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ABSTRACT

Structurally related chemotactic cytokines (chemokines)
regulate cell trafficking through interactions with 7-trans-
membrane domain, G protein-coupled receptors. Biased
signaling or functional selectivity is a concept that describes
a situation where a 7-transmembrane domain receptor
preferentially activates one of several available cellular
signaling pathways. It can be divided into 3 distinct cases:
ligand bias, receptor bias, and tissue or cell bias. Many
studies, including those coming from our lab, have shown
that only a limited number of chemokines are key drivers of
inflammation. We have referred to them as “driver chemo-
kines.” They include the CXCRS3 ligands CXCL9 and
CXCL10, the CCR2 ligand CCL2, all 3 CCRS5 ligands, and the
CCRS9 ligand CCL25. As for CXCRS3, despite the proinflam-
matory nature of CXCL10 and CXCL9, transgenic mice
lacking CXCRS3 display an aggravated manifestation of
different autoimmune disease, including Type | diabetes
and experimental autoimmune encephalomyelitis. Re-
cently, we showed that whereas CXCL9 and CXCL10
induce effector Th1/Th17 cells to promote inflammation,
CXCL11, with a relatively higher binding affinity to CXCR3,
drives the development of the forkhead box P3-negative
IL-10"9" T regulatory 1 cell subset and hence, dampens
inflammation. We also showed that CXCL9/CXCL10 acti-
vates a different signaling cascade than CXCL11, despite
binding to the same receptor, CXCR3, which results in
these diverse biologic activities. This provides new evi-
dence for the role of biased signaling in regulating biologic
activities, in which CXCL11 induces ligand bias at CXCR3
and receptor-biased signaling via atypical chemokine re-
ceptor 3. J. Leukoc. Biol. 99: 857-862; 2016.

Introduction

Chemokines are small (8-14 kDa), secreted proteins that
regulate cell trafficking through interactions with a subset of

Abbreviations: 7TMD = 7-transmembrane domain, ACKR3 = atypical
chemokine receptor 3, DC = dendritic cell, EAE = experimental autoimmune
encephalomyelitis, FOXP3 = forkhead box P3, GPCR = G protein-coupled
receptor, GVHD = graft-versus-host disease, mMTOR = mammalian target of
rapamycin, NT.eq = Naturally occurring regulatory T cell, Tr1 = T regulatory 1,
Treg = regulatory T cell
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7TMD GPCRs [1-3]. They are the principal attractants of
leukocytes to sites of inflammation and through the activation
of adhesion molecules. promote leukocyte extravasation [4-8].
This makes chemokines key drivers of inflammation.

The question of why as many as ~50 chemokines and 20
receptors are required for inducing and regulating immune
responses is complex and could be explained partially by the
complex interplay between them, enabling a rapid, yet regulated,
response. This includes not only competition of binding receptors
but also partial agonistic and antagonistic effects, for example,
CCL11 that functions as a partial agonist of CCR2b [9].

Several reports, including ours, reveal that only a limited
number of chemokines (8-10 of almost 50 known chemokines)
and their cognate receptors are mainly involved in promoting an
inflammatory response [10-15]. Our working hypothesis is that
as drivers of inflammation, these chemokines not only attract
leukocytes but also direct their proinflammatory biologic
properties [12, 13].

Many investigations analyzed the role of chemokines as
proinflammatory mediators [16-18], with the aim to make them
and their respective receptors as targets for therapeutic
interventions in inflammatory autoimmune diseases [2, 19, 20].
We focused on chemokines that bind 2 receptors on CD4"

T cells—CXCR4 and CXCR3—and found that the CXCR3
ligand CXCL11 and the CXCR4 ligand CXCL12, aside from
attracting leukocytes to sites of inflammation, also direct their
polarization of CD4" T cells into Trl cells, which leads to a
restraining inflammation. CXCL11 is not the only ligand of
CXCRS3, but the receptor also binds CXCL9 and CXCL10.
However, the 3 chemokines differ in their ability to activate
signal transduction downstream of the receptors with opposing
outcomes of the cell phenotype. Whereas CXCL11, which binds
CXCRS3 with higher affinity, induced T cell polarization into Trl
cells, CXCL9 and CXCL10, with lower affinity for CXCR3,
promote CD4" T cell polarization toward Th1/Th17 effector
cells [21]. The recent finding is an example of how ligand-based
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biased signaling leads to diverse biologic functions of CD4"
T cells that regulate immunity.

LIGAND-BIASED SIGNALING AND ITS
ROLE IN CHEMOKINE BIOLOGY

Biased signaling or functional selectivity is a concept that describes a
situation where a 7TMDR preferentially activates 1 of several
available cellular signaling pathways. It can be divided into 3 distinct
cases: ligand bias, receptor bias, and tissue or cell bias (Fig. 1)
[22-24]. Ligand bias describes a situation where different ligands
bind the same receptor but induce diverse responses. It is not
exclusive for chemokines [25, 26]. As for chemokines, 1 of the
possible relevant examples is the CCR7 and its ligands CCL19 and
CCL21. Both ligands are able to activate a variety of G proteins, but
with different efficacies and efficiencies [22], and stimulate
common signaling pathways; however, it has been suggested that
only CCL19 induces internalization of the receptor [27]. Moreover,
CCR?7 can trigger different responses upon stimulation with CCL19
and CCL21 in T cells and DCs, thus dependent on its cellular
context [28, 29]. The biologic consequences of these findings are
yet to be addressed, as both chemokines hold similar properties
with respect to cell migration.

Likewise, it was found that of the 2 CXCR2 ligands CXCL8 and
CXCL7, CXCLS8 is much more efficient in receptor internaliza-
tion [30]. On the other hand, the binding of CXCLS to the
highly related receptors CXCR1 and CXCR2 induces different
responses. Despite that both receptors couple to pertussis toxin-
sensitive G proteins, only CXCRI1 activates phospholipase D and
the NADPH oxidase in response to CXCL8 in human neutrophils
[81]. The chemokines CCL2 and CCL11 bind CCRZ2, although
with different affinities [31], but activate opposing signaling
mechanisms. CCL11, initially reported as a natural antagonist
that competes for binding of CCL2 to CCR2, was shown, in
addition via the MAPK cascade, to attenuate CCR2 signaling
[32]. The observation that upon binding of CCL2 or CCL11, the
receptor activates different isoforms of PI3K suggested ligand-
induced different receptor active states [32]. More recently, it
was reported that ligands of CCR2 and CCRb5, which trigger
typical cellular responses, such as cell migration, differ in their

-I- | | |
| | |

|

\ A4

/) A\

Ligand bias Receptor bias Context bias
CXCR3 CXCR4/ACKR3 DC/T cells CCR7/CCL19
CXC10/CXCL11

Figure 1. Biased signaling by chemokine receptors. Biased signaling or
functional selectivity preferentially activates distinct cellular signaling
pathways. Three cases are illustrated: ligand bias (left), receptor bias
(center), and context/tissue or cell bias (right). Two different pathways
(green and orange arrows in all panels) are preferentially activated by
2 distinct ligands (triangles) on the same receptor (left); by the same
ligand acting on 2 distinct receptors (center); or by the same ligand/
receptor pair but embedded in a distinct cellular context (right).
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ability to activate available downstream signaling pathways [22,
24]. Likewise, for CXCR3 and its ligands, differences in signaling
were reported [33-35]. The first observation that may implicate
bias signaling of CXCR3 ligands came from Cox et al. [36],
showing differential binding to receptor states of these ligands to
their receptor. More recently, Thompson et al. [37] used Goy
knockout mice to show that Gayg is the key G protein needed for
CXCR3 signaling in the mouse, whereas Gz actually inhibits this
process. In addition Colvin et al. [34] showed that CXCL9- and
CXCL10-induced internalization requires serine/threonine res-
idues (putative phosphorylation sites) on the receptor C
terminus, whereas CXCL11-induced internalization depends on
the third intracellular receptor loop. Notably, CXCL11 is much
more efficient in inducing receptor internalization, making it less
accessible to CXCL9 and CXCL10 [34, 35]. Very recently, we
uncovered the biologic significance of these findings. Chemo-
kines possess very short half-life time (in vivo). To facilitate a
stable form of CXCLI11 to be used as a drug, we have generated a
stabilized form by generating a fusion protein in which CXCL11
was linked to IgG; (Fc; CXCL11-Ig) [21]. When administered
during ongoing EAE, this fusion protein could rapidly suppress
the disease by increasing the relative number of IL-10-producing
Trl-like cells (direct effect) and at the same time, leading to
reduced polarization of Thl and Th17 cells, which could be a
result of CXCR3 desensitization, making it less accessible to
CXCL9/CXCL10 [21]. A classic example for receptor-biased
signaling is the interplay of CXCL12 with its receptors. This
chemokine triggers full chemokine receptor signaling on
CXCR4, including G protein-dependent cell migration and IL-10
production [38], whereas binding to the ACKR3 (CXCR?7)
induces G protein-independent arrestin recruitment and activa-
tion of the MAPK cascade [39].

Nevertheless, the interplay of the 2 receptors, CXCR4 and
ACKR3, is critical for CXCLI12-mediated signaling. Initially,
tentatively called “eccentric” [32], the trio displays tight in-
terdependent regulation of biologic systems. ACKR3 functions
mainly as sink and is often found in apposition to sites of CXCL12
production to ensure the formation of efficient chemotactic
gradients [40—43]. In addition, the scavenging activity of the
receptor is essential to prevent CXCR4 down-regulation, e.g.,
during migration of interneurons [44, 45]. Recently, it was shown
that ACKR3 expression on CXCR4" plasma blasts licenses them to
leave CXCL12-rich germinal centers [46]. Under inflammatory
conditions when endothelial cells up-regulate ACKR3, the re-
ceptor promotes infiltration of leukocytes into the brain paren-
chyma through scavenging of perivascular CXCL12 at the basal
site of brain blood microvessels [47].

CD4*' T CELL SUBSETS AS REGULATORS
OF THE INFLAMMATORY PROCESS

The FOXP3-negative CD4" T cells include several subsets, among
them, Thl, Th2, Th3, Th17, Th9, Th22, follicular Th, and Trl
cells. These subsets differ in their cytokine production and
thereby, their biologic functions. For example, Th1 cells produce
IFN-y, as well as IL-2 and TNF-a [48, 49], to support cell-
mediated immunity, whereas Th2 cells that produce IL-4 [50]
promote humoral immunity and to some extent, restrain the
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inflammation by 2 complementary mechanisms: direct effect on
macrophages [51] and shifting the Th1/Th2 balance into Th2,
resulting in reduced polarization and activity of Thl cells [52].

Several reports, including ours, previously showed that indeed,

the skewing of the Th1l/Th2 balance into Th2 could effectively
suppress inflammatory autoimmunity within the CNS [12, 53-55]
and other organs [13, 56-60].

The Th17 subset [61] primarily produces 2 of the 6 IL-17
members—IL-17A and IL-17F—that share the same IL-17R [62].
IL-17A and IL-17F, in particular, IL-17A, direct tissue inflammation
and play a major part in antimicrobial and anti-fungal immunity
[63]. Its relevance for anti-fungal immunity in human has been
shown in subjects with an immunodeficiency in IL-17 production
that suffers from recurrent fungal infections, which could be
restrained by the administration of GM-CSF or G-CSF to increase
Th17 activities [64-66]. Other key cytokines produced by these cells
are I1-22, which mediates mucosal host defense [67], and 1121,
which further promotes the polarization of Th17 [68, 69].
Currently, clinical trials aiming at targeting IL-17, directly or via its
receptor, are being carried out in psoriasis [70-72].

The effector function of Th1/Th17 cells is tightly regulated by
2 major types of T, g those that express the FOXP3, also known
as the nT,4, and those that do not but rather, produce a large
amount of IL-10, also known as Trl cells [73]. These cells
suppress the activities of effector T cells and of inflammatory
macrophages by various mechanisms, thus maintaining self-
tolerance [74-77]. Aside from nT,.4, FOXP3-positive T cells
could be polarized from FOXP3-negative T cells (in vitro) in the
presence of TGF-B [78].

The polarization and potentiation of both types of Tycg are also
dependent on the cytokine milieu. As for Trl cells, their initial
discovery was when being selected (in vitro) in cultures supple-
mented with I1-10 (and IL-2), implicating that IL-10, produced by
these cells, has an autocrine effect on their selection [73]. Later, it
has been shown that TGF-B, together with IL-27, polarizes Thnp
cells into Trl cells [79, 80], as opposed to TGF-f alone, which
polarizes Th3 [81] or FOXP3-positive induced T,eg, [78].

CHEMOKINES AS POTENTIAL
REGULATORS OF INFLAMMATION

A little more than 20 y ago, 1 of us (N.K.), together with Ted
Yednock, Lawrence Steinman, and colleagues [82], identified the
a4B1 integrin (VLA-4) as the key adhesion molecule that drives
the accumulation of inflammatory macrophages and T cells at
the autoimmune site within the CNS, during EAE and that the
mAb-based blockade of VLA-4 (the a4 chain) effectively
suppresses the disease. This particular antibody became the
leading biologic drug for multiple sclerosis [83]. CXCLI12 is a key
driver in the activation of VLLA-4 [84]. Therefore, we (N.K. lab)
aimed to treat EAE by blocking CXCL12. While targeting
CXCL12 at the early stage, before the clinical onset of disease

indeed postponed it onset, its later targeting aggravated the
manifestation of disease [38]. Subsequently, we showed that at
this time, CXCL12 shifts CD4" T cell polarization into Trl, thus
regulating the dynamics of disease [38]. This has been the first
evidence that chemokines may also hold anti-inflammatory
properties. The translational implication of this study has been
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the generation of stabilized CXCL12-Ig for therapy of inflam-
matory autoimmunity [38]. Nevertheless, the multibiological
properties of this chemokine may question its future use as a
stabilized chemokine for treating autoimmunity [85, 86].

BIASED SIGNALING VIA CXCR3 DIRECTS T
CELL POLARIZATION AND
BIOLOGIC FUNCTION

We have investigated the interplay between CXCR3 and its 3
ligands—CXCL9, CXCL10, and CXCL11—on directing the
polarization of CD4" T cells and observed that whereas CXCL9
and CXCL10 skew T cell polarization into Th1/Th17 effector
cells, CXCLI11 drives CD4" T cell polarization into IL-10-
producing Trl [21]. We also uncovered the signaling basis of
this biased response and learned that it is Go; independent
[21]. Whereas CXCL10/CXCR3 interactions drive effector Th1l
polarization via STAT1, STAT4, and STAT5 phosphorylation,
CXCL11/CXCR3 binding induces an immunotolerizing state
that is characterized by IL-10%8% (Tr1) and IL-4"8" (Th2) cells
and mediated via p70 kinase/mTOR in STAT3- and STAT6-
dependent pathways (Fig. 2) [21]. CXCL11 binds CXCR3 with
a higher affinity than CXCL10, suggesting that CXCL11 has
potential to mediate and restrain inflammatory autoimmunity.
This may explain, in part, why CXCR3-deficient mice develop
an extremely severe form of EAE and Type I diabetes mellitus
[87, 88].

The ability of GPCRs to transmit diverse signaling cascades
upon binding different ligands [25, 26, 39, 89, 90] has been
already raised by others. First, by the Nobel prizewinner Robert J.
Lefkowitz and his team [90-92], showing that different ligands
binding the same GPCR may induce diverse signaling cascades,
called biased signaling, resulting in distinct biologic activities.
Even though the mechanistic basis of this feature is not fully
understood, its biologic and clinical implications are highly

significant [90]. Our studies were the first to uncover the
relevance of these findings in CD4" T cell polarization and

CXCL9/10
CXCL11
\ CXCR3
CXCR3%
\ STAT1/STATS
STAT3/STAT6
T-BeVRORyT—— 7 Effocior
Regulatory IL-4 <—Th2 LA h function

function

IL-10 ™ CD4+ T cell

Figure 2. Biased signaling of CXCR3 ligands. Whereas CXCL10/
CXCR3 interactions drive effector Thl polarization via STAT1, STAT4,
and STAT)5 phosphorylation, CXCL11/CXCR3 binding induces an
immunotolerizing state that is characterized by IL-10"8" (Tr1) and IL-
4M8" (Th2) cells and mediated via P70 kinase/mTOR in STAT3- and
STAT6-dependent pathways. RORYT, Retinoic acid-related orphan
receptor yT.
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explore its translational consequences in inflammatory
autoimmunity.

Sierro et al. [93] previously showed that wild-type C57BL/6
mice display a shift in the open-reading frame of the CXCL11-
encoding gene (insertion of 2 bases after nucleotide 39),
resulting in the translation of a chimeric protein lacking the
critical CXC motif. We have confirmed these data by PCR
analysis. The lack of optimal production of this chemokine by

this strain may explain, in part, why CXCL11-based therapy is
more effective in C57BL/6 mice than in SJL [21]

COULD STABILIZED REGULATORY
CHEMOKINES BE USED AS BIOLOGIC
DRUGS FOR AUTOIMMUNITY AND GVHD?

The fundamental approach of applying T,..-based therapies is
based on their isolation, in vitro activation, and use for autogeneic
therapy after enrichment. This approach has been applied recently
for nT,.g and Trl therapy. As for nT,eg in humans, they could be
isolated and purified by cell surface molecules (CD4'CD25'CD127").
So far, this approach has been applied with limited success in
human [94, 95]. Maria Grazia Roncarolo, from Stanford
University, and colleagues [96-99] developed a reciprocal
approach for Trl cells that includes their activation in the
presence of IFN-a and IL-10 [100]. The efficiency of Trl cell-
based cell therapy in human has yet to be explored.

An alternative approach for T,.g-based therapy is based on the
amplification of their function. The first successful clinical trials

included administration of low-dose IL-2 for treating GVHD
[101] and hepatitis C virus-induced vasculitis [102]. The major
potential pitfalls of this approach are that IL-2 also induces
effector CD4" and CD8" T cells, as well as NK cells, and may
potentially aggravate these diseases [103]. We believe that
biologic drugs that would selectively induce FOXP3" T4 or Trl
cells, without a proinflammatory effect on other cells, could
become a leading drug for inflammatory autoimmunity and
GVHD. Hence, a potential risk in these drugs could still be that
increased activity of T,ce would affect the ability of the immune
system to combat cancer or to generate effective antimicrobial
immunity. An additional pitfall refers to the stability of chemo-
kines that begin to possess short half-ife time as a result of
enzymatic degradation. Ig-based stabilization may only partially
challenge this obstacle.

CONCLUSIONS

Biased signaling or functional selectivity is a concept that
describes a situation where a 7TMDR preferentially activates 1 of
several available cellular signaling pathways. The current review
focuses on exploring the outcome of this feature on the way the
interaction between CXCR3 and its ligands shapes the develop-
ment and function of CD4" T cell subsets. Thus, far most of the
attention has been devoted to exploring the role of cytokines in
this property. From a clinically oriented perspective, the findings
that chemokines may also polarize Tycgs (so far, our data show
relevance only for FOXP3-negative T,.q) open the window of
opportunities for use of stabilized chemokines for therapy of
inflammatory autoimmunity and GVHD. Among the chemokines
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that polarize Tr1 cells (i.e., CXCL12 and CXCL11), we find some
major differences: CXCLI12 also renders anti-inflammatory
properties in macrophages [38], whereas CXCLI11 also polarizes
IL-4"8" Th? cells [21]. We assume that CXCL11 could be a better
candidate for being a potential drug, as CXCL12 is involved in
many biologic activities, aside from being an immunoregulator,
such as neutrophil homeostasis or stem cell homing [85].
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