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Abstract: We consider the initial-boundary-value problem for the one-dimensional fast
diffusion equation u; = [sign(u.)log |uz|]l. on @7 = [0,7] x [0,1]. For monotone initial
data the existence of classical solutions is known. The case of non-monotone initial data
is delicate since the equation is singular at u, = 0. We ‘explicitly’ construct infinitely
many weak Lipschitz solutions to non-monotone initial data following an approach to the
Perona-Malik equation. For this construction we rephrase the problem as a differential
inclusion which enables us to use methods from the description of material microstructures.
The Lipschitz solutions are constructed iteratively by adding ever finer oscillations to an
approximate solution. These fine structures account for the fact that solutions are not
continuously differentiable in any open subset of Qr and that the derivative u, is not of
bounded variation in any such open set. We derive a characterization of the derivative,
namely u, = dt 4+ d~ p with continuous functions d* > 0 and d~ < 0 and dense
sets A and B, both of positive measure but with infinite perimeter. This characterization
holds for any Lipschitz solution constructed with the same method, in particular for the
‘microstructured’ Lipschitz solutions to the one-dimensional Perona-Malik equation.
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