
Editorial: Lipids: fueling the fire in
tuberculosis?

Vishwa Deep Dixit1

Immunobiology Laboratory, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge,
Louisiana, USA

RECEIVED DECEMBER 21, 2011; REVISED JANUARY 5, 2012; ACCEPTED JANUARY 10, 2012. DOI: 10.1189/jlb.1211640

‹ SEE CORRESPONDING ARTICLE ON PAGE 849

Reciprocal interactions between the
metabolic and immune systems
are required for successful execu-

tion of energy-intensive events, such as
adaptive immune responses to pathogenic
insult. It is established that undernutrition
or malnutrition predisposes individuals to
mortality and morbidity from bacterial
infections as a result of defects in innate
as well as adaptive immunity [1]. Chronic
overnutrition, manifested as a metabolic
syndrome with elevated triglycerides, low
HDL, and insulin resistance, also impairs
leukocyte function and increases the risk
and severity of infections [2–4]. Given a
dramatic, world-wide increase in the inci-
dence of obesity, Type-2 diabetes, and
metabolic syndrome, the re-emergence of
latent infections and increased severity of
infections in a metabolically and poten-
tially immunologically compromised host
are of high public health concern [4].
Despite these alarming data, the mecha-
nisms of how the chronic dyslipidemia
and hypercholesterolemia affect immune
cell function in response to chronic infec-
tions are largely unknown.

The cholesterol in blood is com-
plexed with lipoproteins, and increased
LDL and low HDL seen in metabolic
syndrome are associated with inflamma-
tion and are risk factors for several
chronic diseases. Importantly, the FC
levels within a cell are tightly regulated
through several mechanisms, including
cholesterol efflux and esterification of
FC into relatively inert cholesterol esters

[4]. The ApoE is a glycoprotein with a
molecular mass of 34 kDa, which can be
synthesized by macrophages and se-
creted from liver and other tissues. The
ApoE regulates lipid transport by bind-
ing to the LDLR, and ApoE also con-
trols cellular FC through regulating the
cholesterol efflux pathway. In addition,
the LDLR mobilizes cholesterol-rich in-
termediate density lipoproteins and
LDLs from plasma and regulates circu-
lating cholesterol levels. Similar to
ApoE, the genetic deficiency of the
LDLR in mice and humans causes hyper-
cholesterolemia [5]. Prior studies indicate
that deficiency of ApoE and LDLR, and
the associated hypercholesterolemia
causes impaired immune responses to
several bacterial infections, suggesting the
potential role of dyslipidemia in compro-
mising host defense [6].

The recent studies by Martens et al.
[7] in the current issue of JLB show that
despite similar degrees of hypercholes-
terolemia in high fat-fed ApoE�/� and
LDLR

�/�

mice, these genetic mouse
models exhibited divergent, protective
adaptive immune responses to Mycobacte-
rium tuberculosis infection (Fig. 1). Con-
sistent with prior findings, the ApoE�/�

animals infected with M. tuberculosis suc-
cumbed to infection [6]. However, the
LDLR�/� mice fed a high-fat diet
mounted an unexpectedly successful,
protective immune response and sur-
vived the TB infection, despite greater
lung inflammation, necrosis, and pres-
ence of lipid-containing foamy macro-
phages [7]. The LDLR null mice in-
fected with TB and fed a low-fat diet do
not develop severe lung inflammation,

suggesting that the degree of hypercho-
lesterolemia is linked to activation of
innate immune cells but does not im-
pair Th-1-driven adaptive immunity
against TB.

The development of active TB in hu-
mans is associated with up-regulation of
genes involved in lipid metabolism and
accumulation of lipid droplets in in-
fected macrophages [8]. During the
chronic phase of M. tuberculosis infec-
tion, the bacterium co-opts the host me-
tabolism by importing and degrading
the host cholesterol for bacterial growth
and virulence [8]. Martens et al. [7]
found that despite similar levels of cir-
culating cholesterol in high-fat-fed
LDLR and ApoE null mice, the bacterial
burden in LDLR�/� mice was similar to
WT controls and significantly lower than
the ApoE�/� animals. The similar bac-
terial burden in WT and LDLR�/�

mice was associated with comparable
frequency of TB antigen-specific CD4�

and IFN-�� T cells but dramatic in-
creases in lung inflammation and pa-
thology in the hypercholesterolemic
LDLR

�/�

mice [7]. These data implicate
high levels of LDL cholesterol and by-
products of fatty acid metabolism in ac-
tivating innate immune cells, such as
macrophages and neutrophils, which
lead to excessive inflammation and local
tissue damage in TB-infected lungs. Sev-
eral recent studies suggest that meta-
bolic “danger signals”, such as choles-

1. Correspondence: Immunobiology Laboratory,
Pennington Biomedical Research Center, Lou-
isiana State University System, 6400 Perkins
Rd., Baton Rouge, LA 70808, USA. E-mail:
vishwa.dixit@pbrc.edu

Abbreviations: �/��deficient, ApoE�
apolipoprotein E, FC�free cholesterol, TB�
tuberculosis

Editorial

0741-5400/12/0091-843 © Society for Leukocyte Biology Volume 91, June 2012 Journal of Leukocyte Biology 843

mailto:vishwa.dixit@pbrc.edu


terol crystals, and sphingosine-linked
lipids, such as ceramides, which are ele-
vated in response to a high-fat diet,
cause activation of the nucleotide-bind-
ing oligomerization-like receptor family,
pryin domain containing 3 inflam-
masome and induce organ dysfunction
and cell death [9, 10] . Although, Mar-
tens et al. [7] did not measure the lev-
els of FC in lung and inflammasome
activation in LDLR�/� mice, their study
raises the possibility that exaggerated
IL-1�- and IL-18-driven responses, down-
stream of inflammasome activation, may
provide a strong adjuvant effect for a
robust, Th1-mediated adaptive immune
response but may also cause inflamma-
tion-induced lung damage. In the ab-
sence of any experimental data, how-
ever, this mechanism remains specula-
tive. In addition, an important,
unanswered question relates to how the
effects of hypercholesterolemia in TB
models are manifested distinctly be-
tween ApoE and LDLR null mice.

It is well known that during inflam-
mation, the cholesterol acceptor activity
of HDL, required for the cholesterol
efflux pathway, is reduced significantly
[11, 12]. Martens et al. [7] provide ini-
tial evidence that a neutrophilic re-
sponse in hypercholesterolemic LDLR
knockout mice is involved in host de-
fense. The neutrophil-derived MPO can
make the HDL dysfunctional and via
the modifications of ApoA1, impart pro-
inflammatory properties to HDL [12].
Whether the ApoE and LDLR null mice
challenged with TB differentially induce
MPO and therefore, produce exagger-
ated inflammation by affecting HDL or
by oxidizing LDL remains unknown.
Nonetheless, the study by Martens et al.
[7] provides intriguing, initial insights
into a potential role of cholesterol me-
tabolism in modifying the immune re-
sponses to TB infection. As the “epi-
demi” of obesity-associated dyslipidemia
spreads to tropical countries with high
TB incidence, how the metabolic dys-

regulation may impact the immune re-
sponse to chronic infectious diseases
remains to be ascertained.
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Figure 1. Dysregulated cholesterol metabolism alters protective immune responses against TB.
HFD, High-fat diet.
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