'.) Check for updates

International Journal of Advanced Robotic Systems

Real-Time

Regular Paper

Jacek Augustyn'*

1 AGH-UST University of Science and Technology, Krakéw, Poland
*Corresponding author(s) E-mail: jag@agh.edu.pl

Received 23 September 2013; Accepted 1 December 2014

DOI: 10.5772/60028

ARTICLE

Performance of Hybrid
Viobile Robot Control
Utilizing USB Protocol

© 2015 The Author(s). Licensee InTech. This is an open access article distributed under the terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the

original work is properly cited.

Abstract

This article discusses the problem of usability of the USB
2.0 protocol in the area of real-time control of a mobile
robot. Optimization methods of data transfer handling
were proposed. The impact of the optimization results on
the entire system’s performance was examined in practice.
As a test-bed, a hybrid system composed of two devices
communicating by direct USB connection was implement-
ed. The first of the mentioned devices was a 32-bit SoC
micro-system serving as a direct control unit, and the
second one was an off-the-shelf PDA providing supervisory
control and logging. Due to this design, the system meets
regimes of the real-time constraints and maintains continu-
ity of a data stream at a large bandwidth. The real-time
performances of subsystems and the entire system were
experimentally examined depending on various operating
conditions. Thanks to the performed experiments, the
dependency of real-time limits on operational parameters
has been determined.

Keywords Embedded Control System, USB Protocol, Real
Time, Hybrid Controller, Robot

1. Introduction

1.1 Motivation

The tablets of today have been especially designed for
wireless network communication. It is therefore quite
common to see a tablet (personal digital assistance - PDA)
in the hands of an operator, for example a remotely
operated vehicle (ROV). In this case, the PDA plays a role
of a user interface and sends simple operator commands
via Bluetooth or WiFi. Could such an off-the-shelf PDA serve
as on-board computer of the ROV mentioned, or other
kinds of a mobile robot? This question has motivated the
author's practical experiments, the results of which are
presented in this paper.

The construction of a control system for mobile robots is a
complex multi-aspect process and requires consideration
of various factors. The main technical problems are real-
time performance, substantial hardware and software
complexity. On the other hand there are economical
problems, such as the necessity to shorten the time needed
for its design and implementation. Since such systems are
realized in small production batches, the share of the

Int J Adv Robot Syst, 2015, 12:14 | doi: 10.5772/60028

http://crossmark.crossref.org/dialog/?doi=10.5772%2F60028&domain=pdf&date_stamp=2015-01-01

designing costs is very large. Using the standard off-the-
shelf software components can eliminate the need for the
specialized knowledge of the operating system used.

The control system of mobile robots belongs to the category
of hard real-time systems. Following the Oxford Dictionary
of Computing hard real-time systems can be defined as
‘those in which it is absolutely imperative that each and
every response time (to externally generated stimuli)
requirement be met’. For mobile robot control systems the
tasks of measurement, calculation and setting of control
actuators are to be performed at specific, predefined
periods of time, which can be regarded as deadlines. In
general, real-time systems are divided into hard real-time
systems and soft real-time systems. In the case of the latter,
exceeding the operational deadlines is not a critical error.

The control system for the robot usually consists of two
main parts:

1) Direct control subsystem (DCS). This comprises acquis-
ition modules (multichannel AD converters, quadrature
encoders, digital inputs), PID controllers and actuator
output modules (DA converters, PWM, digital outputs).
The required control loop time response is 1 ms or less and
DCS is the hard real-time part.

2) Supervisory control subsystem (SCS). This can include
the trajectory-planning module and a sophisticated type of
control algorithm such as a multidimensional generalized
predictive controller (GPC) or amodel predictive controller
(MPC). SCS cooperates with the DCS part and forms an
outer control loop. SCS runs in the soft real-time, but the
required control loop time response is slower than that of
DCS, e.g., 5-10 ms. SCS should include user interfaces. The
continuous data stream logging module is also very
important because SCS should back up the data from the
sensors and operational data from DCS.

Despite the mentioned network communication ability, the
off-the-shelf PDAs are small in size, their power consump-
tion is low, and they are shock resistant by design. PDA
devices possess built-in cameras and GPS. Wireless
communication can be easily programmed thanks to
standard communication libraries for the WiFi or Bluetooth
devices. SD/microSD cards can be used for storing large
amounts of data. A subclass of the tablet devices equipped
with Windows CE family is of special interest because of
the way of interrupt servicing by the Windows CE kernel.
In short, the Windows CE kernel guarantees that an
interruption will be serviced within a specified amount of
time. Furthermore, the worst case latency for an interrupt
can be calculated by summation of interrupt service routine
latency and interrupt service thread latency. This concerns
interrupts from USB devices too. To summarize, all of these
features of the PDAs are suitable for a mobile robot control.
Thus, an application of the off-the-shelf PDA device for
supervisory control subsystem (SCS) is proposed. One of
many advantages of such an approach is a possibility of
performing a substantial part of the programming work by
computer programmers, who do not have the specialized

Int J Adv Robot Syst, 2015, 12:14 | doi: 10.5772/60028

knowledge of the hardware. An example of a methodology
for rapid prototyping of such systems is shown in [1].

However, standard purchasable PDAs are not equipped
with typical SPI or I2C ports, which are used for commu-
nication with AD/DA/PWM transducers. Thus, the joining
of external sensors and actuators instruments faces inte-
grative problems. Numerous instruments have RS232 ports
serving as the main data transmission interfaces. However,
RS232 is not very suitable for real-time control aims, which
require higher sampling frequencies and are characterized
by a relatively low throughput. A review of such solutions
can be found in [2]. However, the main problem is that,
following the current market trend of replacing RS ports by
UBS ones, modern PDA devices do not possess RS-232
ports at all.

The article proposes the conduction of integration between
the SCS unit and DCS unit via a direct universal serial bus
(USB) connection, which in this context means the omission
of additional RS/USB converters. Such a direct USB
connection allows the transmission of user data in one
millisecond cycles. The theoretical data bandwidth can
reach 1MB per second [3]. It allows the substantial exten-
sion of the potential of control-measurement and a logging
system.

Real-time performance of the entire system consisting of
hybrid SCS and DCS depends on many factors in terms
of the closed control loop time and continuous stream of
sensor data. Some of these include the USB device class,
USB user data driver type, driver parameters, and
module optimization methods as well as cooperation with
the USB host stack. The operating system can also pre-
empt any thread, and the writing process to SD can block
other threads. Moreover, the system performance is
strongly influenced by the amounts of transmitted and
processed data and by the number of threads involved
in processing of these data, because parts of the system
resources are allocated for them. This means that
performance characteristics should be examined under
different conditions, taking into account both packet sizes
and thread configuration.

Thus, it is purposeful to conduct studies on the character-
istics of this type of USB connection in the context of
minimizing the response time and maximizing the entire
control system performance. It is also justified to propose
methods of optimization and study their influence on the
obtained system performance. The experimental results of
time characteristics, such as the maximum and mean
response time of the control system, and the bandwidth for
the combined system of control and recording are present-
ed. The former two are important for control purposes, the
latter for logging operational data. The results are crucial
for determining operational deadlines, which in turn allow
specification of the possible application areas.

The rest of the paper is organized as follows. Section 2
presents some related work. Section 3 depicts hardware
architecture used in experiments and describes USB class
selection and software. Section 4 presents experimental

real-time performances of USB communication and
recording subsystems. It gives some theoretical back-
ground about their operation as well as optimization
methods and the obtained results. Section 5 presents the
experimental results of the entire system and their tuning.
The final section presents the conclusions.

2. Related work

A data acquisition subsystem for mobile ROV robots, based
on a USB connection, is described in [4]. The one-way
latency between some external devices and the PC com-
puter was investigated. The obtained results were in the
range of 20/30 ms. A similar proposition of sensor data
acquisition using the USB connection, in the area of mobile
robots, is presented in [5].

An example of using PDA for table displacement XYZ
control is shown in [6]. Some solutions, using a USB
connection, can be found in the literature [7, 2]. The
reported information relates mainly to the data stream, but
it gives pictorial information concerning the time of data
exchange. The authors of the article utilize 8-bit microcon-
trollers and the obtained transmission speeds are of the
order of 10k samples per second (SPS). Slightly different
concepts assume the use of commercial measurement cards
with a USB interface [5, 8] and the reported speeds are of
the order of 50 kSPS. Most commonly the authors propose
commercial USB/RS232 converters, e.g., [9]. The FIDI
converter is also a widespread option [10]. There are also
off-the-shelf solutions that utilize PDA and USB connectivi-
ty, e.g., [11, 12]. Similarly to previous references, the
obtained speeds are not high, e.g., 12kSPS [13]. Most
solutions are based on commercial Lab View libraries.

The results presented in the literature indicate that the
theoretical potential of the USB is not fully utilized.

3. Hybrid control system for a mobile robot

The overall architecture is presented in Figure 1 and an
integration model is presented in Figure 2.

! SD !
32-bit SoC
AD
PWM ROBOT
off-the-shelf :zl
PDA GPIO
o
[— — DA sensors
— — spi| acturators
L USB HOST ¢ »USB UDP

direct connection

supervisory control
system (SCS)

direct control
system (DCS)

Figure 1. Proposed software architecture of hybrid control system of the
robot

SCS PDA DCS 32-bit SoC

sensor control
data

USB host data USB device
port [F———— port

Figure 2. Model of integration

From the software perspective, it is proposed to utilize
standard libraries and their optimization. The use of a 32-
bit SoC class micro-system with the built in USB-UDP full-
speed port for the DCS unit is proposed.

The system proposed in Figure 1 and Figure 2 was realized
in practice.

3.1 Hardware architecture

The system was constructed using the SoC micro-system —
ATI91SAM7X and PDA - Fujitsu-Siemens N560 with
Windows Mobile operating system. The AT91SAM7X
micro-system serves as the measurement-executive unit
(DCS) of the system, by means of which measurements and
PID control with a relatively high frequency are conducted.
The supervisory control, logging and visualization unit
(SCS) is executed by the PDA.

The micro-system AT91SAM7X-256 includes, among other
elements, the fully programmable full-speed USB user
device port (USB-UDP 2.0), 32-bit core ARM7TDMI, 256kB
FLASH memory for storing programme code, 64kB RAM
for data storing and processing, eight-channel AD trans-
ducer, four-channel SPI port, TWI/I2C port, four-channel
PWM generator, UART ports, CAN port, EMAC port, ten-
odd timers and dozens of input-output lines. The function-
ality of particular lines is programmable [14, 15]. Each block
can be individually switched off in order to reduce power
consumption. It is worth mentioning that most of the
peripheral devices have their individual DMA channels.
This enables relief the CPU core from the tasks of transmit-
ting data between the device and memory. The SPI port can
be easily utilized for connecting AD and DA transducers if
there is a requirement of better metrological characteristics
than of the built-in transducer. It can also be easily used for
extending memory resources.

The core used in the experiments has an efficiency of 48
MIPS (millions of instructions per second), and 32-bit
architecture enables processing of measurement data with
a sufficient precision. In contrast to 8-bit controllers, there
is no requirement for a software emulation of 32-bit
calculations. Calculation performance is sufficient for the
realization of controlling algorithms, e.g., the PID for
several control paths.

Existing memory resources allow C programming. A free
GNU C compiler was used in the presented realization.

The PDA runs on PXA270 CPU, 620MHz and has, among
other elements, the USB host controller [16], colour touch
panel, and 64MB of RAM and FLASH memories. The slot

Jacek Augustyn:

Real-Time Performance of Hybrid Mobile Robot Control Utilizing USB Protocol

for SD cards enables the recording of large amounts of data,
as well as long-term recording.

3.2 Operating system

Following [17], Windows CE/Mobile as a software platform
was addressed for the programming of the real-time and
embedded applications. The idea was to provide both
similar functions as in desktop versions of the system and
the real-time kernel. For example, interrupt servicing is
divided into two stages: interrupt service routine (ISR) and
interrupt service thread (IST). This mechanism is similar to
the one used in QNX where a proxy can be triggered within
ISR, to awaken a task. Interrupt service latency is guaran-
teed. The formula for calculation of the worst-case latencies
can be found in [17]. Some other information about real-
time kernel and examples of latencies and thread switching
time can be found in [18].

Windows CE/Mobile consists of, among other things,
kernel managing processes and modules operating exter-
nal devices [19]. Some methods of process scheduling are
presented in [20].

Windows CE is used in industry in embedded PLC
controllers [21]. Interrupt service routine latency is 14 us
and as such is reported in the literature. The study of
Windows CE usages for real-time interpolation calcula-
tions in numerical control (NC) with 1 ms cycles is present-
ed in [22].

CNC control system realization with the use of specialized
hardware connected to the main CPU bus is presented in
[23]. However, this requires the writing of a specialized
device driver. This system is targeted to work in 1 ms
control cycles.

3.3 Software architecture of the USB communication

USB full-speed standard ver.2.0 defines four types of
transactions: isochronous, control, interrupt, bulk [3]. Isochro-
nous transactions have a guaranteed execution time that
equals one millisecond and is performed in every bus cycle.
Although isochronous transactions can be used for perform-
ing hard real-time tasks, their disadvantage is their
limitation of bandwidth to only 64 kB/s. Control and
interrupt transactions can be performed once at most in a
one millisecond bus cycle. This property also limits the
available bandwidth. Only bulk transactions can be repeat-
ed many times during every bus cycle.

The SAM7X micro-system, equipped with the USB-UDP
port, was fully software configured. This can represent a
device of pre-defined standard classes [24]. It is also
possible to implement a custom protocol, specified in the
standard as ‘vendor specific’. The implementation of the
CDC-ACM class (communications device class abstract control
model) [25] was assumed. The advantage of the CDC class
is the implementation of bulk transactions. The number of
transactions in a single 1 ms USB frame can be higher than

Int J Adv Robot Syst, 2015, 12:14 | doi: 10.5772/60028

one. This offers a better band utilization in comparison to
the HID class [26]. The HID class has a limitation to one
control or interrupt transaction result of stream bandwidth
reduction. The second selection criterion was the provision
of a compatibility with a popular standard. This enables the
use of typical software drivers for this class. They are
available for numerous operating systems, including
Windows CE/Mobile.

The PDA was programmed using the Visual Studio
environment. This requires package installation for
programming devices with Windows CE and Mobile
operating systems. It includes libraries of elements for the
graphic user interface (GUI) and communication libraries.
They are available for several programme languages, such
as C/C++, Visual Basic, and.NET. The last two enabled a
rapid graphic user interface implementation by means of a
graphic application constructor. General programming
knowledge proved sufficient for the proposed conceptual
approach.

4. The experimental real-time results of subsystems and
methods of optimizations

In practical implementations of mobile robot control
systems, the supervisory control system in the PDA is
required to receive relatively large amounts of sensor data.
The size of the received packages ranges from 64B to 4kB
and contains measurement data and response codes,
sampled at high frequency. The stream of sent data is
substantially smaller and usually limited to sending short
commands controlling the settings of DCS units. Thus,
sending packages of the size of dozens of bytes is a typical
condition of the USB connection work. It is sufficient for
coding commands, their parameters and the state of the
DCS part.

4.1 Experimental results of real-time performance using standard
components

The standard software CDC protocol driver was used for
the aims of realization of data exchange between the direct
control subsystem and the supervisory control subsystem
of the robot. It is a layer mediating between the USB host
driver, provided with the operating system, and the user
application. Its task is to hide from the application details
concerning a physical USB connection, such as size and
number of the USB plug or the method of transaction
scheduling, etc.

Experimental results of implementation, obtained using
standard programming methods, are presented in Figure
3. It is assumed that output packages contain commands
for the measuring-executive unit and that their size is 64 B.
The results were compiled for the selected sizes of the
received packages: {64, 128, 256, 512, 1024, 2048, 4096 B}.

The analysed values include the maximal and mean time
of packet exchange between acquisition and execution. Its

equivalent to the closed control loop time, along the DCS-
SCS-DCS path (Figure 2) expressed in [ms/cycle] and the
sensor data stream possible to achieve, expressed in [kB/s],
were investigated. The application realized only the
communication task, without saving to the SD (Secure
Digital) card and visualization. The system was loaded by
standard processes. The presented results are averaged
from 10,000 experiments performed by the author of this
paper. It is worth mentioning that maximal times were
rarely observed during experiments.

maximal and mean closed control loop time [ms/cycle]
T T T T T T

140
120
100
80
60
40
20

[msfoykl]

| | | | | | |
0 500 1000 1500 2000 2500 0 3000 3500 4000
sensor data packet size [B]

sensor data stream [kB/s]

[KBfs]

1 ! ! 1 ! ! 1
0 500 1000 1500 2000 2500 3000 3500 4000
sensor data packet size [B]

Figure 3. Experimental real-time results depending on the size of received
packages. a) Maximal and mean time of closed control loop time expressed
in [ms/cycle] b) Average stream of received sensor data expressed in [kB/s].

Discussion of the results

The exchange of packets using a standard CDC class data
driver with its standard parameters resulted in rather long
times; e.g., for a packet size of 1 kB, the maximal time
reaches 62 ms (Figure 3). This limits the execution of the
control task to only 17 times per second. The maximal time
of package exchange is crucial from the perspective of the
real-time control system and stream continuity. It defines
the upper bound of the time limit, which can be regarded
as an experimentally obtained deadline. The knowledge of
the deadline mentioned above is necessary for determining
the sizes of buffers at the DCS side.

The mean time is essential for soft real-time systems. It
increases linearly with the size of the received packages as
canbe observed in Figure 3. This parameter can be regarded
as a soft deadline; e.g., for a packet size of 1 kB, mean time
equals 37 ms. This means that the soft real-time control can
be performed almost two times faster than in hard real-
time.

Better real-time results can be achieved by decreasing the
package size; however, the mean bandwidth is significantly
reduced in such a case (Figure 3.b).

The obtained results can be regarded as typical since the
standard CDC drivers are designed for work with devices
emulating RS232 class series connections, character
terminals, modems, etc. The required working speeds are

not high in the case of these devices. The achieved stream
of the order of 30 kB/s is comparable with a classic serial
connection of 300 kBps speed and allows the construction
of measuring and logging systems of a speed of the order
of 10-15 kSPS. The obtained results are comparable with
those given in [27].

Modifications to the application’s working environment
(e.g., increasing its thread priority) neither cause changes
in the mean time of package exchange nor in the mean
speed. However, they reduce the maximal exchange time,
which is a significant result in real-time systems.

4.2 Optimization of the CDC driver

Optimization was proposed after in-depth analysis of CDC
driver work. Standard CDC class drivers were designed to
exchange small amounts of data, usually single bytes,
between them and the system USB host controller. It is
possible to optimize this behaviour by modifying the driver
source codes, to speak more precisely by rearranging buffer
handling as well as increasing their sizes. However, it is
necessary to keep to the rules of the operating system, as it
isrequired to have memory allocations with physical rather
than virtual addressing (indispensable for the DMA
controller of the USB host).

20 maximal and mean closed control loop time [ms/cycle]

[msfcykl]

! ! 1 1 ! ! !
0 500 1000 1500 2000 2500 3000 3500 4000
sensor data packet size [B]

sensor data stream [kB/s]

[kBfs]
w
S
S

! ! 1 1 ! ! !
0 500 1000 1500 2000 2500 3000 3500 4000
sensor data packet size [B]

Figure 4. Experimental real-time results and the average stream after driver
optimization

It was possible to increase the buffer to 4 kB in the analysed
solution, as this was the allocation unit that the system
handled. Itis also equal to memory page size. The proposed
optimization involves changes in the driver source code
and its re-compilation.

Results of experiments for the system with the optimized
CDC driver are shown in Figure 4.

Discussion of the results

The differences between the results of this experiment,
compared to the results of the former experiments were by
order of magnitude better.

Jacek Augustyn:

Real-Time Performance of Hybrid Mobile Robot Control Utilizing USB Protocol

It must be noted that maximal exchange times were
significantly reduced to the value of the order of 20 ms.
Maximal times were rarely observed; however, they must
be considered during the design process of the overall
system.

Times of small package exchange, in terms of mean and
maximal values, amounted to 5 ms and 7-15 ms, respec-
tively. Their values are mainly influenced by the work of
the USB host controller subsystem with the host itself
integrated in the CPU. The total exchange time includes
scheduling of transaction sending, sending of transaction,
scheduling of receiving transaction, and receiving transac-
tion. The result is restricted by the duration of the basic
cycle of the USB bus (1 ms) that the host controller (built
into the PDA) synchronizes with. Further decreasing of
times is possible only after a complete rewriting of the host
driver. However, this required an intervention into the
operating system and was not implemented.

Itis possible to achieve a bandwidth of up to 600 kB/s in the
case of large packages of 4 kB. In the same conditions, a
significant reduction of the mean time of package exchange
was achieved. This is especially noteworthy as far as large
streams were concerned, e.g., maximal time was 17 ms and
mean time was only 7 ms. These results should be com-
pared to 142 ms and 130 ms obtained before optimization.

The load of the SAM7X micro-system was of the order of
40% in case of maximal streams [28].

4.3 Time performance of logging module and its optimization

In mobile and embedded devices, SD memory cards or
internal FLASH memory are used as mass storage func-
tions. Such media are resistant to mechanical shocks and
store data after switching off the power. In the case of
control systems possessing recording functionality, it is
essential to analyse time characteristics of the recording
subsystem and, if necessary, to optimize both the response
time and the data stream speed. They have a substantial
influence on the overall parameters of the solution.

4.3.1 The realization of recording with the use of standard
software modules

Experimental results of time characteristics of recording to
the internal FLASH memory are presented in Figure 5. A
record of a data block of a particular size during one call is
marked by the term ‘single transaction’. The assumed block
sizes are: 60, 250, 512, 1k, 2k, 4k, 8k, 16k, and 32k. These
blocks were written to the internal memory during the
experiments. Standard libraries, available in the program-
ming environment, were used. The system was loaded with
standard working processes. The presented results were
averaged from 10,000 transactions.

The achieved stream speeds are not high (of the order of
200kB/s). Higher stream speeds for small transactions are

Int J Adv Robot Syst, 2015, 12:14 | doi: 10.5772/60028

related to the system buffering which ceases to be efficient
for larger streams.

maximal and mean fransaction time [ms]
T

200 T T T
T 150 + R
E]
[
= 100+ E
=
)
E spt 4

O L L 1 1 L L
0 05 1 15 2 25 3 35
{fransaction size [10kB]
average data stream [kB/s]

350 T T T T T T

200 4
T 2501 4
@
= 200 —

150 B

100 1 1 ! ! 1 1

0 05 1 15 2 25 3 as

transaction size [10kB]

Figure 5. Results of recording data stream to internal FLASH memory
storage according to the size of a single transaction

The experimental results of recording to the SD card are
presented in Figure 6.

120 maximal and mean transaction time [ms]
T T T T

100 B

60 | .
40 7

[msitransakeja)

20 b

0 L L L L 1 L
15 2
transaction size [10kB]

average data stream [kB/s]
300 T T T T

[Bis]

. . . .
0 05 1 15 2 25 3 35
transaction size [10kB]

Figure 6. Results of recording data stream to SD memory card according to
the size of a single transaction

Discussion of the results

A relatively high mean and maximal transaction times are
achieved for smaller data blocks. These results are caused
by the file system driver, which is aimed at the minimiza-
tion of the risk of data loss during rapid removal of the SD
card without its unlocking. In such case, the operational
system conducts an immediate physical saving. It results in

an each-time modification of the 512 bytes sector of the SD
card, even if the number of saved bytes is lower.

A substantially higher average stream was achieved for
transactions over 1 kB than in the case of internal FLASH
memory chips. For example, for a transaction of 4 kB in size,
it is possible to save a stream of 550 kB/s. However, an
increase in the transaction size enlarges the maximal as well
as mean times of its execution. From the perspective of the
real-time system, the maximal execution time is deter-
mined mainly by the time of recording in the physical
FLASH memory sector.

It is suggested to use small package sizes of data incoming
from the USB communication side and software buffered
at the application stage. They should then be saved into the
SD memory in the form of larger blocks, e.g., 4 kB in
practical implementations of control and logging systems.

While the streams achieved with this simple serial archi-
tecture of subtasks are large, the response times of the
communication and logging subtasks are summing up,
which causes a drop in the overall performance.

Logging tasks do not possess any deadline; the main goal
is to guarantee the data stream continuity. Since Windows
CE/Mobile is a multitasking system, the logging task can
be executed in the other thread.

In general, the optimization of the transaction time and
maximization of stream speed is to be taken into consider-
ation. Minimizing transaction times results in a reduction
of CPU load as well as hardware resources. Freed resources
can be allocated to other concurrent threads.

Optimization of maximal time is also important, so its
result influences memory size requirements.

4.3.2 The proposed method of optimization — modification of
cluster size

After a thorough theoretical study of file system structure,
which is referred to in [29], record optimization is proposed
by the author. Some aspects of this are discussed below.
Data stored on the SD card (as well as on other mass storage
media such as pen drives, HDDs) are organized in a
particular format, described by detailed file system
parameters. During the realization of saving data on a
medium, there is an allocation of the so-called cluster of a
particular capacity. Its size is a multiplicity of the basic
sector of 512 B size. Information about free and occupied
clusters, together with their location in the physical sector
space, is stored in a special section of the file system, called
allocation tables. They constitute the most critical fragment
of the file system, and in order to increase storage safety
two copies of the allocation tables are usually used.

During recording, the file system driver must search
allocation tables in order to find a free cluster in which the
data can be stored. This happens when data added to a file
exceeds cluster limits. After finding such a cluster, there

must be recording of sectors in allocation tables in order to
update information about the cluster occupation. Updating
is performed in two physically independent allocation
tables. The execution of the actions mentioned above
results in time losses related to saving sectors of the FLASH
memory on the SD card.

The number of sectors per cluster depends mainly on
partition size, but it is possible to modify it within a
particular limited range. Detailed information can be found
in [26].

The recording optimization proposed in this paper in-
volves an increased number of sectors per cluster. It causes
a decrease in the number of necessary modifications of
allocation tables and enables an increase in the average
stream.

150 maximal and mean transaction time [ms]

a0 B

e

|
0 05 1 15 2 25 3 a5
transaction size [10kB]

[msitransakeja)

average data stream [kB/s]
2000 T T T T T

1500

1000

[KkB/s]

500

0 1 ! ! 1 1 1
l 05 1 15 2 25 3 35
transaction size [10kB]

Figure 7. Recording optimization — 2 kB per cluster

maximal and mean transaction time [ms]
T

o0
=]

K

[msitransakcia)
I
L]
.

[
=
T
I

[=]
o
ral
3]

w

0 05 2 a5
transaction size [10kB]
average data stream [kB/s]
2500 T T T T
2000 B
— 1500 B
£
2
= 1000 4
500 B
0 1 1 1 1 1 !
0 05 1 15 2 25 3 35

transaction size [10kB]

Figure 8. Recording optimization — 16 kB per cluster

Jacek Augustyn:

Real-Time Performance of Hybrid Mobile Robot Control Utilizing USB Protocol

7

8

The experimental effects of optimization are presented in
Figures 7 and 8 for two possible formats for the particular
SD card: 2 kB/cluster and 16 kB/cluster. The achieved
results should be compared with the results for the default
format of 1 kB/cluster presented in Figure 6.

Discussion of the results

It was observed that the maximal transaction time de-
creased about two times (Figure 8) in comparison to the
1kB/cluster format (Figure 6). The attention should be
directed to a significant reduction of the mean transaction
time. It is a very essential parameter in the context of the
overall performance of the control system equipped with
the logging module, and it has a great influence on the
overall efficiency. Thus if the logging module consumes
fewer resources, these resources can be used in the other
threads. There is also a significant growth in the registra-
tion speed, up to 1500 kB/s (Figure 7) and 2500 kB/s (Figure
8) in comparison to the 1 kB/cluster format (Figure 6).

4.3.3 The proposed method of optimization — pre-allocation of the
chain of clusters

Having investigated theoretical resources on file system
structure [26], the author presents further possibilities of
optimization. These enable decreasing maximal response
times and increasing mean stream speed. This involves pre-
allocation of the chain of clusters in allocation tables. After
this operation, there is no need for further modifications of
the allocation tables or scanning for free clusters during the
data stream recording. There is also no need to update the
file size in the input directory sector (so-called file entry).

Figures 9 and 10 illustrate the experimental results for the
maximal and mean response times and stream bandwidth
after optimization.

25 T

maximal and mean transaction time [ms]
T T T

[msitransakcja)

1} 05 1 15 2 25 3 35
transaction size [10kB]

average data stream [kB/s]
4000 T T T

3000 -

2000 - B

[kBfz]

1000 - B

0 I 1 1 I I
0 05 1 15 2 25 3 35

transaction size [10kB]

Figure 9. Recording optimization — pre-allocation of clusters chain, 0.5kB
per cluster

Int J Adv Robot Syst, 2015, 12:14 | doi: 10.5772/60028

25 maximal and mean transaction time [ms]
T T T T T

[~
=]

T
=
@ 15
o
c
S0
@
£ 5
0 | |
0 05 1 15 2 25 3 35
transaction size [10kB]
average data stream [kB/s]
4000 T T T T T T

3000 B

2000 - B

[KBrs)

1000 - 1

0
0 05 1 15 2 25 3 35
transaction size [10kB]

Figure 10. Recording optimization — pre-allocation of clusters chain, 4 kB
per cluster

Discussion of the results

A very distinct improvement of the recording subsystem
performance was observed. The reduction of the maximal
response time was achieved, which is very significant in the
real-time system. It can be exemplified by the following: for
a 4 kB transaction the maximal time achieved was only 5
ms and the mean time was 2 ms (Figure 9). This was
accompanied by an increase of the average stream record-
ing speed to 2500 kB/s. A further increase in the transaction
size enables boosting of the stream to 3000 kB/s. However,
the maximal and mean times are increasing in such cases.
Better parameters can be achieved for a larger number of
sectors per cluster (Figure 10) and transaction sizes of
8-16kB. The stream of the order of 3000 kB/s was achieved
at the maximal transaction time of 6 ms and the mean one
of 3 ms.

A certain disadvantage of the solution presented is that it
is necessary to determine the predicted size of the acquired
data for the cluster pre-allocation. However, this size can
be easily calculated on the basis of the stream speed
multiplied by the required measurement time. An alterna-
tive method would involve pre-allocation of a sufficiently
large number of clusters, e.g., covering a 2 GB result file.

5. Experimental real-time results of the entire acquisition-
control-recording system

A simple, single thread system realization in the form of a
loop alternately executing data communication from the
USB connection and, next, saving them onto the SD card is
not efficient. In such a solution, the addition of maximal as
well as mean response times takes place. It results in a
degradation of parameters, which is unfavourable for real-
time systems.

SCS PDA
Operating system |DCS

32-bit SoC
{Embedded system

GUI threadsi

i
b

upervisory|_ [Class
Fantroller “ldata [
Fdriver

Direct]. Acquisitoni| <=,
!—CO”- (& ~(Ll

stroller [sExecution{| e

system threads

(sp| system threads;
1 !

Figure 11. The proposed software architecture of hybrid control system of
the robot

From the software point of view, the proposed architecture
consists of several functional blocks with many threads, as
shown in Figure 11. The main communication thread
performs the data exchange in cooperation with the USB
drivers stack. In the same thread, the supervisory controller
computes output values for actuators. The other threads
handle continuous data logging and graphical user
interface.

The cooperation of communicative, recording and GUI
software modules was proposed and realized in the
architecture of the three-thread application. Communica-
tion and recording threads were written in C/C++. The user
interface was created using the graphic constructor,.NET
libraries and C# language. Due to the asynchronous
functioning of these threads and various package sizes,
there was the necessity for realizing the multiple buffering.
Sixteen-times buffering (between the thread receiving data
from the USB connection and the thread saving data onto
the SD card) was accepted on the basis of the results from
section 4.3., specifying maximal response times.

maximal and mean closed control loop time [ms/cycle]

30 T

[msicykl]

0 500 1000 1500 2000 2500 3000 3500 4000
sensor data packet size [B]

600 T

received and recorded sensor data stream [kB/s]

500
400+
300+

(kB3]

200+
100+

| | | | | | |
0 500 1000 1500 2000 2500 3000 3500 4000
sensor data packet size [B]

Figure 12. Experimental real-time results of the entire control and
acquisition-recording system without screen refreshing

The experimental results are presented in Figure 12,
showing real-time performances of the entire control and
measuring-recording system in dependency on various
sizes of packages {64, 128, 256, 0.5k, 1k, 1.5k,... 4k} received
through the USB connection. During the control and
acquisition-recording, the application screen was not
refreshed and all threads were at default priorities. A pre-
allocation of clusters was also conducted. The presented
maximal and mean transaction times concern the USB
communication part, which is crucial for the control task.
It is a measure of the system quality in controlling and
acquisition-recording implementations in which the PDA
can conduct additional calculations and can be included in
the control loop in real time.

Discussion of the results

As is seen above, the mean time determining a possible
control-loop cycle in soft real-time systems does not exceed
7 ms. The maximal time was observed sporadically;
however, it determines the worst case of work. The
maximal time is a boundary for hard real-time systems. Its
substantial increase was caused by pre-emption by another
process, which is shown for the 1.5 kB transaction size. It is
possible to receive and record a continuous data stream at
a speed of 580 kB/s in case of packages of a size of 4 kB. It
enables the construction of the control and recording
systems of the bandwidth of 290 kSPS 16bit.

The screen refreshing activation results in a system quality
degradation, due to the necessity of executing a time-
consuming graphical operation by the PDA CPU. A speed
drop depends on the amount of refreshed elements, e.g.,
font size and refreshing frequency. The examples of results
are presented in Figure 13. Ten measured values, with 20-
point font, were refreshed during the experiment. The
refreshing thread frequency was 10 Hz. The refreshing of
the GUI took from 40 to 50 ms, depending on the data value
on the screen.

maximal and mean closed control loop time [ms/cycle]
T T T T T

100 T
. &/\/v
% 60 F e
&
B o4nb 4
20p B
1 1 1 1 | | |
l 500 1000 1500 2000 2500 3000 3500 4000
sensor data packet size [B]
400 received and recorded sensor data stream [kB/s]
3001
w
m 200
=
100

0 1 1 1 1 | | |
0 500 1000 1500 2000 2500 3000 3500 4000
sensor data packet size [B]

Figure 13. Experimental real-time results of the entire control and
acquisition-recording system with screen data refreshing

Jacek Augustyn:

Real-Time Performance of Hybrid Mobile Robot Control Utilizing USB Protocol

9

Under such work conditions, the maximal time is deter-
mined by the GUI refreshing thread. However, it should be
noted that it is smaller than the sum of the worst cases
observed for single threads. Despite the fact that, theoreti-
cally, such a worst-case scenario can occur, it was not
observed.

The average stream was reduced to 300 kB/s for 4 kB
packages, as the CPU had to handle three tasks (commu-
nication, SD memory, GUI) at the same time. The mean
transaction time also increased up to 14 ms.

5.1 Owverall system optimization

On the basis of thorough theoretical study of thread
scheduling [17], the optimization of the entire system is
proposed. Since it is crucial for reducing the influence of
the GUI thread, this problem can solved by increasing the
priority of the USB communication thread and SD writing
thread. Thanks to this, screen operations can be pre-empted
by communication tasks. However, this change of task
priorities requires additional double buffering and proper
synchronization of data flow.

maximal and mean closed control loop time [ms/cycle]
T T T T T

[msfeyld]

.
l 500 1000 1500 2000 2500 32000 3500 4000
sensor data packet size [B]

500 received and recorded sensor data stream [kB/s]

[KBrg]

2001

100+

! 1 ! 1 ! 1 !
l 500 1000 1500 2000 2500 32000 3500 4000
sensor data packet size [B]

Figure 14. Experimental real-time results of the entire control and
acquisition-recording system after optimization, without screen refreshing

Experimental results after the system optimization are
presented in Figures 14 and 15, without and with the screen
refreshing respectively.

Discussion of the results

In comparison to the pre-optimized solution (compare
Figure 12 and 14), the results are characterized by a
significant decrease in the maximal response time. It is
possible to maintain the control loop cycle time within 15
ms and the mean time within 9 ms, whereas there was a
growth of stream speed to 440 kB/s.

After optimization, there was a substantial reduction of an
unfavourable influence of the screen refreshing thread
(compare Figures 13 and 15). The observed maximal times

Int J Adv Robot Syst, 2015, 12:14 | doi: 10.5772/60028

maximal and mean closed control loop time [ms/cycle]

101 1

[msfcykd]

| | | | | | |
0 500 1000 1500 2000 2500 3000 3500 4000
sensor data packet size [B]

500 received and recorded sensor data stream [kB/s]

400

300

[KBfs]

1001

! 1 ! 1 1 ! 1
0 500 1000 1500 2000 2500 3000 3500 4000
sensor data packet size [B]

Figure 15. Experimental results of the entire control and acquisition-
recording system after optimization with screen data refreshing

did not exceed 14 ms while the mean time amounted to 9
ms and stream was 440 kB/s. The obtained optimization
results are very similar to those for the case with inactive
refreshing (compare Figures 14 and 15). This means that
optimization significantly reduced the screen thread
influences on real-time control performances. Such good
results were achieved thanks to the proper pre-emption of
screen threads at key moments of the USB communication
and recording thread activity. One disadvantage of the
presented realization is the fact that other processes are
unable to use the SD card resource and require waiting for
the saving thread end.

13 maximal and mean closed control loop time [ms/cycle]

[msfcykl]
w
L

.
l 500 1000 1500 2000 2500 3000 3500 4000
sensor data packet size [B]

400 received and recorded sensor data stream [kB/s]

300

2000

[KBi's]

100

1 1 1 1 1 1 1
0 500 1000 1500 2000 2500 3000 3500 4000
sensor data packet size [B]

Figure 16. Experimental results of the entire control and acquisition-
recording system under the load of 3200 floating-point operations per
transaction

It is also essential to study the time characteristics of the
system considering the numerical task loading during
control implementations. Figure 15 presents the results of
the realization of floating-point numerical calculations.

They can represent the PID or predictive regulator calcu-
lations, multiplication of matrixes, conducting additional
filtrations, correlation calculations, etc. A total of 1600
floating-point multiplication and addition operations of a
single precision were executed during processing. Calcu-
lations were synchronized by a data exchange in the USB
communication part every 7-12 ms.

The obtained results show that an additional floating-point
calculation load has an influence on the results achieved.
As far as the mean and maximal times are concerned, it is
an additive relationship. The mean time increases propor-
tionally to the amount of calculations and its gain depends
on the speed and performance of the PDA's CPU. The
operating system has only a trifling influence on the
obtained results.

6. Conclusions

The proposed USB communication optimizations allow a
substantial increase in the real-time performance of the
control task.

In the regime of hard real-time, the control task was
executed of the order of 15 ms compared to 100 ms before
optimization. Furthermore, the operational data stream
and events can be recorded up to 380 kB/s. The control task
was executed in 8 ms for the smallest packets of sensor data.

In the regime of soft real-time, closed control loop time of
the order of 5 ms was obtained. This means, that for
applications for which exceeding the operational deadlines
is not critical, an additional software component, such as a
trajectory planning or set points computing for PID
controllers modules, can be incorporated.

The bandwidth of the order of 400-580 kB/s was achieved
in simultaneous control and registration of sensor data.
Thus, it enables the construction of mobile robot control
and acquisition-recording devices, e.g.,, of 16 analogue
sensors at the frequency of 12 kHz.

Moreover, the proposed system can be considered as a
general framework. Hence, it can be useful for rapid
prototyping of the control system. The advantage is its
miniature size and low power suitable for mobile robots.
The use of the off-the-shelf PDA component reduces both the
effort of its implementation and the cost. The framework
allows the implementation of the advanced superior
regulators, such as predictive or LQ regulators.

The presented methods of the optimization of the embed-
ded dual processor system can be utilized for off-the-shelf
hardware solutions running on Windows CE/Mobile
operating systems.

7. Acknowledgements

The paper was prepared within the grant PBS/1/A9/1/2012
founded by National Centre for Research and Develop-
ment (NCBiR).

8. References

[1] Augustyn], Bien A (2012) Rapid prototyping
methodology of embedded control-acquisition
system. Metrol. Meas. Syst., Vol. XIX, No. 4: 777-786.

[2] JucaS, Carvalho P, Brito F (2011) A low cost concept
for data acquisition systems applied to decentral-

ized renewable energy plants. Sensors, Vol. 11, No.
1: 743-756.

[3] Universal Serial Bus Specification, Revision 2.0,
April 27, 2000, Available: www.usb.org, Accessed:
June 2013.

[4] Ramadoss L, Hung JY (2008) Study on universal
serial bus latency in a real-time control system. In:
34th IEEE Annual Conference of Industrial Elec-
tronics (IECON), Orlando, pp. 67-72.

[5] Elkady A, Sobh T (2010) Design and implementa-
tion of a multi-sensor mobile platform. In: Novel
Algorithms and Techniques in Telecommunica-
tions and Networking, New York: Springer, pp.
367-372.

[6] Valladares JM, Basurto Pensado MA, Ochoa Ortiz
C.A (2008) Using PDA and CBR for the control of
motors in a table displacement (or milimaquinado)
XYZ. In: 18th International Conference on Electron-
ics, Communications and Computers (CONIELE-
COMP), Puebla, pp. 84-88.

[7] Chan S, Teng], Chen C, Chang D (2010) Multi-
functional power quality monitoring and report-
back system. Electrical Power and Energy Systems,
Vol. 32, No. 6: 728-735.

[8] Golovlev A (2010) Mobile system for pump working
point estimation. M.S. Thesis. Department of
Electrical Engineering, Lappeenranta University of
Technology, Lappeenranta, Finland.

[9] Qiong C, Zhuo P, Hui C (2010) The communication
design of simulation and measurement for excita-
tion system based on USB2.0. In: Proc. 2nd Interna-
tional Workshop on Intelligent Systems and
Applications (ISA), Wuhan, pp. 639-642.

[10] FT232BM USB UART (USB-Serial) I.C. (2002) Future
Technology Devices Intl. Ltd., Glasgow, Available:
www.ftdi.com, Accessed: June 2013.

[11] Precision USB thermometer probe (2010) Electronic
Temperature Instruments Ltd., Worthing, Availa-
ble: www.etiltd.com, Accessed: June 2013.

[12] I-Scan® Handheld Pressure Measurement System
(2008) Tekscan Inc., Available: http:// www.teks-
can.com/industrial/iscan-handheld.html, Ac-
cessed: June 2013.

[13] Three-axis Hall Magnetometer THM1176 Users
Manual (2008) Metrolab Instruments SA, Available:
www.metrolab.com, Accessed: June 2013.

Jacek Augustyn:

Real-Time Performance of Hybrid Mobile Robot Control Utilizing USB Protocol

12

[14]

[13]

ATI91SAM ARM-based flash MCU, Doc. 61201
(2011) Atmel Corporation, San Jose, Available:
www.atmel.com/literature, Accessed: June 2013.

Augustyn] (2007) Design of embedded systems
with application to SAM7S family with
ARM7TDMI core. Krakéw: IGSMIE PAN. p. 302 (in
Polish, ISBN 978-83-60195-55-0).

Intel® PXA27x Processor Family Developer’s
Manual (2004), Intel.

Hall M (2005) Windows CE 5.0 for real-time
systems. Reprint from Embedded Computing
Design November 13, 2005. Available: http://
embedded-computing.com/article-id/?229, Ac-
cessed: July 2014.

Microsoft Windows Embedded CE 6.0 Intel Atom
Processor. (2009). Intel.

Hu C, Li W, Hu C, Xu W (2010) Study on the CNC
system interpolation based on Windows CE.NET
and its real-time. In: International Conference on
Computer, Mechatronics, Control and Electronic
Engineering (CMCE), Changchun, Vol. 2, pp.
110-112.

Wang X, Sun H (2011) Thread Schedulability in
Windows CE, Communications in Computer and
Information Science, Part II Vol.225:294-298.

John K-H, Tiegelkamp M (2010) IEC 61131-3:
Programming Industrial Automation Systems,
Chapter 7 Innovative PLC Programming Systems,
2nd ed., Berlin: Springer-Verlag, pp. 249-285.

Int J Adv Robot Syst, 2015, 12:14 | doi: 10.5772/60028

(22]

(23]

[24]

(23]

[26]

(27]

Xu D, Liu J, Wu J (2010) Research on real-time
control of embedded NC system based on Windows
CE 5.0. In: International Conference on Mechanic
Automation and Control Engineering (MACE),
Wubhan, pp. 31-35.

Lui], Xu D, Wu J, Li X, Huang J (2011) The design
of carton samplemaker's embedded numerical
control system based on Windows CE. Advanced
Materials Research, Vols. 211-212: 330-335.

USB Class Codes. Available: http:// www.usb.org/
developers/defined_class, Accessed: June 2013.

Universal Serial Bus Class Definitions for Commu-
nications Devices. Revision 1.2, November 16, 2007,
Available: www.usb.org, Accessed: June 2013.

Device Class Definition for Human Interface
Devices (HID), Version 1.11, 2001, Available:
www.usb.org, Accessed: June 2013.

Posada-Gomez R, Enriquez-Rodriguez].J,. Alor-
Hernandez G, Martinez-Sibaja A (2008) USB bulk
transfers between a PC and a PIC microcontroller
for embedded applications. In: Electronics, Robotics
and Automotive Mechanics Conference (CERMA
'08), IEEE Computer Society Washington, pp.
559-564.

Augustyn J, Bieri A (2009) Real time performance of
USB interface in embedded control and measure-
ment systems. Electrical Review, Vol. 7: 1-7.

FAT: General Overview of On-Disk Format.
Version 1.03. Microsoft Corporation, 2000.

