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Abstract In this paper, the global finite-time stabilization
problem is considered for nonholonomic mobile robots
based on visual servoing with uncalibrated visual
parameters, control direction and unmatched external
disturbances. Firstly, the simple dynamic chained-form
systems is obtained by using a state and input
transformation of the kinematic robot systems. Secondly, a
new discontinuous switching controller is presented in the
presence of uncertainties and disturbances, it is rigorously
proved that the corresponding closed-loop system can be
stabilized to the origin equilibrium point in a finite time.
Finally, the simulation results show the effectiveness of
the proposed control design approach.

Keywords Nonholonomic Mobile Robots, Chained-form
System, Visual Servoing, Finite-time Stabilization,
Switching Control

1. Introduction

Addressing the stabilization problem of nonholonomic
systems is a challenging task which has attracted

a continuously increasing attention in the control
community. As pointed out in [1], such a class of nonlinear
systems can not be stabilized to a point with pure
smooth (or even continuous) state feedback control. To
overcome this difficult, up to now, there have been a
lot of control methods to stabilize such systems, which
includes discontinuous feedback control laws [2]-[5],
continuous time-varying feedback control laws [6]-[8]
and hybrid feedback control laws [9]-[11]. As a typical
model of the nonholonomic system, the nonholonomic
characteristic of wheeled mobile robots arises from the
wheel which is rolling without slipping. Many research
results of controlling nonholonomic mobile robots have
been given in recent decades, such as formation control
or cooperative control of multi-robot systems [12]-[15],
motion planning [16], trajectories tracking [17]-[19] and
point stabilization [20]-[24], etc.

Recently, based on visual servoing model, a new robust
control issue is considered in [25]-[31] for nonholonomic
mobile robots with uncalibrated camera parameters.Under
a single camera fixed on the ceiling, the trajectory tracking
and point stabilization (practical stabilization) problems
are discussed for the kinematic model with uncertain
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visual parameters in [25], [27] and [28]. Detailedly,
by using Barbalat theorem and Lyapunov techniques, a
dynamic feedback robust controller is proposed in [25] that
can enable the mobile robot configuration tracking despite
the lack of depth information and the lack of precise visual
parameters. In [27] and [28], two different switching
control design strategies are proposed to address the
stabilization problem of the mobile robots, and compared
with other results on the same subject (visual servoing
feedback control of nonholonomic mobile robots), it is
more realistic to suppose that all the parameters of the
camera system are unknown in this two papers. In
addition, in [26], a new time varying feedback controller
is proposed for the exponential stabilization of the
nonholonomic chained system with unknown parameters
by using state-scaling and switching technique, in [29],
the authors have presented a robust adaptive tracking
controller for the dynamic mobile robots system.

Additionally, it’s worth mentioning that based on
visual servoing, the finite-time tracking control for
nonholonomic mobile robots and the finite-time tracking
control for multiple nonholonomic mobile robots have
been discussed in [30] and [31], respectively. However,
these results have not involved the finite-time stabilization
problem for nonholonomic mobile robots with uncertain
camera parameters, as is known to all, two classes
of problems-stabilization and tracking control for
nonholonomic systems are not the same at all.

Finite-time stabilization problems have been studied
mostly in the contexts of optimality, controllability, and
deadbeat control for several decades [32]-[38], in which,
compared to the regular asymptotic stabilization, it was
demonstrated that finite-time stable systems might enjoy
not only faster convergence but also better robustness and
disturbance rejection properties.

This article considers the global finite-time stabilization
problem for a class of nonholonomic mobile robots based
on visual servoing with uncalibrated visual parameters
and external disturbances. The main contributions can be
summarized as the following two respects:

1) By using a state and input transformation, the dynamic
extended chained-form systems is introduced, then
according to its special chained structure, two uncertain
subsystems is used to designed the discontinuous
switching controller.

2) To propose the step-by-step switching control law,
the systematic strategy of combining the finite-time
stability theory and a three-step discontinuous design
method is adopted to deal with the uncertainties and
disturbances. Moreover, the rigorous proof is presented
to demonstrate that the corresponding closed-loop system
can be stabilized to the origin equilibrium point in a finite
time.

The structure of the article is as follows: Section 2
gives a formalization of the problem considered in this
paper. A proper assumption and some lemmas are also
presented in this section. Section 3 states our main results
including switch controller design and stability analysis.

Section 4 provides an illustrative numerical example and
the corresponding simulation results of the proposed
methodology. Finally, a conclusion is shown in Section 5.

2. Problem Statement

As shown in Figure 1, the two fixed rear wheels of the
robot are controlled independently by motors, and a front
castor wheel prevents the robot from tipping over as it
moves on a plane. Assuming that the geometric center
point and the mass center point of the robot are the same,
and that the radii r are identical for all the wheels and the
distance 2R between the fixed wheels is a known positive
constant. Its kinematic model can be described by the
following differential equations [39]:


ẋ = v cos θ,
ẏ = v sin θ,
θ̇ = ω,

(1)

where (x, y) is the position of the mass center of the robot
moving in the plane, v is the forward velocity, ω is the
steering velocity and θ denotes its heading angle from the
horizontal axis.

θ

Figure 1. Nonholonomic wheeled mobile robot

We consider that the movement of the mobile robot above
can be measured by using a pinhole camera fixed to the
ceiling (as shown in Figure 2). Assuming that the camera
plane, the image plane and the robot plane are parallel.
There are four coordinate frames, namely the inertial frame
X − Y − Z, the camera frame x − y − z, the image frame
u − o1 − ν, and the attached robot frame X1 − P − X2.
Point C is the crossing point between the optical axis of the
camera and X − Y plane. Its coordinate relative to X − Y
plane is (cx, cy). The coordinate of the original point of the
camera frame with respect to the image frame is defined by
(Oc1 , Oc2 ), and (x, y) is the coordinate of the mass center
P of the robot with respective to X − Y plane, its image
position is noted as (xm, ym).

The pinhole camera model can be expressed as [25]-[31],
[37]: (

xm
ym

)
=

(
α1 0
0 α2

)
R
(

x − cx
y − cy

)
+

(
Oc1

Oc2

)
(2)

where α1 and α2 are positive constants, which are
dependent on the depth information, focal length, scalar
factors along u axis, and v axis, respectively; and
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R =

(
cos θ0 sin θ0
− sin θ0 cos θ0

)
, (3)

where θ0 denotes the angle between X axis and y axis with
a positive anticlockwise orientation.

θ

θ

Figure 2. Nonholonomic wheeled mobile robot under a fixed
camera

From (1), (2) and (3), by using a simple derivation, the
image-based kinematical equation of the robot can be
obtained:




ẋm = α1v cos(θ − θ0),
ẏm = α2v sin(θ − θ0),
θ̇ = ω.

(4)

In the field of visual servoing control of robots, usually the
camera parameters α1, α2 and the angle θ0 can be gotten
by calibration. But this process will take a lot of time,
which implies that it is impossible to use this method in
high requirement of real-time. Therefore, it is necessary to
consider how to design a control law in the case of dealing
with these uncalibrated parameters.

As in [25], we make the following assumption:

Assumption 1: θ0 = 0, α1, α2 are unknown and bounded,
the bounds of which are known positive constants:

0 < αmin
i ≤ αi ≤ αmax

i , i = 1, 2.

Remark 1: Compared with it in [25], our assumptions are
more relaxed since it is not necessary to suppose α1 = α2
in this paper.

Under this case, system (4) can be rewritten as




ẋm = α1v cos θ,
ẏm = α2v sin θ,
θ̇ = ω,

taking a state and input transformation [41]:

x0 = xm, x1 = ym, x2 = tan θ,

u0 = v cos θ, u1 = (sec θ)2ω,

we obtain




ẋ0 = α1u0,
ẋ1 = α2x2u0,
ẋ2 = u1.

(5)

It is noted that system (5) is so-called canonical
chained-form with three-order and two control inputs
u0, u1. The finite-time stabilization problem of (5) can
be completely addressed by applying the controller given
in [35], moreover, the authors have dealt with the
nonholonomic chained systems with uncertain parameters
and a matched disturbance.

In this paper, we will consider the finite-time stabilization
problem of the extended chained-form systems (6) with
unknown parameters α1, α2, uncertain control direction
γi(t), (i = 1, 2) and unmatched un-modeled dynamics (or
external disturbance) ϕi(t), (i = 1, 2).




ẋ0 = α1u0,
ẋ1 = α2x2u0,
ẋ2 = u1,
u̇0 = γ1(t)τ1 + ϕ1(t),
u̇1 = γ2(t)τ2 + ϕ2(t),

(6)

where τ1 and τ2 are the new control inputs, the bounded
measurable functions γi(t), ϕi(t), (i = 1, 2) are supposed
to satisfy that

γm
i ≤ γi(t) ≤ γM

i , |ϕi(t)| ≤ ϕM
i , (i = 1, 2)

here γm
i , γM

i , ϕm
i , ϕM

i , (i = 1, 2) are positive constants.

Remark 2: Usually, the new control inputs τ1 and τ2 in the
extended nonholonomic system (6) can be seen as the form
of force or torque inputs, which is more practical than the
form of velocity or acceleration controller u0 and u1 of (5)
in the engineering application, because the new controller
can be easier to implement for electrical engineer.

The following lemmas and conclusions are needed for our
controller design later.

Lemma 1 ([42]): Considering the following system

˙̄x = f (x̄), f (0) = 0, x̄ ∈ Rn, (7)

suppose there exists a continuous function V̄(x̄) : U → R
such that the following conditions hold

(i) V̄(x̄) is positive definite.

(ii)There exist real numbers c̄ > 0 and ᾱ ∈ (0, 1) and an
open neighbourhood U0 ∈ U of the origin such that
˙̄V(x̄) + c̄V̄ ᾱ(x̄) ≤ 0, x̄ ∈ U0\{0}.

Then the origin is a finite-time stable equilibrium of system
(7). If U = U0 = Rn, then the origin is a globally finite-time
stable equilibrium of system (7).
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Lemma 2 ([43]): If 0 < p = p1/p2 ≤ 1, where p1 > 0, p2 > 0
are positive odd integers, then

|xp − yp| ≤ 21−p|x − y|p. (8)

Lemma 3 ([44]): For x ∈ R, y ∈ R, let c, d be positive real
numbers, then

|x|c|y|d ≤ c
c + d

|x|c+d +
d

c + d
|y|c+d. (9)

Lemma 4 ([43]): For xi ∈ R, i = 1, 2, ..., n, 0 < p ≤ 1 is a real
number, then the following inequality holds:

(|x1|+ |x2|+ ... + |xn|)p ≤ |x1|p + ... + |xn|p

≤ n1−p(|x1|+ ... + |xn|)p. (10)

Theorem 1: Consider an uncertain nonlinear system:

żi = βizi+1, i = 1, ..., r − 1,

żr = γ(t)u + ϕ(t),
(11)

where z ∈ Rr is the state vector and u ∈ R is the control
input. Unknown parameters βi > 0, (i = 1, 2, ..., r − 1), the
functions ϕ(·) and γ(·) are arbitrary measurable functions
that represent bounded uncertainty:

|ϕ(t)| ≤ ϕ̄, γm ≤ γ(t) ≤ γM,

where ϕ̄, γm, γM are positive constants. For the following
system (12),

żi = βizi+1, i = 1, ..., r − 1,

żr = ū0,
(12)

if there exist a state-feedback control law ū0(z), a positive
definite C1 function Ṽ and real numbers c̃ > 0 and α̃ ∈
(0, 1) satisfying the conditions (for every z ∈ Rr):

(i) ˙̃V(z) + c̃Ṽ α̃(z) ≤ 0.

(ii) ∂Ṽ
∂zr

(z)ū0(z) ≤ 0, and ū0(z) = 0 ⇒ ∂Ṽ
∂zr

= 0.

Let
u = (ū0 + ϕ̄sign(ū0))/γm,

then system (11) is finite-time stable with respect to the
origin.

Proof. :

See Appendix A.

Next, the control task is to present a switching controller
for system (6) such that all the states converge to the origin
equilibrium point in a finite time.

3. Main Results

In this section, the main results will be presented. Firstly,
we will state the basic idea to design a switching controller
for system (6).

Motivated by the results of Theorem 1, we give a finite-time
stable controller for the following system:




ẋ0 = α1u0,
ẋ1 = α2x2u0,
ẋ2 = u1,
u̇0 = τ̃1,
u̇1 = τ̃2,

where τ̃1 and τ̃2 are the control inputs. In the first place,
according to the special structure of the system above, two
subsystems are considered, respectively. One is




ẋ1 = α2x2u0,
ẋ2 = u1,
u̇1 = τ̃2,

(13)

and the other is

{
ẋ0 = α1u0,
u̇0 = τ̃1. (14)

Based on which, by using the design method of Theorem
1, we will propose a switching controller such that all the
states of system (6) can be stabilized to zero in a finite time.

3.1 Switching controller design

According to the design idea above, a discontinuous
switching controller is presented as follows.

Step 1: Let

τ1 =
(
τ̃1 + ϕM

1 sign(τ̃1)
)
/γm

1 , τ2 = 0,

where

τ̃1 = −λ1sign(u0 − 1)|u0 − 1|q0 ,

where λ1 > 0, q0 ∈ (0, 1) are design parameters. Then
there exists a finite time T1 < +∞ such that u0(t) ≡ 1 as
t ≥ T1, and go to Step 2.

Step 2: Let

τ1 =
(
τ̃1 + ϕM

1 sign(τ̃1)
)
/γm

1 ,

τ2 =
(
τ̃2 + ϕM

2 sign(τ̃2)
)
/γm

2 ,
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where

τ̃2 = −l3
(

u
1

2q1−1

1 + l
1

2q1−1

2 (x
1

q1
2 + l

1
q1
1 x1)

)3q1−2
,

q1 =
p
q ∈ ( 2

3 , 1), p, q are positive odd integers, li > 0, (i =
1, 2, 3) kj > 0, (j = 1, 2) are design parameters satisfying
the following conditions:

1) − l1 +
21−q1

1 + q1
+

α2(2 − q1)21−q1

k1(1 + q1)
l
1+ 1

q1
1 q1

+
(3 − 2q1)(1 − q1)

k2q1(1 + q1)
l

1
q1
−1

1

(
22−2q1 l

2q1
2q1−1

2 + 24−4q1 l
1

2q1−1

2

)

+
α2(3 − 2q1)q1

k2(1 + q1)
22−2q1 l

1+ 1
q1

1 l
1

2q1−1

2 < 0, (15)

2)
21−q1 q1
1 + q1

− l2
k1

+
α2(2 − q1)l

1
q1
1

k1

(21−q1 l1
1 + q1

+ 22−2q1
)

+
(3 − 2q1)q1
k2(1 + q1)

23−3q1 l
1

q1
1 l

1
2q1−1

2 +
(2 − q1)22−2q1

k1(1 + q1)

+
(3 − 2q1)l

1
2q1−1

2
k2q1(1 + q1)

(
22−2q1 l

1
q1
−1

1 l2(2q1 − 1)

+ 22−q1 q1l2 + 24−3q1 (1 − q1)
)
< 0, (16)

3)
(2q1 − 1)22−2q1

k1(1 + q1)
+

(3 − 2q1)l
1

2q1−1

2
k2q1(1 + q1)

(
22−2q1 l

1
q1
−1

1 l2

+22−q1 l2 + 25−3q1 q1 + 25−4q1 q1l
1

q1
−1

1

)
+

α2(3 − 2q1)

k2(1 + q1)

· l
1

q1
1 l

1
2q1−1

2
(
22−2q1 l1 + 23−3q1

)
− l3

k2
< 0. (17)

Then there exists a finite time T2 < +∞ such that x1(t) =
x2(t) = u1(t) ≡ 0 as t ≥ T2, and go to Step 3.

Step 3: Let

τ1 =
(
τ̃1 + ϕM

1 sign(τ̃1)
)
/γm

1 ,

τ2 =
(
τ̃2 + ϕM

2 sign(τ̃2)
)
/γm

2 ,

where

τ̃1 = −k̃3
(
uq2

0 + k̃q2
1 x0

) 2
q2
−1

q2 =
p1
q1

∈ (0, 1), p1, q1 are positive integers, k̃i > 0, (i =

1, 2, 3) are design parameters satisfying that

− 3
4

k̃1 +
k̃2+q2

1 α1

4k̃2
21− 1

q2 < 0, (18)

21− 1
q2

1 + q2

( 23− 1
q2 q2

(1 + q2)k̃1

)q2
+

k̃q2
1 α1

k̃2
21− 1

q2

+
k̃1+q2

1 q2α121− 1
q2

(1 + q2)k̃2

( 4
(1 + q2)k̃1

) 1
q2 − k̃3

k̃2
< 0. (19)

Then there exists a finite time T3 < +∞ such that x0(t) =
u0(t) ≡ 0 as t ≥ T3, and let τ1 = τ2 = 0, stop.

3.2 Stability analysis

Theorem 2: Under Assumption 1, the switching controller
composed by Step 1 ∼ Step 3 in Section A ensures that
system (6) can be stabilized to zero in a finite time.

Proof. Firstly, in Step 1, for a first-order system u̇0 = τ̃1, let
u0 − 1 = ũ0, we have

˙̃u0 = τ̃1 = −λ1sign(ũ0)|ũ0|q0 .

Choosing a Lyapunov function Ṽ0 = 1
2 ũ2

0, then its time
derivative along the {ũ0}−system is

˙̃V0 = ũ0 ˙̃u0 = ũ0τ̃1 = −λ1|ũ0|1+q0 ≤ 0,

which can be rewritten by

˙̃V0 + λ1
√

2
(
Ṽ0

) 1
2 ≤ 0. (20)

Hence, according to Lemma 1, it’s clear that under the
controller τ̃1, there exists a finite time T1 < +∞ such that
ũ0(t) ≡ 0 as t ≥ T1. As for the following uncertain system

˙̃u0 = γ1(t)τ1 + ϕ1(t), (21)

because

∂Ṽ0
∂ũ0

τ̃1(ũ0) = ũ0
(
− λ1sign(ũ0)|ũ0|q0

)

= −λ1|ũ0|1+q0 ≤ 0, (22)

and

τ̃1(ũ0) = 0 ⇒ ũ0 = 0 ⇒ ∂Ṽ0
∂ũ0

= 0. (23)

By (20), (22)-(23) and from Theorem 1, system (21) can be
stabilized to zero in the finite time T1 with the controller
τ1, i.e., u0(t) ≡ 1 as t ≥ T1.
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Next, in Step 2, substituting u0 ≡ 1 into the subsystem
(13), it has




ẋ1 = α2x2,
ẋ2 = u1,
u̇1 = τ̃2.

(24)

Take a positive definite, radially unbounded function
about x1

V1(x1) =
x2

1
2α2

.

Its time derivative along (24) is

V̇1(x1) = x1x2 = x1(x2 − x∗2) + x1x∗2

≤ |x1| · |x2 − x∗2 |+ x1x∗2 ,

where x∗2 = −l1xq1
1 is a virtual controller. Then we have

V̇1(x1) ≤ −l1x1+q1
1 + |x1||x2 − x∗2 |. (25)

As in [44], we take a C1, positive definite and proper
Lyapunov function about (x1, x2) as follows

V2(x1, x2) = V1(x1) +
1
k1

∫ x2

x∗
2

(
s

1
q1 − x

∗ 1
q1

2
)2−q1 ds.

We can obtain

V̇2(x1, x2) = V̇1(x1) +
1
k1

|ξ1|2−q1 u1

+
1
k1

(2 − q1)
∂x

∗ 1
q1

2
∂x1

ẋ1

∫ x2

x∗
2

(
s

1
q1 − x

∗ 1
q1

2
)1−q1 ds,

where ξ1 = x
1

q1
2 − x

∗ 1
q1

2 . So

V̇2(x1, x2) = V̇1(x1) +
1
k1

|ξ1|2−q1 u1

− α2
k1

(2 − q1)l
1

q1
1 x2

∫ x2

x∗
2

(
s

1
q1 − x

∗ 1
q1

2
)1−q1 ds,

then

V̇2(x1, x2) ≤ V̇1(x1) +
1
k1

|ξ1|2−q1 x∗3 +
1
k1

|ξ1|2−q1

· |u1 − x∗3 |+
α2(2 − q1)l

1
q1
1

k1
|x2||x2 − x∗2 ||ξ1|1−q1 , (26)

where x∗3 = −l2ξ
2q1−1
1 is seen as a virtual controller.

By using (8) in Lemma 2, we have

|x2 − x∗2 | ≤ 21−q1 |ξ1|q1 . (27)

Note that x2 = x∗2 + (x2 − x∗2), from (27), it has

|x2| ≤ |x∗2 |+ |x2 − x∗2 | ≤ l1|x1|q1 + 21−q1 |ξ1|q1 . (28)

From (27)-(28) and (9) in Lemma 3, we have

|x2||x2 − x∗2 ||ξ1|1−q1

≤
(
l1|x1|q1 + 21−q1 |ξ1|q1

)
21−q1 |ξ1|q1 |ξ1|1−q1

≤ 21−q1 l1
q1x1+q1

1 + ξ
1+q1
1

1 + q1
+ 22−2q1 ξ

1+q1
1 .

Substituting (25), (27) and the formula above into (26), we
have

V̇2(x1, x2) ≤ −l1x1+q1
1 + 21−q1 |x1||ξ1|q1 +

1
k1

|ξ1|2−q1 x∗3

+
1
k1

|ξ1|2−q1 |u1 − x∗3 |+
α2(2 − q1)l

1
q1
1

k1

·
(

21−q1 l1
q1x1+q1

1 + ξ
1+q1
1

1 + q1
+ 22−2q1 ξ

1+q1
1

)
.

Because x∗3 = −l2ξ
2q1−1
1 , therefore

V̇2(x1, x2) ≤ −l1x1+q1
1 + 21−q1 |x1||ξ1|q1 − l2

k1
ξ

1+q1
1

+
1
k1

|ξ1|2−q1 |u1 − x∗3 |+
α2(2 − q1)l

1
q1
1

k1

·
(

21−q1 l1
q1x1+q1

1 + ξ
1+q1
1

1 + q1
+ 22−2q1 ξ

1+q1
1

)
.

Applying Lemma 3 again, we have

V̇2(x1, x2) ≤
(
− l1 +

21−q1

1 + q1
+

α2(2 − q1)21−q1

k1(1 + q1)
l
1+ 1

q1
1 q1

)

·x1+q1
1 +

1
k1

|ξ1|2−q1 |u1 − x∗3 |+
(

21−q1 q1
1 + q1

− l2
k1

Int J Adv Robot Syst, 2014, 11:180 | doi: 10.5772/593076



+
α2(2 − q1)l

1
q1
1

k1

(21−q1 l1
1 + q1

+ 22−2q1
))

ξ
1+q1
1 . (29)

Taking a Lyapunov function about (x1, x2, u1) for system
(24) as follows

V3(x1, x2, u1) = V2(x1, x2)

+
1
k2

∫ u1

x∗
3

(
s

1
2q1−1 − x

∗ 1
2q1−1

3

)3−2q1
ds.

Let

ξ2 = u
1

2q1−1

1 − x
∗ 1

2q1−1

3 ,

and the time derivative along (24) is

V̇3(x1, x2, u1) = V̇2(x1, x2)

−3 − 2q1
k2

( ∂x
∗ 1

2q1−1

3
∂x1

α2x2 +
∂x

∗ 1
2q1−1

3
∂x2

u1

)

·
∫ u1

x∗
3

(
s

1
2q1−1 − x

∗ 1
2q1−1

3

)2−2q1
ds +

ξ
3−2q1
2
k2

τ̃2.

Note that

∂x
∗ 1

2q1−1

3
∂x1

= l
1

q1
1 (−l2)

1
2q1−1 ,

∂x
∗ 1

2q1−1

3
∂x2

=
1
q1

(−l2)
1

2q1−1 x
1

q1
−1

2 ,

thus

V̇3(x1, x2, u1) ≤ V̇2(x1, x2) +
3 − 2q1

k2
l

1
2q1−1

2

(
l

1
q1
1 α2|x2|+

1
q1

|x2|
1

q1
−1|u1|

)
|ξ2|2−2q1 |u1 − x∗3 |

+
ξ

3−2q1
2
k2

τ̃2. (30)

From (8) in Lemma 2, it has

|ξ2|2−2q1 |u1 − x∗3 | ≤ 22−2q1 |ξ2|. (31)

From (28), (31) and (10) in Lemma 4, it has

|x2||ξ2|2−2q1 |u1 − x∗3 |

≤
(
l1|x1|q1 + 21−q1 |ξ1|q1

)
22−2q1 |ξ2|

≤ 22−2q1 l1
q1x1+q1

1 + ξ
1+q1
2

1 + q1
+ 23−3q1

q1ξ
1+q1
1 + ξ

1+q1
2

1 + q1
(32)

Therefore, from (32), we have

|u1||ξ2|2−2q1 |u1 − x∗3 | ≤ |u1 − x∗3 + x∗3 |22−2q1 |ξ2|

≤ 22−2q1 l2
(2q1 − 1)ξ2q1

1 + ξ
2q1
2

2q1
+ 24−4q1 ξ

2q1
2 (33)

By using (33) and Lemmas 2-4, we have

|x2|
1

q1
−1|u1||ξ2|2−2q1 |u1 − x∗3 |

≤
(
|x∗2 |

1
q1
−1

+ |x
1

q1
−1

2 − x
∗ 1

q1
−1

2 |
)

·
(

22−2q1 l2
(2q1 − 1)ξ2q1

1 + ξ
2q1
2

2q1
+ 24−4q1 ξ

2q1
2

)

≤
22−2q1 l

1
q1
−1

1 l2
1 + q1

(
(1 − q1)x1+q1

1 + (2q1 − 1)ξ1+q1
1

+ξ
1+q1
2

)
+ 22−q1 l2

q1ξ
1+q1
1 + ξ

1+q1
2

1 + q1

+
24−4q1 l

1
q1
−1

1
1 + q1

(
(1 − q1)x1+q1

1 + 2q1ξ
1+q1
2

)

+ 24−3q1
(1 − q1)ξ

1+q1
1 + 2q1ξ

1+q1
2

1 + q1
(34)

Substituting (29), (32)-(34) into (30), we have

V̇3(x1, x2, u1)

≤
(
− l1 +

21−q1

1 + q1
+

α2(2 − q1)21−q1

k1(1 + q1)
l
1+ 1

q1
1 q1

)

·x1+q1
1 +

1
k1

|ξ1|2−q1 22−2q1 |ξ2|2q1−1

+

(
21−q1 q1
1 + q1

− l2
k1

+
α2(2 − q1)l

1
q1
1

k1

(21−q1 l1
1 + q1

+22−2q1
))

ξ
1+q1
1 +

3 − 2q1
k2

l
1

2q1−1

2 l
1

q1
1 α2

Hua Chen, Shihong Ding, Xi Chen, Lihua Wang, Changping Zhu and Wen Chen:  
Global Finite-time Stabilization for Nonholonomic Mobile Robots Based on Visual Servoing

7



·
(

22−2q1 l1
q1x1+q1

1 + ξ
1+q1
2

1 + q1
+ 23−2q1

q1ξ
1+q1
1 + ξ

1+q1
2

1 + q1

)

+
3 − 2q1

k2q1
l

1
2q1−1

2

(
22−2q1 l

1
q1
−1

1 l2

(1 − q1)x1+q1
1 + (2q1 − 1)ξ1+q1

1 + ξ
1+q1
2

1 + q1

+22−q1 l2
q1ξ

1+q1
1 + ξ

1+q1
2

1 + q1

+24−4q1 l
1

q1
−1

1
(1 − q1)x1+q1

1 + 2q1ξ
1+q1
2

1 + q1

+ 24−3q1
(1 − q1)ξ

1+q1
1 + 2q1ξ

1+q1
2

1 + q1

)
+

ξ
3−2q1
2
k2

τ̃2, (35)

Because

1
k1

|ξ1|2−q1 22−2q1 |ξ2|2q1−1

≤ 1
k1

22−2q1
(2 − q1)ξ

1+q1
1 + (2q1 − 1)ξ1+q1

2
1 + q1

, (36)

and

τ̃2 = −l3

(
u

1
2q1−1

1 + l
1

2q1−1

2 (x
1

q1
2 + l

1
q1
1 x1)

)3q1−2

= −l3ξ
3q1−2
2 , (37)

substituting (36) and (37) into (35) has

V̇3(x1, x2, u1)

≤
(
− l1 +

21−q1

1 + q1
+

α2(2 − q1)21−q1

k1(1 + q1)
l
1+ 1

q1
1 q1

+
α2(3 − 2q1)q1

k2(1 + q1)
22−2q1 l

1+ 1
q1

1 l
1

2q1−1

2 +
(3 − 2q1)(1 − q1)

k2q1(1 + q1)

·l
1

q1
−1

1

(
22−2q1 l

2q1
2q1−1

2 + 24−4q1 l
1

2q1−1

2

))
x1+q1

1

+

(
21−q1 q1
1 + q1

− l2
k1

+
α2(2 − q1)l

1
q1
1

k1

(21−q1 l1
1 + q1

+ 22−2q1
)

+
(2 − q1)22−2q1

k1(1 + q1)
+

(3 − 2q1)q1
k2(1 + q1)

23−3q1 l
1

q1
1 l

1
2q1−1

2

+
(3 − 2q1)l

1
2q1−1

2
k2q1(1 + q1)

(
22−2q1 l

1
q1
−1

1 l2(2q1 − 1) + 22−q1 q1l2

+24−3q1 (1 − q1)
))

ξ
1+q1
1 +

(
(2q1 − 1)22−2q1

k1(1 + q1)

+
α2(3 − 2q1)

k2(1 + q1)
l

1
q1
1 l

1
2q1−1

2
(
22−2q1 l1 + 23−3q1

)
− l3

k2

+
(3 − 2q1)l

1
2q1−1

2
k2q1(1 + q1)

(
22−2q1 l

1
q1
−1

1 l2 + 22−q1 l2

+25−4q1 q1l
1

q1
−1

1 + 25−3q1 q1

))
ξ

1+q1
2 .

From (15)-(17), we can rewrite the formula above as
follows

V̇3(x1, x2, u1) ≤ β1x1+q1
1 + β2ξ

1+q1
1 + β3ξ

1+q1
2 , (38)

where

β1 = −l1 +
21−q1

1 + q1
+

α2(2 − q1)21−q1

k1(1 + q1)
l
1+ 1

q1
1 q1

+
α2(3 − 2q1)q1

k2(1 + q1)
22−2q1 l

1+ 1
q1

1 l
1

2q1−1

2 +
(3 − 2q1)(1 − q1)

k2q1(1 + q1)

· l
1

q1
−1

1

(
22−2q1 l

2q1
2q1−1

2 + 24−4q1 l
1

2q1−1

2

)
< 0, (39)

β2 =
21−q1 q1
1 + q1

− l2
k1

+
α2(2 − q1)l

1
q1
1

k1

(21−q1 l1
1 + q1

+ 22−2q1
)

+
(2 − q1)22−2q1

k1(1 + q1)
+

(3 − 2q1)q1
k2(1 + q1)

23−3q1 l
1

q1
1 l

1
2q1−1

2

+
(3 − 2q1)l

1
2q1−1

2
k2q1(1 + q1)

(
22−2q1 l

1
q1
−1

1 l2(2q1 − 1)

+ 22−q1 q1l2 + 24−3q1 (1 − q1)
)
< 0, (40)

β3 =
(2q1 − 1)22−2q1

k1(1 + q1)
+

α2(3 − 2q1)

k2(1 + q1)
l

1
q1
1 l

1
2q1−1

2
(
22−2q1 l1
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+23−3q1
)
− l3

k2
+

(3 − 2q1)l
1

2q1−1

2
k2q1(1 + q1)

(
22−2q1 l

1
q1
−1

1 l2

+ 22−q1 l2 + 25−4q1 q1l
1

q1
−1

1 + 25−3q1 q1

)
< 0. (41)

According to the definition of V3(x1, x2, u1), by using (27)
and (31), we have

V3(x1, x2, u1) ≤
x2

1
2αmin

2
+

21−q1

k1
ξ2

1 +
22−2q1

k2
ξ2

2.

Let

ρ1 = max
{ 1

2αmin
2

,
21−q1

k1
,

22−2q1

k2

}
,

it has

V3(x1, x2, u1) ≤ ρ1(x2
1 + ξ2

1 + ξ2
2). (42)

From (38)-(41), take

ρ2 = max
{

β1, β2, β3

}
< 0, 0 < c < − ρ2

ρα
1

,

α =
1 + q1

2
∈ (0, 1),

then we can obtain

V̇3(x1, x2, u1) + cVα
3 (x1, x2, u1)

≤ (ρ2 + cρα
1)
(

x1+q1
1 + ξ

1+q1
1 + ξ

1+q1
2

)
≤ 0. (43)

Formulas (42)-(43) ensure that controller (37) can stabilize
system (24) to zero in a finite time. Furthermore,

∂V3
∂u1

τ̃2 =
1
k2

ξ
3−2q1
2 (−l3)ξ

3q1−2
2 = − l3

k2
ξ

1+q1
2 ≤ 0,

and τ̃2 = 0 ⇒ ξ2 = 0 ⇒ ∂V3
∂u1

=
1
k2

ξ
3−2q1
2 = 0.

Therefore, according to Theorem 1, subsystem of (6)





ẋ1 = α2x2,
ẋ2 = u1,
u̇1 = γ2(t)τ2 + ϕ2(t),

can be stabilized to zero in a finite time T2 by the controller
τ2 in Step 2.

Finally, by using the similar proof method, it’s simple to
prove that the subsystem of (6)

{
ẋ0 = α1u0,
u̇0 = γ1(t)τ1 + ϕ1(t),

can be stabilized to zero in a finite time T3 by the controller
τ1 in Step 3. For brevity, here omit the detailed process in
this step.

And this completes the proof of Theorem 2.

Remark 3: Note that, if we choose sufficiently large k1 and
k2 in (15)-(17), then it’s possible to find a group of feasible
solutions for the design parameters although it’s difficult
to obtain all the solutions of these parameters as pointed
out in [46]. Here, we propose a simple search algorithm
for finding a group of feasible solutions of the parameters
step by step as follows:

First, choose q1 =
p
q ∈ ( 2

3 , 1), k̄ij > 0, (i = 1, 2; j = 1, 2, 3),
then select k1, k2, l1, l2, l3 in turn.

Step a: Given a sufficiently large l̄ > 0, select k1 > 0
satisfying (44)-(46):

αmax
2 (2 − q1)21−q1

k1(1 + q1)
l̄1+ 1

q1 q1 < k̄11, (44)

αmax
2 (2 − q1)

k1
l̄

1
q1
( 21−q1 l̄

1 + q1
+ 22−2q1

)

+
(2 − q1)22−2q1

k1(1 + q1)
< k̄12, (45)

(2q1 − 1)22−2q1

k1(1 + q1)
< k̄13. (46)

Select k2 > 0 satisfying (47)-(49):

(3 − 2q1)(1 − q1)l̄
1

q1
−1

k2q1(1 + q1)

(
22−2q1 l̄

2q1
2q1−1 + 24−4q1 l̄

1
2q1−1

)

+
αmax

2 (3 − 2q1)q1

k2(1 + q1)
22−2q1 l̄1+ 1

q1 l̄
1

2q1−1 < k̄21, (47)

(3 − 2q1)q1
k2(1 + q1)

23−3q1 l̄
1

q1 l̄
1

2q1−1 +
(3 − 2q1)l̄

1
2q1−1

k2q1(1 + q1)

·
(

22−2q1 l̄
1

q1
−1 l̄(2q1 − 1) + 22−q1 q1 l̄

+ 24−3q1 (1 − q1)
)
< k̄22, (48)

(3 − 2q1)l̄
1

2q1−1

k2q1(1 + q1)

(
22−2q1 l̄

1
q1
−1 l̄ + 22−q1 l̄ + 25−3q1 q1

+25−4q1 q1 l̄
1

q1
−1

)
+

αmax
2 (3 − 2q1)l̄

1
q1 l̄

1
2q1−1

k2(1 + q1)
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(22−2q1 l̄ + 23−3q1 ) < k̄23. (49)

If max
{

l̄1, l̄2
}
≤ l̄, then go to Step b. Else if max

{
l̄1, l̄2

}
> l̄,

let l̄ := max
{

l̄1, l̄2
}

, go to Step a. Where

l̄1 =
21−q1

1 + q1
+ k̄11 + k̄21, l̄2 = k1

(21−q1 q1
1 + q1

+ k̄12 + k̄22
)
.

Step b: Select l1, l2, l3 such that

l̄ > l1 > l̄1, l̄ > l2 > l̄2, l3 > k2
(
k̄13 + k̄23

)
.

Remark 4: As for (18)-(19), we can choose q2 =
p1
q1

∈ (0, 1),

k̃1 > 0, then choose k̃2 > 0 such that

k̃2+q2
1 αmax

1
4k̃2

21− 1
q2 <

3
4

k̃1.

Finally, we select k̃3 > 0 such that

k̃3

k̃2
>

21− 1
q2

1 + q2

( 23− 1
q2 q2

(1 + q2)k̃1

)q2
+

k̃q2
1 αmax

1
k̃2

21− 1
q2

+
k̃1+q2

1 q2αmax
1 21− 1

q2

(1 + q2)k̃2

( 4
(1 + q2)k̃1

) 1
q2 .

Remark 5: In this paper, we present a finite-time switching
controller for the uncertain robot systems, but it is
challenging to estimate the bounds for the settled time,
because this time depends on the bounds of uncertain
parameters, the external disturbance and the initial state
value.

4. Simulations

In this section, the switching controller proposed in
Theorem 2 is used to show how to stabilize the uncertain
visual feedback system (6) in a finite time. We will
demonstrate the effectiveness of our methods by an
example.

In the following simulation, we assume that: αmin
i =

0.5, αmax
i = 1.5, γm

i = 1, γM
i = 2, ϕM

i = 2.5, (i = 1, 2).
According to the discussion of selecting parameters in
Remark 2 and Remark 3, for given l̄ = 4.5, k̄ij = 0.6, (i =

1, 2; j = 1, 2, 3), choosing q0 = 1
2 , q1 = 7

9 , q2 = 1
3 ,

λ1 = 1, k1 = 2.4, k2 = 1.7, l1 = 2, l2 = 4.2, l3 = 2.1,
k̃1 = 1.5, k̃2 = 2.6, k̃3 = 6.5. The initial condition of (6)
is (−0.2, 0.3,−0.5, 5.6, 0.8).

Figures 3-5 show some simulation results with MATLAB.
Figure 3 shows that the state variable (x0, u0) goes to zero
in a finite time t ≤ 35s. From which, one can observe that
u0 is stabilized to a constant (u0 = 1) and keep it in Step 2
until it is driven to zero together with x0 in the last step.

Note that in Figure 3, for u0, during the control process, we
design a controller τ1 to make it converge to the constant 1
in Step 1 - Step 2, while in Step 3, we give another robust
controller τ1 such that (x0, u0) can be stabilized to zero in
a finite time, and thus, we find that there is a peak at t=25s
because of using this discontinuous switching controller.

Figure 4 shows the state (x1, x2, u1) can be stabilized to
zero step by step within the finite-time interval [0, 35s]
under this switching controller (τ1, τ2) demonstrated in
Figure 5.
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Figure 3. The response of the state variable (x0, u0) with respect
to time
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Figure 4. The response of state variable (x1, x2, u1) with respect
to time
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Figure 5. The response of the control input (τ1, τ2) with respect
to time
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Figure 6. The response of the state variable xm with respect to
time
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time
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Additionally, the following simulation results Figures 6-8
are about the original mobile robot system with visual
servoing (4), from which, we can observe that the system
state (xm, ym, θ) can also be stabilized to zero in a finite
time.

5. Conclusion

In this article, a new switching controller is presented
for solving the global finite-time stabilization problem
of the nonholonomic mobile robots based on visual
serving with uncalibrated camera parameters and external
perturbation. The best innovation of this paper is that the

discontinuous controller design is based on applying the
stability theorem of finite-time and a new switching design
method such that the states of closed-loop system can be
stabilized to origin point in a finite time. In the near future,
we will discuss the corresponding finite-time stabilization
problem with saturated control inputs.
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Appendix A.

Adopt the similar proof method as it in [45], the time
derivative of the Lyapunov function Ṽ along a non-trivial
trajectory of system (11) is given as

˙̃V =
r−1

∑
i=1

∂Ṽ
∂zi

βizi+1 +
∂Ṽ
∂zr

(γ(t)u + ϕ(t))

≤
r−1

∑
i=1

∂Ṽ
∂zi

βizi+1 +
∂Ṽ
∂zr

ū0(z)

+
∂Ṽ
∂zr

(γ(t)
γm

ϕ̄sign(ū0(z)) + ϕ(t)
)

Because ∂Ṽ
∂zr

(z)ū0(z) ≤ 0, if ū0(z) ≥ 0, then ∂Ṽ
∂zr

≤ 0,

∂Ṽ
∂zr

(γ(t)
γm

ϕ̄sign(ū0(z)) + ϕ(t)
)
≤ ∂Ṽ

∂zr

(
ϕ̄ − |ϕ(t)|

)
≤ 0.

On the other hand, if ū0(z) < 0, then ∂Ṽ
∂zr

≥ 0 and

∂Ṽ
∂zr

(γ(t)
γm

ϕ̄sign(ū0(z)) + ϕ(t)
)
=

∂Ṽ
∂zr

(−γ(t)
γm

ϕ̄ + ϕ(t)
)

≤ ∂Ṽ
∂zr

(
|ϕ(t)| − ϕ̄

)
≤ 0.

Therefore, we have

˙̃V ≤
r−1

∑
i=1

∂Ṽ
∂zi

βizi+1 +
∂Ṽ
∂zr

ũ0(z) ≤ −c̃Ṽ α̃(z).

According to Lemma 1, any a non-trivial trajectory z of
system (11) reaches zero and stays there in a finite time.
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