Mechanisms of TRAIL resistance in OC cells 
 
Intrinsic resistance 
 
Intrinsic resistance is observed when tumor 
cells are resistant to a specific drug without pre-
vious exposure to this drug. These tumor cells 
are thus inherently resistant to TRAIL. As stated 
above, intrinsic TRAIL resistance among OC cell 
lines and primary ovarian cancer cells has been 
frequently observed [39, 52-54]. TRAIL resis-
tance has been reported in approximately 50% 
of tested tumor cells, including OC cells. Not 
surprisingly, no unique mechanism underlying 
TRAIL resistance has been observed so far in 
OC cells. Susceptibility to TRAIL-induced apop-
tosis can be regulated at multiple levels in the 
apoptotic signaling cascade. It has been re-
ported that lack of expression of TRAIL R1 due 
to epigenetic silencing correlated with resis-
tance to TRAIL-induced apoptosis in OC cells 
[59]. In contrast, Shivapurkar et al. found no 
aberrant methylation in the promoter of TRAIL 
R1 and TRAIL R2 in a subset of 23 OC samples 
[75]. However, aberrant methylation of TRAIL 
R4 or TRAIL R5 was observed in 40% of the OC 
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in this study. Despite these data, the levels of 
TRAIL receptors or decoy receptors do not usu-
ally correlate with sensitivity or resistance to 
TRAIL in OC cell lines [39]. However, the modu-
lation of TRAIL receptors expression may sensi-
tize tumor cells to TRAIL. For example, celestrol-
induced upregulation of TRAIL R1 and TRAIL R2 
enhances TRAIL-induced apoptosis [76].  
 
Intracellular molecules acting downstream of 
TRAIL receptors also contribute to the resis-
tance of OC cells. As found in other cancer cells, 
c-FLIP expression modulates the sensitivity of 
OC cells to TRAIL-induced apoptosis and has 
been associated with intrinsic TRAIL resistance. 
A number of studies have demonstrated that 
the down-regulation of c-FLIPL (through different 
means) enhances TRAIL-induced apoptosis in 
resistant OC cells [39, 62, 77-79]. In addition, 
the knockdown of c-FLIPL inhibited human OC 
cell lines migratory phenotype in a TRAIL-
dependent manner in vitro and inhibited the 
invasion of tumor cells into the peritoneal cavity 
[80]. Elevated expression of c-FLIPL has been 
reported in a substantial percentage of OC tis-
sues from patients with advanced diseases [58, 
81] and has been associated with adverse out-
come in some studies [82, 83] whereas others 
have found no such association [84].  
 
Constitutively active Akt promotes cell survival 
and resistance to chemotherapy. The constitu-
tive activation of Akt in OC cell lines and primary 
tumor cells also promotes resistance to TRAIL 
[85]. There is a close correlation between the 
activation of Akt in OC cells and the degree of 
resistance to TRAIL [85, 86]. The inhibition of 
Akt phosphorylation reversed cellular resistance 
to TRAIL whereas the transfection of Akt in tu-
mor cells with low Akt basal activity enhanced 
TRAIL resistance [85]. The authors identified a 
novel mechanism of Akt-mediated inhibition of 
TRAIL-induced apoptosis. They showed that Akt 
transcriptionally regulates the expression of Bid 
[85]. Cells with high Akt activation express lower 
Bid protein levels and are thus more resistant to 
TRAIL-induced apoptosis. In addition, the knock-
down of Bid in sensitive OC cells significantly 
enhanced their resistance to TRAIL-induced 
apoptosis. The role of Akt in TRAIL resistance 
among OC cells is also supported by the obser-
vation that the inhibition of Akt activation by 
trastuzumab [87], an erbB-2 receptor inhibitor, 
or by a small molecule that inhibits hPEBP4 
[88], enhanced TRAIL-induced apoptosis. This 

correlation between the state of Akt activation 
and TRAIL resistance has been reported in other 
types of cancer, notably prostate cancer cells 
[89, 90]. 
 
As stated previously, in OC cells, TRAIL triggers 
changes in mitochondrial membrane permeabil-
ity which results in the release of pro-apoptotic 
proteins such as cytochrome c and SMAC/
DIABLO from the mitochondria. In a cohort of 75 
patients, Mao et al. demonstrated decreased 
expression of SMAC/DIABLO and increased ex-
pression of XIAP in OC compared to normal 
ovarian tissues [63]. However, they observed no 
difference in SMAC/DIABLO and XIAP expres-
sion between TRAIL sensitive and resistant cell 
lines. To assess the biological relevance of 
these observations, they stably transfected 
TRAIL resistant OC cell lines with a SMAC/
DIABLO expression vector and showed en-
hanced TRAIL-induced apoptosis in transfected 
cells. Similarly, the treatment of TRAIL resistant 
OC cells with a small molecule SMAC/DIABLO 
mimic enhanced TRAIL- and TRAIL R1 or R2 
agonist-induced apoptosis [64]. Others have 
found a lack of correlation between XIAP protein 
expression and TRAIL sensitivity [85]. Further-
more, down-regulation of XIAP in TRAIL resistant 
OC cells failed to enhance TRAIL-induced apop-
tosis [85] suggesting that XIAP is not a major 
factor contributing to TRAIL resistance in OC.  
 
Not all OC cells are sensitive to TRAIL-induced 
apoptosis which might limit its therapeutic po-
tential. Intrinsic TRAIL resistance appears to be 
multi-factorial and can be influence by the acti-
vation of survival pathways such as Akt. In this 
context, the identification of informative and 
validated biomarkers of TRAIL resistance will be 
important for selecting patients and predicting 
the clinical outcome.  
 
Acquired resistance 
 
Acquired resistance is a mechanism by which 
tumor cells that were initially sensitive to a drug 
adapted to survive to prolonged exposure to this 
drug. This type of resistance is believed to be 
caused by sequential genetic alterations in tu-
mor cells that eventually result in a therapy-
resistant phenotype. Understanding how tumor 
cells may acquired TRAIL resistance over the 
course of treatment is especially relevant now 
that TRAIL agonists are being evaluated in 
phase I/II clinical trials. Theoretically, any block 



Ovarian cancer TRAIL resistance 

 
 
82                                                                                                                   Am J Cancer Res 2012;2(1):75-92 

in the intrinsic or extrinsic pathway that devel-
ops during TRAIL treatment could lead to ac-
quired resistance. Not surprisingly, most studies 
investigating the mechanisms of TRAIL resis-
tance have focused on intrinsic resistance. In-
deed, studies that have directly addressed the 
problem of acquired TRAIL resistance are lim-
ited. Nonetheless, it is important to investigate 
this mechanism of resistance because the mo-
lecular alterations responsible for intrinsic TRAIL 
resistance may be different from those of ac-
quired resistance. The most common strategy 
that has been employed so far to study acquired 
TRAIL resistance has consisted of exposing a 
sensitive cancer cell line to increasing sub-lethal 
concentrations of TRAIL or its agonists in vitro. 
Using such an approach with a colon cancer cell 
line, Jin et al. demonstrated that the levels of 
cell surface TRAIL R1 were significantly down-
regulated in TRAIL resistant cells despite no 
change in TRAIL R1 mRNA or protein expression 
suggesting an alteration in receptor transport to 
the cell membrane [91]. Interestingly, these 
TRAIL resistant cells were not cross-resistant to 
either FasL or paclitaxel. Decreased cell surface 
expression of TRAIL R1 and/or TRAIL R2 has 
also been observed in studies involving HL60 
leukemia cells [92, 93] and breast cancer cells 
[94]. Wang et al. reported that acquired TRAIL 
resistance in H460 lung cancer cells was asso-
ciated with enhanced expression of FLIP and 
Mcl-1 [95]. FLIP recruitment to the DISC inhib-
ited the recruitment and the activation of pro-
caspase-8 whereas Mcl-1 up-regulation sup-
pressed mitochondrial apoptosis. The ratio of 
pro-caspase-8 to FLIP was also found to deter-
mine the level of pro-caspase-8 recruitment and 
activation at the DISC in hepatocellular carci-
noma cells [96]. Interestingly, this study demon-
strated that although TRAIL R2 was upregulated 
in resistant cell lines, increased TRAIL R2 ex-
pression was insufficient to induce apoptosis. In 
another study, acquired TRAIL resistance was 
the results of the combination of decreased 
TRAIL R1 and TRAIL R2 cell surface expression 
and increased FLIP and Stat5 expression [94]. 
Stat5 proteins are members of the STAT family 
of transcription factors that mediate cytokine- 
and growth factor-induced anti-apoptotic signals 
[97]. Song et al. showed that Bcl-XL was a criti-
cal factor in the development of acquired TRAIL 
resistance in prostate cancer cells [98]. Ac-
quired resistance to TRAIL may also result from 
alterations in multiple key apoptotic mediators 
that affect both the intrinsic and the extrinsic 

pathways. For example, Zhang et al. demon-
strated that TRAIL-selected resistant melanoma 
tumor cells expressed markedly lower levels of 
TRAIL R1, TRAIL R2, pro-caspase-8 and pro-
caspase-3, and decreased expression of a num-
ber of pro-apoptotic Bcl-2 family members such 
as Bid, Bim, Puma, Noxa and Bad as compared 
to the unselected parental cell line [99]. Using a 
pair of isogenic colorectal carcinoma cell lines 
that were derived from the primary tumor and 
from a metastatic lymph node from the same 
patient six months later, Ndozangue-Touriguine 
et al. showed that acquisition of TRAIL resis-
tance in the metastatic cells resulted from a 
mitochondrial block that prevented mitochon-
drial outer membrane permeability (MOMP) 
[100]. Interestingly, although TRAIL-induced 
caspase-8 activation resulted in the cleavage of 
full-length Bid into the active truncated from of 
Bid (tBid) in TRAIL-resistant cells, tBid relocaliza-
tion to the mitochondria failed to induce MOMP. 
In addition, the authors found that XIAP down-
regulation led to TRAIL sensitization of resistant 
cells [100]. All together, these studies demon-
strate that the mechanisms of acquired resis-
tance to TRAIL can be due to the inhibition of 
both extrinsic and intrinsic apoptotic cascades, 
and are heterogeneous among different tumor 
types. 
 
Little is known about the molecular mecha-
nisms underlying acquired TRAIL resistance in 
human OC cells. Lane et al. demonstrated that 
TRAIL acquired resistance was due to a rapid 
degradation of active caspase-3 subunits by the 
proteasome in the TRAIL resistant variant OC 
cells OVCAR3 [101]. Not surprisingly thus, TRAIL 
resistant cells were also cross-resistant to FasL. 
These authors did not find any difference in 
TRAIL receptor expression between sensitive 
and resistant cells. TRAIL resistant OVCAR3 
cells remained however sensitive to chemo-
therapeutic drugs. In addition, the expression of 
different pro- and anti-apoptotic Bcl-2 family 
members did not significantly change in cells 
that acquired TRAIL resistance. Li et al. exposed 
a TRAIL-sensitive OC cell line to low and re-
peated doses of TRA-8, a TRAIL R2 agonist anti-
body, and the resultant TRA-8 resistant cell line 
displayed a selective defect in TRAIL-R2 signal-
ing cascade [102]. Interestingly, the apoptotic 
responses induced by TRAIL, a TRAIL-R1 agonist 
antibody (2E12), and in other apoptotic stimuli 
were not impaired. One reassuring finding of 
these studies in OC and other in different tumor 
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types is the fact that TRAIL resistant cells re-
main sensitive to standard chemotherapy. In 
fact, combining standard chemotherapy with 
TRAIL treatment appears to be beneficial be-
cause treatment with cisplatin or carboplatin 
upregulates the expression of TRAIL death re-
ceptors regardless of the p53 status which 
leads to increase apoptosis in OC cells [103].  
 
Whether these in vitro studies on acquired 
TRAIL resistance are relevant to cancer patients 
remain to be determined. After completing clini-
cal trials with TRAIL agonistic antibodies, it will 
be important to investigate whether TRAIL resis-
tance has developed in non-responders and 
determine how this resistance has evolved dur-
ing treatment. Acquired TRAIL resistance could 
be especially relevant in clinical settings be-
cause it may switch the cytotoxic beneficial ef-
fect of TRAIL into a detrimental effect by stimu-
lating tumor cell proliferation. Acquired TRAIL 
resistance in tumor cells has been associated 
with increased migration, invasion and metasta-
sis [104-106].  
 
It is possible that the population of resistant 
cells that emerge during the selective process 
actually results from a subset of parental cells 
that were intrinsically resistant to TRAIL. In this 
context, increasing evidence suggests that OC 
stem cells are present, albeit in a very small 
percentage, in various cell lines such as 
OVCAR3, SKOV3 and IGROV1 as well as in OC 
ascites [107]. These progenitor stem cells are 
more resistant to cisplatin and paclitaxel. They 
could contribute to the emergence of drug resis-
tant tumor cells during the treatment of OC.  
 
Environment-mediated resistance 
 
Most studies have been performed in unicellu-
lar models to characterize TRAIL resistance 
mechanisms. This approach however does not 
take into account the interactions that exist be-
tween host and tumor cells. Unlike most other 
solid cancers where the stroma surrounding 
tumor cells constitute the microenvironment, 
the accumulation of peritoneal fluid that devel-
ops during OC progression, which contains float-
ing tumor cells, represents a unique form of 
tumor microenvironment. The floating malignant 
cells are capable of surviving and proliferating 
despite lacking immediate proximity to blood 
vessels presumably due to the permissive at-
tributes of this microenvironment. The inci-

dence of ascites in women presenting with OC 
ranges from 45% to 75% depending on the tu-
mor type [108]. The presence of ascites is gen-
erally regarded as a grave prognostic sign 
[109]. OC cells have the ability to survive in as-
cites despite the absence of matrix anchorage. 
There are several indirect evidences to suggest 
that ascites influence the progression of OC. 
Characterization of tumor cells from ascites 
using immunohistochemistry (IHC) identified a 
series of molecules that are differentially ex-
pressed between ascites tumor cells and tis-
sues [110]. More recently, proteomic profiling of 
tumor cells from ascites before and after che-
motherapy showed an increase in the activation 
of survival pathways such as Akt pathway, sug-
gesting that the tumor microenvironment influ-
ences the drug resistance development [111]. 
Stromal myofibroblasts and endothelial cells, 
adjacent to cancer cells in solid tumors, are 
replaced by mesothelial cells and by a variety of 
immune cells in ascites. In this microenviron-
ment, mesothelial cells exist in an activated 
state and they may appear phenotypically and 
functionally similar to tumor cells [112]. Tumor-
infiltrating lymphocytes (TIL) usually represent a 
major component of immune cells. Unfortu-
nately, these cells are largely ineffective in ar-
resting tumor growth. Although many of these 
TIL cells are specific for tumor-associated anti-
gens, they show very limited cytolytic activity 
against autologous tumor cells [113]. Natural 
killer (NK) cells are present in ascites and about 
60% of infiltrating NK cells in tumors expressed 
TRAIL at their surface [103]. In mice bearing 
tumors depleted of NK cells, TRAIL increased 
tumor growth and abolished the cytotoxic effect 
of TRAIL R2 agonist antibody suggesting that, at 
least in this model, selective immune cells pos-
sess antitumor activity. 
 
Environment-mediated drug resistance (de novo 
resistance) is a form of resistance by which tu-
mor cells are transiently protected from chemo-
therapy-induced apoptosis via the induction of 
survival signaling pathways [114]. Soluble fac-
tors in the tumor microenvironment engage cell 
surface receptor to activate survival pathways 
(Figure 3). The acellular fraction of ascites is a 
complex inflammatory fluid containing growth 
factors [115-117], lysophosphatidic acid (LPA) 
[118, 119], cytokines [113, 120, 121] and ex-
tracellular matrix (ECM) constituents [122]. As-
cites fluid from patients with pancreatic or ovar-
ian cancer contains significant levels of LPA, 
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which exceed levels required to activate LPA 
receptors [86, 119]. LPA, one of the ligands of G
-protein coupled receptors, has been shown to 
induce cell survival signaling pathways through 
PI3K/Akt in OC cells [123], and to inhibit cis-
platin-induced apoptosis [124]. LPA may bind to 
four distinct receptors LPA1-4. Among these 
receptors, LPA2, LPA3 and LPA4 are aberrantly 
expressed in OC cells [125]. LPA receptors can 
couple to at least three distinct G proteins (Gq, 
Gi, and G12/13). Activation of the PI3K/Akt path-
way has been predominantly linked to the acti-
vation of Gi by LPA. LPA in pancreatic ascites is 
an important factor for the migration and inva-
sion of pancreatic cancer cells in vitro [119, 
126]. LPA protects from TRAIL-induced apop-
tosis by regulating the expression of DR4 or c-
FLIP [124, 127]. However, in the context of 
ovarian ascites, the blockade of LPA cascade 
did not impact on TRAIL-induced apoptosis in 
OC cells [86]. In addition, LPA did not protect OC 
cells from TRAIL-induced apoptosis in vitro [86].  

Although a wide variety of cytokines can be 
measured in OC ascites, interleukin-6 (IL-6) and 
interleukin-8 (IL-8) are among the most abun-
dant [113, 120]. The concentration of these 
cytokines in ascites is 40- to 500-fold higher as 
compared to the levels found in serum [113]. IL-
6 can be secreted in ascites by ovarian cancer 
cells, tumor-associated macrophages and peri-
toneal mesothelial cells. However, levels of IL-6 
secreted by activated mesothelial cells are 600-
fold higher than those secreted by ovarian can-
cer cells [128]. The source of the IL-8 found in 
ascites has not been well defined. These pro-
inflammatory cytokines are involved in different 
pathophysiological processes including carcino-
genesis. In OC, IL-6 is thought to be involved in 
host immune responses to the disease [129-
131]. IL-6 has also been demonstrated to be 
involved in autocrine growth of OC cells [132-
134]. IL-6 signaling in OC cells can regulate tu-
mor cell proliferation, invasion and angiogene-
sis [135-137]. IL-8 was recently reported to pro-

Figure 3. Model for ovarian cancer ascites-mediated protection from TRAIL-induced apoptosis. TRAIL binding to death 
receptors TRAIL-R1 and TRAIL-R2 results in death- inducing-signaling complex (DISC) formation, activation of procas-
pase-8, Bid cleavage, release of cytochrome c from mitochondria, and caspase-9 and caspase-3 activation. Binding 
of ascites survival factors to avβ5 integrin leads to the phosphorylation of FAK and Akt. Akt activation up-regulates 
the levels of c-FLIP protein leading to inhibition of caspase-8. Ascites also activate the ERK pathway leading to up-
regulation of the anti-apoptotic Mcl-1 protein. 
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mote ovarian tumor growth in vivo [138]. A num-
ber of studies have reported an association be-
tween serum levels of IL-6 and prognosis, where 
elevated levels correlated with a poor relapse-
free and overall survival [140, 141]. However, 
others have not found such correlation between 
elevated serum levels of IL-6 and patient’s sur-
vival [142]. Interestingly, it was recently shown 
that elevated ascites levels of IL-6, but not IL-8, 
were an independent predictor of shorter pro-
gression-free survival [120]. Whether IL-6 is a 
critical soluble factor in ascites-mediated TRAIL 
resistance is unclear. However, recent data 
showing that recombinant IL-6 does not protect 
from TRAIL-induced apoptosis in OC cells in vitro 
and that IL-6 depletion from OC ascites does 
not affect their prosurvival properties suggest 
that IL-6 is not a critical factor in ascites-
mediated TRAIL resistance (Lane, unpublished 
data).  
 
In addition to cytokines and growth factors, tu-
mor host interactions include tumor cells-ECM 
communications. ECM components bind to cell 
surface integrins; a family of heterodimers con-
sisting of non-covalently linked α and β subunits 
[142]. Different integrins exhibit different ligand 
specificities. Integrins transmit signals directly 
through ligation-dependent recruitment of non-
receptor tyrosine kinases from the focal adhe-
sion kinase (FAK) leading to the activation of 
several cell signaling pathways including the 
PI3K/Akt pathway [143]. The role of integrins in 
mediating cell proliferation, migration and sur-
vival in ovarian cancer is well established [86, 
144-146]. Based on the variety of soluble fac-
tors that composed the ascites, one can there-
fore expect an important interplay between OC 
cells and the microenvironment that may pro-
mote tumor cell survival and tumorigenesis. It is 
also expected that the microenvironment under-
goes changes in response to emerging tumor 
cells which can further promote cancer progres-
sion.  
 
Alternatively, homotypic or heterotypic tumor 
cells adhesion or adhesion to ECM components 
mediates the activation of survival pathways. By 
definition, de novo resistance persist as long as 
tumor cells are in contact with the microenviron-
ment. Once the microenvironment is removed, 
tumor cells usually revert to a sensitive pheno-
type. As stated above, the ovarian cancer as-
cites contains a number of candidate soluble 
factors that could promote the emergence of 

TRAIL resistance. Recently, it has been shown 
that the PI3K/Akt cascade is activated by ovar-
ian cancer ascites which contributes to TRAIL 
resistance [86, 147]. The ability of different 
ascites to induce Akt phosphorylation in tumor 
cells strongly correlates with their ability to in-
hibit TRAIL-induced apoptosis [86]. The PI3K/
Akt pathway most likely couples signals from 
ascites-activated cell surface receptors which 
regulate the expression and/or phosphorylation 
of apoptosis-regulating targets. Indeed, after 
ascites-induced activation of αvβ5 integrins, the 
focal adhesion kinase (FAK) is phosphorylated 
and FAK induces the activation of Akt [86]. This 
leads to Akt-mediated up-regulation of c-FLIPs 
expression in ovarian cancer cells (Figure 3) 
[86, 148]. The Raf/MEK/ERK pathway is an-
other cascade that plays critical roles in the 
transmission of signals from cell surface recep-
tors to regulate gene expression. For example, 
OC cells incubated with ascites displayed rapid 
ERK phosphorylation which results in Mcl-1 up-
regulation (Goncharenko-Khaider and Lane, 
unpublished data).  
 
Collectively, these data demonstrate the impor-
tance of ascites as a microenvironment that 
supports tumor cell growth and resistance to 
therapy. Directly targeting ascites-induced sur-
vival pathways in tumor cells or blocking soluble 
factor-mediated activation of these pathways 
might be an effective approach to enhance 
TRAIL cytotoxicity. 
 
Conclusions and future directions 
 
The inherent properties of TRAIL or its agonists 
offer a new targeted therapy for OC. Preclinical 
studies using TRAIL or its agonists have demon-
strated the therapeutic potential of these mole-
cules and formed the basis of ongoing phase I/
II clinical trials. Although these treatments ap-
pear to be clinically well tolerated so far, intrin-
sic, acquired and environment-mediated resis-
tance may limit the effectiveness of these ap-
proaches. However, the development of combi-
nation treatments appears to be capable of 
overcoming, at least in part, some of these limi-
tations. Increasing understanding of the 
“TRAILs” of resistance in OC is opening the path 
for therapeutic approaches that exploit critical 
regulators of resistance for the development of 
new combined therapies. As the search for 
more effective treatment for OC continues, the 
morbidity and mortality will hopefully improve. 
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Significant progress has been made in our un-
derstanding of the molecular basis of TRAIL re-
sistance in OC and efforts should continue to 
further improve this knowledge as this will likely 
lead to the development of specific biomarkers 
of resistance and more efficient targeted thera-
pies. 
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