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Abstract 
Background/Aims: We have shown that indomethacin has the potential to activate Ca2+/
calmodulin-dependent protein kinase II (CaMKII), regardless of cyclooxygenase (COX) 
inhibition. To understand the underlying mechanism, the present study investigated the 
effect of indomethacin on protein phosphatases such as protein phosphatase 1 (PP1), 
protein phosphatase 2A (PP2A), and protein tyrosine phosphatase 1B (PTP1B). Methods: 
Activity of CaMKII was assayed in cultured rat hippocampal neurons and under the cell-free 
conditions. Activities of protein phosphatases were monitored under the cell-free conditions. 
Indomethacin binding assay was carried out using a fluorescein-conjugated indomethacin. 
Results: Indomethacin enhanced CaMKII activity in cultured rat hippocampal neurons, that 
is abolished the CaMKII inhibitor KN-93. In the cell-free assay, no CaMKII activation was 
obtained with indomethacin, but indomethacin otherwise inhibited PP1 in a concentration (10 
µM-1 mM)-dependent manner, the maximum reaching 70% of basal levels. This indicates that 
indomethacin indirectly activates CaMKII due to PP1 inhibition. Likewise, indomethacin still 
inhibited PP2A and PTP1B in a concentration (10 µM-1 mM)-dependent manner, reaching 80 
and 10% of basal levels at 1 mM, respectively. In the indomethacin binding assay, indomethacin 
bound to all the investigated protein phosphatases. Conclusion: The results of the present 
study indicate that indomethacin inhibits PP1, PP2A, and PTP1B, possibly through its direct 
binding and that the inhibitory effect of indomethacin on PP1 could cause indirect CaMKII 
activation. This may represent the novel indomethacin action.
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Introduction

Indomethacin is an inhibitor of COX-1 and -2, that inhibits prostaglandin synthesis 
from arachidonic acid, and widely used to reduce fever and pain. [1-4]. In our earlier study, 
indomethacin ameliorated scopolamine-induced spatial learning and memory impairment 
for rats or age-related spatial learning and memory deterioration for senescence-accelerated 
mouse-prone 8 mice [5]. In addition, indomethacin could still enhance learning and 
memory potentials for healthy humans and normal rats [5]. In explanation of these actions, 
indomethacin stimulated presynaptic glutamate release and facilitated hippocampal synaptic 
transmission in a CaMKII-dependent manner [5]. Indomethacin, alternatively, potentiated 
α7 ACh receptor responses in a protein kinase C (PKC)-dependent manner [6]. Interestingly, 
indomethacin selectively activated PKC-ε through its direct binding [7]. Indomethacin, thus, 
appears to be implicated in the activation of CaMKII or PKC, regardless of COX inhibition.

We have earlier found that the linoleic acid derivative DCP-LA serves as a direct 
and selective activator of PKC-ε and stimulates neurotransmitter release by enhancing 
presynaptic α7 ACh receptor activities [8, 9]. In addition, DCP-LA stimulates delivery of 
the AMPA receptor subunits such as GluR1 and GluR2 towards the plasma membrane by 
activating CaMKII [10]. A striking finding is that DCP-LA did not activate CaMKII under the 
cell-free conditions but that DCP-LA inhibits PP1, a protein serine/threonine phosphatase 
[10]. PP1 inactivates CaMKII by dephosphorylating phosphorylated CaMKII, an active form of 
CaMKII (Fig. 1). DCP-LA, accordingly, indirectly activates CaMKII by inhibiting PP1 to prevent 
CaMKII dephosphorylation, i.e., CaMKII inactivation. Then, we guessed that indomethacin 
might exert its actions on CaMKII and PKC by the mechanism sharing with DCP-LA.

The present study was conducted to understand the mechanism underlying 
indomethacin-induced CaMKII activation. To address this point, we monitored activities of 
CaMKII and protein phosphatases such as PP1, PP2A, and PTP1B in cultured rat hippocampal 
neurons and under the cell-free conditions, and carried out indomethacin binding assay 
using a fluorescein-conjugated indomethacin. We show here that indomethacin inhibits PP1, 
PP2A, and PTP1B, with the potential varying among protein phosphatases, possibly through 
its direct binding, and that the PP1 inhibition could be a factor responsible for CaMKII 
activation.

Materials and Methods

Animal care
All procedures have been approved by the Animal Care and Use Committee at Hyogo College of 

Medicine and were in compliance with the National Institutes of Health Guide for the Care and Use of 
Laboratory Animals.

Cell culture
The hippocampus was removed from the embryonic Wistar rat brain (gestational age, 18 days) under 

ether anesthesia and dissociated with a Pasteur pipette. Then, cells were seeded on poly-D-lysine-coated 
96-well plates and grown in Neurobasal (GIBCO, Carlsbad, CA, USA) supplemented with B27 (GIBCO)(50:1), 
2.5 mM glutamine, 50 µM glutamate, penicillin (final concentration, 100 U/ml), and streptomycin (final 
concentration, 0.1 mg/ml) in a humidified atmosphere of 5% CO2 and 95% air at 37 °C. Cytosine arabinoside 
(5 µM) was added to culture medium 2 days after seeding.

Assay of CaMKII activity in cultured hippocampal neurons
CaMKII activity in cultured rat hippocampal neurons was assayed by the method as previously 

described [5, 10]. Cultured neurons were treated with indomethacin in the presence and absence of KN-
93 or H-89 at 37 °C for 10 min in an extracellular solution [137 mM NaCl, 5.4 mM KCl, 10 mM MgCl2, 0.3 
mM Na2HPO4, 0.4 mM K2HPO4, and 20 mM HEPES, pH 7.2]. Then, cells were rinsed with 100 µl of Ca2+-free 
phosphate-buffered saline and incubated at 30 °C for 15 min in 50 µl of the extracellular solution containing 
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50 µg/ml digitonin, 25 mM glycerol 2-phosphate, 200 µM ATP, and 100 µM synthetic CaMKII substrate 
peptide (Lys-Lys-Ala-Leu-Arg-Arg-Gln-Glu-Thr-Val-Asp-Ala-Leu) (Calbiochem, San Diego, USA). The 
supernatants were collected and boiled at 100 °C for 5 min to terminate the reaction. Aliquot of the solution 
(20 µl) was loaded onto a reversed phase high-performance liquid chromatography (HPLC)(LC-10ATvp, 
Shimadzu, Kyoto, Japan). A substrate peptide peak and a new product peak were detected at an absorbance 
of 214 nm (SPD-10Avp UV-Vis detector, Shimadzu), and the peaks were confirmed unphosphorylated 
and phosphorylated substrate peptide, respectively, in the analysis of matrix-assisted laser desorption 
ionization time of flight mass spectrometry (Voyager DE-STR, PE Biosystems Inc., Foster City, USA). Areas 
for unphosphorylated and phosphorylated substrate peptide were measured (total area corresponds to 
concentration of substrate peptide for CaMKII used here). The amount of phosphorylated substrate peptide 
(pmol/min/µg cell protein) was calculated and used as an index of CaMKII activity.

Assay of CaMKII activity under the cell-free conditions
CaMKII activity under the cell-free conditions was assayed by the method as previously described [10]. 

A synthetic CaMKII substrate peptide (10 µM)(Calbiochem) was reacted with CaMKII (5 U)(Calbiochem) in 
a reaction medium (25 µl, pH 8.0) containing 40 mM HEPES, 5 mM Mg-acetate, 0.4 mM CaCl2, 0.1 mM ATP, 
0.1 mM EGTA, 1 µM calmodulin (Calbiochem) in the presence and absence of indomethacin at 35 °C for 
10 min, and the reaction was terminated at 100 °C for 5 min. Aliquot of each solution (15 µl) was injected 
onto the column (250 mm x 4.6 mm)(COSMOSIL 5C18-AR-II, Nacalai Tesque, Kyoto, Japan), and loaded 
onto the reversed phase HPLC system (LC-10ATvp, Shimadzu). Unphosphorylated and phosphorylated 
peptides were detected at an absorbance of 214 nm (SPD-10Avp UV-Vis detector, Shimadzu). The amount 
of phosphorylated substrate peptide (pmol/min) was calculated and used as an index of CaMKII activity.

Assay of protein kinase A (PKA) activity under the cell-free conditions
PKA activity under the cell-free conditions was assayed by the method as previously described [8]. 

A synthetic PKA substrate peptide (Leu-Arg-Arg-Ala-Ser-Leu-Gly)(10 µM) (Calbiochem) was reacted with 
PKA (Calbiochem) in a reaction medium (25 µl) containing 50 mM Tris-HCl (pH 7.5), 10 mM MgCl2, 0.2 
mM ATP in the presence and absence of indomethacin at 30 °C for 10 min. The reaction was terminated at  
100 °C for 5 min. Aliquot of the solution (10 µl) was injected onto the column (250 mm x 4.6 mm) (COSMOSIL 
5C18-AR-II, Nacalai Tesque), and loaded onto the reversed phase HPLC system (LC-10ATvp, Shimadzu). 
Unphosphorylated and phosphorylated peptides were detected at an absorbance of 214 nm (SPD-10Avp 
UV-Vis detector, Shimadzu). The amount of phosphorylated substrate peptide (pmol/min) was calculated 
and used as an index of PKA activity.

Assay of PP1, PP2A, and PTP1B activities under the cell-free conditions 
Activities of protein phosphatases under the cell-free conditions were assayed by the partially modified 

method as previously described [11, 12]. The human recombinant PP1 was purchased from New England 
BioLabs Inc. (Ipswich, MA, USA) and the human recombinant PP2A from Millipore (Billerica, MA, USA). 
The human PTP1B was cloned into pGEX-6P-3 vector with a GST tag at the NH2 terminus, and expressed 
in competent E. coli BL21 (DE3), suitable for transformation and protein expression. GST-fusion PTP1B 
was affinity-purified using Glutathione Sepharose 4B (GE Healthcare Bio-Science KK, Tokyo, Japan). Each 
phosphatase activity was assayed by reacting with p-nitrophenyl phosphate (p-NPP)(Sigma, St. Louis, MO, 
USA) as a substrate. Enzyme was preincubated at 30 °C (for PP1) or 37 °C (for PP2A and PTP1B) for 30 min 

Fig. 1. Schematic CaMKII 
activation pathway.    Autophos, 
auto-phosphorylation.
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in a reaction medium [50 mM HEPES, 100 mM NaCl, 2 mM dithiothreitol, 0.01% (v/v) Brij-35, 1 mM MnCl2, 
pH 7.5 for PP1; 50 mM Tris-HCl, 0.1 mM EGTA, 0.1% (v/v) 2-mercaptoethanol, pH 7.0 for PP2A; and 50 mM 
HEPES, 1 mM EDTA, 50 mM NaCl, 1 mM dithiothreitol, pH 7.2 for PTP1B] in the presence and absence of 
phosphatase inhibitors or indomethacin. Then, p-NPP at a concentration of 5 mM for PP1, 500 µM for PP2A, 
and 10 mM for PTP1B was added to the reaction medium followed by 60-min incubation, and the reaction 
was terminated by adding 0.1 N NaOH. Dephosphorylated p-NPP, i.e., p-NP, was quantified at an absorbance 
of 405 nm with a SpectraMax PLUS384 (Molecular Devices, Sunnyvale, CA, USA).

Synthesis of fluorescein-conjugated indomethacin
1H-NMR spectra were recorded on a JNM-ECX400 spectrometer (JEOL Ltd., Tokyo, Japan), operating 

at 400 MHz. Chemical shifts were reported downfield from CHCl3 (δ=7.26) for 1H-NMR. ESI-MS spectra 
were taken on a micrOTOF-Q mass spectrometer (Bruker Daltonics Inc., Billerica, MA, USA). Column 
chromatography was performed with a silica gel 60 (40-50 µm and 40-100 µm)(Kanto Chemical Co., Tokyo, 
Japan). All reactions were monitored by thin-layer chromatography carried out on a 0.25 mm E. silica gel 
plates 60 F254 (Merck Ltd., Darmstadt, Germany), using UV light, iodine, m-bromo cresol green, 5% (v/v) 
ethanolic phosphomolybdic acid solution, and heat as developing agents.

Fluorescein-conjugated indomethacin (Fig. 2) was synthesized by the following method. HBTU (58 mg, 
0.15 mmol) and triethylamine (0.021 mL, 0.15 mmol) were added to a solution containing indomethacin (50 
mg, 0.14 mmol) and 5-aminofluorescein (53 mg, 0.15 mmol) in DMF (2 ml) under ice-cooling. The mixture 
was stirred for 8 h at room temperature and then, water was added. The aqueous layer was extracted with 
ethyl acetate, and the combined organic layers were dried over anhydrous MgSO4, and concentrated under 
reduced pressure. The crude product was purified by silica gel column chromatography (hexane:ethyl 
acetate = 2:1) to give the desired compound (15 mg, 15%) as an orange solid. 1H-NMR (400MHz, CDCl3) δ 
2.45 (s, 3H), 3.82 (s, 3H), 3.91 (s, 2H), 4.09-4.20 (br s, 1H), 6.15-6.45 (br s, 1H), 6.49 (dd, J = 7.8 and 1.8 Hz, 
1H), 6.64 (s, 1H), 6.65 (d, J = 7.8 Hz, 1H), 6.69 (dd, J = 9.1 and 2.3 Hz, 1H), 6.73 (dd, J = 7.3 and 1.8 Hz, 1H), 
6.83 (d, J = 7.3 Hz, 1H), 6.85 (d, J = 8.2 Hz, 1H), 6.87 (d, J = 9.2 Hz, 1H), 6.91 (dd, J = 8.2 and 1.8 Hz, 1H), 7.00 (d, 
J = 1.8 Hz, 1H), 7.03 (d, J = 2.3 Hz, 1H), 7.16 (d, J = 1.8 Hz, 1H), 7.47 (d, J = 8.3 Hz, 2H), 7.67 (d, J = 8.3 Hz, 2H); 
ESI-HRMS (negative ion, sodium formate) calculated for C30H26ClN2O6 ([M-H]-) 685.1378; found 685.1372.

Assay for indomethacin binding to PP1, PP2A, and PTP1B
Each phosphatase was separated by blue native-polyacrylamide gel electrophoresis (PAGE). Briefly, 

proteins were dissolved in a sample buffer [50 mM immidazole, 50 mM NaCl, 5 mM 6-aminohexanoic acid, 
40% (v/v) glycerol, 0.5% (w/v) Coomassie G-250 and 1% (w/v) digitonin, pH 7.0], and electrophoresed 
onto a TGX Gel (BioRad, Hercules, CA, USA) in a cathode buffer [50 mM Tricine, 7.5 mM imidazole, and 
0.02% (w/v) Coomassie G-250, pH 7.0] and an anode buffer (25 mM imidazole, pH 7.0). After pretreatment 
with or without 1 mM non-conjugated indomethacin at 30 °C (for PP1) or 37 °C (for PP2A and PTP1B) for 
30 min, gels were reacted with 1 mM fluorescein-conjugated indomethacin in the presence and absence of 1 
mM non-conjugated indomethacin at 30 °C (for PP1) or 37 °C (for PP2A and PTP1B) for 60 min. Fluorescent 
signals were visualized using FluoroPhoreStar3000 (Anatech, Tokyo, Japan).

Statistical analysis 
Statistical analysis was carried out using Dunnett’s test. 

Fig. 2. Structure of fluorescein-conjugated indomethacin.
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Results

Indomethacin activates CaMKII in cultured rat hippocampal neurons
We initially examined whether indomethacin activates CaMKII. Indomethacin activated 

CaMKII in cultured rat hippocampal neurons in a concentration (1-100 µM)-dependent 
manner, the extent reaching 126% of basal CaMKII activity at 100 µM (Fig. 3A). The effect was 
clearly inhibited by KN-93 (3 µM), an inhibitor of CaMKII (Fig. 3A). In contrast, indomethacin 
did not activate CaMKII under the cell-free conditions (Fig. 3B). These results indicate that 
indomethacin activates CaMKII, but not directly.

In the established CaMKII activation pathway, CaMKII is activated through Ca2+/
calmodulin binding and the ensuing autophosphorylation, but CaMKII is otherwise 
inactivated by PP1-mediated dephosphorylation of phosphorylated CaMKII [13-15] (Fig. 1). 
PP1 is suppressed by an active form of protein phosphatase inhibitor-1. PKA phosphorylates 
and activates protein phosphatase inhibitor-1, but otherwise calcineurin dephosphorylates 
and inactivates protein phosphatase inhibitor-1 [13-15] (Fig. 1). PKA, accordingly, could 
indirectly activate CaMKII by activating protein phosphatase inhibitor-1, thereby inhibiting 
PP1 [13-15] (Fig. 1). Indomethacin-induced CaMKII activation was not inhibited by H-89 (1 
µM), an inhibitor of PKA, in cultured rat hippocampal neurons (Fig. 3A), and no activation of 
PKA was obtained with indomethacin under the cell-free conditions (Fig. 3B). These results 
rule out the implication of PKA in indomethacin-induced CaMKII activation.

Indomethacin activates CaMKII by binding to and directly inhibiting PP1
We postulated that indomethacin might directly inhibit PP1. To examine the effect 

of indomethacin on protein phosphatases, we assayed activities of protein phosphatases 
using three different inhibitors such as calyculin A, okadaic acid, and sodium orthovanadate 
(Na3VO4). Calyculin A inhibits both PP1 and PP2A, but otherwise okadaic acid specifically 
reduces PP2A activity [16]. Sodium orthovanadate is widely used to inhibit PTP1B [17]. In 
the cell-free PP1 assay, calyculin A inhibited PP1 activity in a concentration (1-100 nM)-
dependent manner (Fig. 4A). Indomethacin also attenuated PP1 activity in a concentration 
(10 µM-1 mM)-dependent manner, the extent reaching approximately 70% of basal activity 

Fig. 3. Indomethacin-induced CaMKII activation. (A) Cultured rat hippocampal neurons were untreated 
and treated with indomethacin (IM) at concentrations as indicated in the presence and absence of KN-93 
(KN)(3 µM) or H-89 (H89)(1 µM), and CaMKII activity was assayed. In the graph, each column represents 
the mean (± SEM) CaMKII activity (pmol/min/µg cell protein)(n=8 independent experiments). P values, 
Dunnett’s test. (B) CaMKII activity (left panel) and PKA activity (right panel) were assayed under the cell-
free conditions. In the graphs, each column represents the mean (± SEM) CaMKII activity (pmol/min)(n=6 
independent experiments) or PKA activity (pmol/min)(n=6 independent experiments). Note that P values 
are not shown in the data without significant difference.
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at 1 mM (Fig. 4A). This suggests that indomethacin directly inhibits PP1 activity, thereby 
activating CaMKII.

To obtain further evidence for this note, we examined whether indomethacin binds 
to PP1 using a fluorescein-conjugated indomethacin. In the indomethacin binding assay, a 
fluorescent signal band was detected at 37 kDa, corresponding to PP1 separated on blue native-
PAGE, and the signal band was blurred by co-treatment with non-conjugated indomethacin 
as a competitor or abolished by pretreatment with non-conjugated indomethacin (Fig. 5A). 
Overall, it leads to a conclusion that indomethacin activates CaMKII by directly binding to 
and inhibiting PP1.

Indomethacin inhibits PP2A and PTP1B through its direct binding
Our final attempt was to see the effect of indomethacin on other protein phosphatases 

such as PP2A and PTP1B. In the cell-free PP2A assay, okadaic acid significantly inhibited PP2A 
activity in a concentration (0.1-10 nM)-dependent manner (Fig. 4B). A higher concentration 
(1 mM) of indomethacin reduced PP2A activity to nearly 90% of basal activity, although 
lower concentrations less than 100 µM had no effect (Fig. 4B). In the blue native-PAGE, 

Fig. 4. Indomethacin-induced protein phosphatase inhibition. PP1 (A), PP2A (B), or PTP1B (C) was reacted 
with p-NPP and dephosphorylated p-NPP was quantified. In the graphs, each column represents the mean 
(± SEM) percentage of basal phosphatase activity (control)(n=4 independent experiments). *P<0.01, 
**P<0.001, ***P<0.0001, Dunnett’s test.

Fig. 5. Indomethacin binding to protein 
phosphatases. Electrophoresed PP1 (A), 
PP2A (B), or PTP1B (C) was incubated with 
fluorescein-conjugated indomethacin (Fluo-
IM)(1 mM) in the absence and presence 
of non-conjugated indomethacin (Co-IM) 
(1 mM) or before and after pretreatment 
with non-conjugated indomethacin  
(Pre-IM)(1 mM), and fluorescent signals were 
detected (n=4 independent experiments). 
CBB, Coomassie brilliant blue staining. Note 
that no fluorescent signal band was found at 
the GST molecule.
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two proteins were separated at 36 and 100 kDa (Fig. 5B). A protein at 36 kDa was in well 
agreement with the molecular weight for the catalytic subunit of PP2A. In the indomethacin 
binding assay, a single fluorescent signal band was detected at 100 kDa, corresponding to 
a complete PP2A consisting of the structural, regulatory, and catalytic subunits, and the 
signal band is attenuated by co-treatment with non-conjugated indomethacin or blocked by 
pretreatment with non-conjugated indomethacin (Fig. 5B). 

In the cell-free PTP1B assay, sodium orthovanadate inhibited PTP1B activity in a 
concentration (0.1-10 µM)-dependent manner (Fig. 4C). Likewise, indomethacin also inhibited 
PTP1B activity in a concentration (0.1 µM-1 mM)-dependent manner, the extent reaching 
10% of basal activity (Fig. 4C). In the blue native-PAGE, several molecular weights of proteins 
were found (Fig. 5C), suggesting contamination of other proteins in addition to PTP1B. In 
the indomethacin binding assay, however, fluorescein-conjugated indomethacin produced 
a single fluorescent signal band at 60 kDa, corresponding to PTP1B, that is suppressed or 
abolished by co-treatment or pretreatment with non-conjugated indomethacin (Fig. 5C). 
Taken together, indomethacin appears to directly bind to and inhibit protein phosphatases 
such as PP1, PP2A, and PTP1B, with the potency varying among protein phosphatases.

Discussion

In the present study, indomethacin activated CaMKII in hippocampal neurons, but no 
CaMKII activation was found under the cell-free conditions, suggesting that indomethacin 
indirectly activates CaMKII. For CaMKII activation pathway, CaMKII binds to Ca2+/calmodulin 
and is activated through its autophosphorylation. PP1 dephosphorylates phosphorylated 
CaMKII to inactivate it. PP1 activity is inhibited by an active form of protein phosphatase 
inhibitor-1. Protein phosphatase inhibitor-1 is activated by PKA-mediated phosphorylation, 
but otherwise it is inactivated by calcineurin-mediated dephosphorylation [13-15] (Fig. 1). 
Plausible pathways underlying indomethacin-induced CaMKII activation include that 1) 
indomethacin activates PKA, to phosphorylate and activate protein phosphatase inhibitor-
1, leading to inhibition of PP1 activity, 2) indomethacin directly binds to and inhibits PP1 
activity, and 3) indomethacin inhibits calcineurin, causing indirect activation of protein 
phosphatase inhibitor-1. In the present study, indomethacin-induced CaMKII activation was 
not affected by the PKA inhibitor H-89 and indomethacin did not activate PKA under the 
cell-free conditions. This excludes the participation of PKA in indomethacin-induced CaMKII 
activation.

In the cell-free PP1 assay, indomethacin reduced PP1 activity in a concentration (10 
µM-1 mM)-dependent manner. In the indomethacin binding assay, indomethacin actually 
bound to PP1. Collectively, these results suggest that indomethacin inhibits PP1 through its 
direct binding, thereby activating CaMKII. A pathway for CaMKII activation in association 
with suppressed calcineurin, however, is not presently ruled out. 

Evidence has pointed to physiological significance for a CaMKII/PP1 switch in 
synaptic memory [18]. In our earlier study, indomethacin facilitated hippocampal synaptic 
transmission by stimulating presynaptic glutamate release through a CaMKII pathway, in a 
fashion that mimics long-term potentiation, a cellular model for learning and memory [5]. The 
indomethacin action could account for improvement of learning and memory impairment 
or enhancement in learning and memory potentials [5]. The results of the present study 
may represent a CaMKII/PP1 switch relevant to cognitive functions under the regulation 
of indomethacin, i.e., a switch from CaMKII inhibition by PP1 to CaMKII activation by PP1 
inhibition.

Of particular interest is that like PP1 indomethacin inhibits PP2A and PTP1B, possibly 
through its direct binding. To our knowledge, this is the first to show the inhibitory action 
of indomethacin on protein phosphatases. PP2A is a major serine/threonine protein 
phosphatase in mammalian cells. PP2A dephosphorylates phosphorylated Akt at Thr308 
[19, 20] and may serve as a tumor suppressor [21]. Conversely, reduced PP2A activity could 
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activate MEK, independently of Raf [22]. PTP1B, on the other hand, functions as a negative 
regulator of insulin receptor signaling pathways by dephosphorylating the receptor [23-25]. 
In addition, PTP1B may suppress proliferation or differentiation of tumor cells by inhibiting 
receptor tyrosine kinases such as epidermal growth factor and platelet-derived growth factor 
receptors [26]. Physiological significance for indomethacin-induced inhibition of PP2A or 
PTP1B, however, remains to be explored. To address this point, we are currently carrying 
out further experiments.

In conclusion, the results of the present study show that indomethacin indirectly 
activates CaMKII, possibly by directly binding to and inhibiting PP1. The results also show 
that indomethacin inhibits PP2A and PTP1B, possibly through its direct binding. These 
extend our knowledge regarding the indomethacin actions, distinct from COX inhibition.
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