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Abstract: 5-Fluorouracil (5-FU) is a key drug for the treatment of esophageal squamous cell carcinoma (ESCC); 
however, resistance to it remains a critical limitation to its clinical use. To clarify the mechanisms of 5-FU resistance 
of ESCC, we originally established 5-FU-resistant ESCC cells, TE-5R, by step-wise treatment with continuously in-
creasing concentrations of 5-FU. The half maximal inhibitory concentration of 5-FU showed that TE-5R cells were 
15.6-fold more resistant to 5-FU in comparison with parental TE-5 cells. TE-5R cells showed regional copy number 
amplification of chromosome 1p including the DPYD gene, as well as high mRNA and protein expressions of dihydro-
pyrimidine dehydrogenase (DPD), an enzyme involved in 5-FU degradation. 5-FU treatment resulted in a significant 
decrease of the intracellular 5-FU concentration and increase of the concentration of α-fluoro-ureidopropionic acid 
(FUPA), a metabolite of 5-FU, in TE-5R compared with TE-5 cells in vitro. Conversely, gimeracil, a DPD inhibitor, 
markedly increased the intracellular 5-FU concentration, decreased the intracellular FUPA concentration, and at-
tenuated 5-FU resistance of TE-5R cells. These results indicate that 5-FU resistance of TE-5R cells is due to the rapid 
degradation of 5-FU by DPD overexpression. The investigation of 5-FU-resistant ESCC with DPYD gene copy number 
amplification and consequent DPD overexpression may generate novel biological evidence to explore strategies 
against ESCC with 5-FU resistance. 
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Introduction

Esophageal squamous cell carcinoma (ESCC) is 
one of the deadliest cancers worldwide [1-3]; 
the overall 5-year survival rate of patients with 
ESCC still ranges from 15 to 25% [3, 4]. 
Chemotherapy is one of the main therapeutic 
strategies for advanced or metastatic ESCC 
[5-7]; however, the efficacy of chemotherapy is 
limited, with only a 6.7-8.9-month median OS 
[8-10]. To overcome these issues, the mecha-
nism of chemo-resistance of ESCC should be 
clarified. 

Genomic DNA copy number alterations are fre-
quently found in solid tumors, and they are uti-

lized as diagnostic markers as well as indica-
tors of the prognosis and drug efficacy [11]. 
Recently, genome-wide array comparative 
genomic hybridization (aCGH) has facilitated 
the analysis of DNA copy number alterations at 
high resolution [12], and thereby several DNA 
copy number alterations, such as EIF2B5 (chro-
mosome 3q), MYC (8q), CCND1 (11q), and 
PARP2 (14q), have been detected in patients 
with ESCC [13, 14]; however, it has not been 
elucidated whether such alterations are 
involved in the drug resistance of ESCC.

5-Fluorouracil (5-FU) is a key drug in first-line 
therapy against ESCC [15]. 5-FU metabolism 
comprises anabolic and catabolic processes 
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[16]. To exert its cytotoxicity, 5-FU enters an 
anabolic process in which it disrupts nucleic 
acids through various enzymes, such as thymi-
dylate synthase (TS) [16]. On the other hand, 
5-FU is degraded by dihydropyrimidine dehydro-
genase (DPD), the initial and rate-limiting 
enzyme encoded by the DPYD gene located on 
the short arm of chromosome 1 (1p21.3) [16, 
17], to its metabolites including α-fluoro-
ureidopropionic acid (FUPA). As DPD expression 
in tumors increases 5-FU resistance [18-22] 
and exacerbates the prognosis of patients 
treated with 5-FU [23, 24], DPD is a critical 
mediator influencing the 5-FU resistance of 
cancers [25-27].

In this study, we established novel 5-FU- 
resistant ESCC cells, TE-5R, derived from 
parental TE-5 cells, and investigated the mech-
anisms of 5-FU resistance in these cells. We 
revealed that high DPD expression due to DPYD 
gene copy number amplification is involved in 
TE-5R cells acquiring 5-FU resistance. 

Materials and methods

Establishment of 5-FU-resistant ESCC cells

Human ESCC cells, TE-5, were obtained from 
Riken BioResource Center (Ibaragi, Japan) [28]. 
The cells were cultured in RPMI1640 medium 
(Life Technologies Corp., Grand Island, NY, 
USA), supplemented with 10% fetal bovine 
serum (Life Technologies Corp.), 100 μg/mL of 
streptomycin, and 100 units/mL of penicillin 
(Life Technologies Corp.) at 37ºC in a 5% CO2 
incubator. TE-5 cells were treated with continu-
ous and step-wise concentrations of 5-FU (1, 2, 
5, and 10 μM), based on previous reports [29, 
30]. Consequently 5-FU-resistant ESCC cells 
were established, and named TE-5R cells. Both 
TE-5 and TE-5R cells have been verified by 
short tandem repeat analysis and confirmed to 
be consistent with each other and with the orig-
inal cell source from Riken BioResource Center.

WST-1 cell proliferation assays

5-FU resistance of TE-5R cells was assessed by 
the WST-1 assay. TE-5 and TE-5R cells (5 × 103 
cells) were seeded in 96-well plates, and treat-
ed with the indicated concentrations of 5-FU 
for 72 h. Cell viability was measured with Cell 
Proliferation Reagent WST-1 (Roche Applied 
Science, Upper Bavaria, Germany) following the 

manufacturer’s instructions. All data were 
obtained in sextuplicate. The half maximal 
inhibitory concentration (IC50) of 5-FU in each 
cell was calculated by probit analysis [31], and 
the resistance ratio was determined by com-
paring to the IC50 values of parental cells.

Genomic DNA preparation, array-comparative 
genomic hybridization (aCGH) experiments, 
and copy number assays

To compare the genomic alterations between 
TE-5 and TE-5R cells, we performed aCGH anal-
ysis. Genomic DNA was extracted from TE-5 
and TE-5R cells using AllPrep DNA/RNA/Protein 
Mini Kit (QIAGEN GmbH, Hilden, Germany) 
according to the manufacturer’s instructions. 
aCGH experiments were performed with 
SurePrint G3 Human CGH Microarray Kit 2 × 
400K (G4448A, Agilent Technologies, Santa 
Clara, CA, USA) according to the manufacturer’s 
protocol. Raw aCGH data were analyzed and 
processed using CytoGenomics 3.0 software 
(Agilent Technologies). The aCGH data set is 
available at Gene Expression Omnibus (GEO; 
http://www.ncbi.nlm.nih.gov/geo/) under acce- 
ssion number GSE69494.

To determine the copy number, quantitative 
real-time PCR was performed with a PRISM 
7900 sequence detection system (Applied 
Biosystems, Foster City, CA, USA) using a 
TaqMan Gene Expression Master Mix (Applied 
Biosystems) and TaqMan Copy Number Assays: 
LPHN2 (Hs00381445_cn), DPYD (Hs02103- 
805_cn), and PALMD (Hs01617339_cn). 
Ribonuclease P RNA component H1 (RPPH1), 
and Human Genomic DNA (Cat No. G3041, 
Promega Inc.) were used as the endogenous 
control. The TaqMan copy number assay con-
tained 1 µL of LPHN2, DPYD, and PALMD 
probes (20 ×, FAM-labeled), 1 µL of RPPH1 
probe mix (20 ×, VIC-labeled), 10 µL of TaqMan 
Gene Expression Master Mix (2 ×), 4 µL of 
genomic DNA, and 4 µL of water. PCR cycling 
conditions were 95°C for 10 minutes, followed 
by 2-step cycling: 40 cycles of 95°C for 15 sec-
onds and 60°C for 1 minute. A manual cycle 
threshold of 0.2 and an automatic baseline 
were used to detect the template quantity of 
target genes and RPPH1 gene by sequence 
detection system software (ABI, version 2.4). 
The target probes and endogenous control 
were loaded in the same well, and each reac-
tion was performed in triplicate. CopyCaller 
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software (ABI, version 2.0) was used to calcu-
late the copy number of each probe based on 
real-time PCR data. Copy numbers of each tar-
get gene were calculated as the average of 
those based on two reference genes.

RNA isolation, cDNA synthesis, and real-time 
reverse transcriptase-PCR (RT-PCR)

RNA extraction and cDNA synthesis were con-
ducted as previously described [32, 33]. Real-
time reverse transcriptase polymerase chain 
reaction (RT-PCR) was performed with 
LightCycler 480 Instrument II Real-Time PCR 
System (Roche Diagnostics Ltd., Rotkreuz, 
Switzerland). The relative level of each mRNA 
was normalized to ACTB as an internal control. 
The primers used in this study were as follows: 
DPYD (Hs_DPYD_1_SG, QuantiTect Primer 
Assay, QIAGEN GmbH) and ACTB (Hs_ACTB_1_
SG, QuantiTect Primer Assay). 

Protein extraction and Western blotting

Whole-cell lysates were collected according to 
prior reports [34-36], and Western blotting was 
performed as described previously [37]. 

Primary antibodies and their titers were as fol-
lows: rabbit monoclonal anti-DPD antibody 
(D35A8, #4654, Cell Signaling Technology, Inc., 
Danvers, MA, USA; 1:1,000) and rabbit mono-
clonal anti-β-actin antibody (13E5, #4970, Cell 
Signaling Technology, Inc.; 1:2,000). β-Actin 
served as a loading control for whole-cell 
lysates. The band intensity was quantified 
using Image Lab 4.1 software (Bio-Rad 
Laboratories, Hercules, CA, USA).

Measurement of intracellular concentrations 
of 5-FU and its metabolite

The intracellular concentrations of 5-FU and 
FUPA, a metabolite of 5-FU, were quantified by 
liquid chromatography-tandem mass spec-
trometry (LC-MS/MS) [38]. TE-5 and TE-5R cells 
(5 × 105 cells) were seeded in 6-well plates with 
2 mL of RPMI1640 medium supplemented with 
10% fetal bovine serum (Life Technologies 
Corp.), and treated with 5-FU (10 μM) for 24 h. 
Cells were harvested and homogenized in 
methanol (300 µL). The samples were centri-
fuged and supernatants were filtrated through 
a filter (SGJVL; 0.45 µm; Millipore, Billerica, MA, 
USA) and injected into the LC-MS/MS system. 
The LC-MS/MS assay was performed using a 
liquid chromatography system consisting of a 
Prominence series chromatograph (Shimadzu, 
Kyoto, Japan) coupled to an API 4000 triple-
quadrapole tandem mass spectrometer (AB 
SCIEX, Foster City, CA, USA). Chromatographic 
separation was carried out on COSMOSIL® 
5C18-MS-II (Nacalai Tesque, Kyoto, Japan). The 
MS/MS analysis was performed using an elec-
tor-spray ionization source in the negative 
mode. Detection was carried out by monitoring 
the ion transition of 5-FU from m/z 129.0 to 
42.0 and FUPA from m/z 149.0 to 106.0, 
respectively [38].

DPD inhibitor treatment

A DPD inhibitor, 5-chloro-2,4-pyridinediol 
(gimeracil), was synthesized by Taiho Phar- 
maceutical Co., Ltd. (Tokyo, Japan). TE-5 and 
TE-5R cells (5 × 103 cells) were plated in a 
96-well plate and cultured for 24 h, and then 
they were treated with the indicated concentra-
tions of 5-FU in the presence of gimeracil for 72 
h at a molar ratio of 1:0.2 (5-FU:gimeracil), 
referring to a previous report [39]. The effect of 
gimeracil was assessed by the WST-1 assay 
and measuring intracellular concentrations of 
5-FU and its metabolite, as mentioned above.

Figure 1. 5-FU resistance of TE-5R cells. TE-5 and 
TE-5R cells were treated with the indicated concen-
trations of 5-FU for 72 h, and cell viability was as-
sessed using the WST-1 assay. A viability of 100% 
was defined as the amount of absorption at 450 
nm in untreated cells. The mean value ± S.D. of six 
replicate wells from a representative experiment is 
shown. Each experiment was repeated at least three 
times, and consistent results were obtained. IC50 val-
ues of TE-5 and TE-5R cells were 3.6 ± 1.1 and 55.5 
± 10.1 μM, respectively. Note that TE-5R cells were 
15.6-fold more resistant to 5-FU in comparison with 
parental TE-5 cells. 
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Figure 2. Amplification of DPYD gene and subsequent DPD expression in TE-5R cells. A. Chromosome 1 copy num-
ber alteration in aCGH analysis. The vertical axis indicates the log (base 2) ratio of DNA expression. TE-5R harbored 
specific regional amplification of the short arm of chromosome 1 around 1p2 including the DPYD gene (1p21.3). 
Note that LPHN2 and PALMD genes are not located in the specific amplified regions. B. qPCR analysis using LPHN2, 
DPYD and PALMD gene probes. The DPYD gene is amplified to produce 10 copies in DNA samples derived from TE-
5R cells, but not non-cancerous human genomic DNA or parental TE-5 cells. On the other hand, LPHN2 and PALMD 
genes are not amplified in any samples. C. DPD mRNA expression levels in TE-5 and TE-5R cells. qPCR revealed 
significantly increased DPD mRNA expression in TE-5R compared with TE-5 cells. **P < 0.01. D. DPD protein expres-
sion levels in TE-5 and TE-5R cells. The relative density was calculated by densitometry. β-Actin served as a loading 
control. The DPD protein expression level in TE-5R cells was higher than in TE-5 cells. 

Statistical analyses

All data were analyzed by the 2-tailed Student’s 
t-test, and are presented as the mean ± stan-
dard deviation (SD). P < 0.05 was considered 
significant. All statistical analyses were per-
formed with SPSS 19 for Windows software 
(SPSS Inc., Chicago, IL, USA).

Results

Establishment of 5-FU-resistant ESCC TE-5R 
cells

TE-5R cells could grow exponentially in the 
presence of 5-FU (10 µM), although TE-5 cells 
could not grow under the same condition (data 

not shown). Dose-response curves indicated 
that the IC50 values of TE-5 and TE-5R cells 
were 3.6 ± 1.1 and 55.5 ± 10.1 μM, respec-
tively (Figure 1), and TE-5R cells had a signifi-
cantly high IC50 value (P < 0.001, vs TE-5 cells). 
Accordingly, TE-5R cells were 15.6-fold more 
resistant to 5-FU in comparison with parental 
TE-5 cells. Cross-resistance (e.g., cisplatin and 
docetaxel) was not noted in TE-5R cells (data 
not shown). The 5-FU resistance of TE-5R cells 
was not diminished even though they were cul-
tured in a 5-FU-free medium for eight weeks 
(data not shown), and so TE-5R cells were incu-
bated with 5-FU-free medium for at least one 
week prior to use in the subsequent 
experiments. 
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Figure 3. Intracellular 5-FU and FUPA concentrations in TE-5 and TE-5R cells treated with 5-FU. TE-5 and TE-5R cells 
(5 × 105 cells) were seeded in 6-well plates, and then treated with 5-FU (10 μM) for 24 h. Cells were harvested, and 
levels of 5-FU and the FUPA concentration were measured with liquid chromatography-tandem mass spectrometry. 
A. Intracellular 5-FU concentrations in TE-5 and TE-5R cells treated with 5-FU. Intracellular 5-FU concentrations in 
TE-5R cells were significantly lower than those in TE-5 cells (n = 3). ***P < 0.001. B. Intracellular FUPA concentra-
tions in TE-5 and TE-5R cells treated with 5-FU. Intracellular FUPA concentrations in TE-5R cells were significantly 
higher than in TE-5 cells (n = 3). *P < 0.05.

Regional chromosome 1p amplification and 
DPD mRNA/protein overexpression in TE-5R 
cells

To compare the fundamental gene alterations 
between TE-5 and TE-5R cells, we performed 
aCGH analysis, and found that TE-5R cells 
acquired regional gene amplification in the 
short arm of chromosome 1 (1p) including the 
DPYD gene (Figure 2A). Quantitative PCR analy-
sis revealed that DNA copies of the DPYD gene, 
which were located within chromosome 1p 
(Figure 2A), were highly amplified in TE-5R 
cells, but not the LPHN2 or PALMD gene (Figure 
2B), located outside the specific amplified 
region (Figure 2A). Moreover, DPD mRNA as 
well as protein expression levels in TE-5R cells 
were also much higher than those in TE-5 cells 
(Figure 2C, 2D). 

Intracellular concentrations of 5-FU and its 
metabolite in TE-5 and TE-5R cells

To address the functional role of DPD overex-
pression in TE-5R cells, we measured intracel-
lular concentrations of 5-FU and FUPA in TE-5 
and TE-5R cells treated with 5-FU (10 µM) for 
24 h. The intracellular 5-FU concentration in 
TE-5R cells (5.4 ± 0.3 pmol/106 cells) was 
markedly lower than in TE-5 cells (96.2 ± 3.3 

pmol/106 cells; P < 0.001, Figure 3A). 
Conversely, FUPA concentrations in TE-5R cells 
(5.9 ± 1.6 pmol/106 cells) were significantly 
higher than in TE-5 cells (2.1 ± 0.2 pmol/106 
cells, P = 0.014, Figure 3B). 

Effects of a DPD inhibitor on 5-FU resistance 
of TE-5R cells

Furthermore, we assessed the effects of a DPD 
inhibitor, gimeracil, on 5-FU degradation in 
TE-5R cells. As shown in Figure 4, gimeracil 
markedly increased the intracellular 5-FU con-
centration in TE-5R cells from 5.4 ± 0.3 to 62.0 
± 0.3 pmol/106 cells (Figure 4A, P < 0.001) and 
decreased the FUPA concentration from 5.9 ± 
1.6 to 0.6 ± 0.6 pmol/106 cells (Figure 4B, P = 
0.006). Thus, gimeracil significantly reduced 
5-FU degradation in TE-5R cells. 

Next, we investigated the effects of gimeracil 
on 5-FU resistance in TE-5R cells. IC50 values 
with and without gimeracil in TE-5 cells were 
4.9 ± 0.9 and 4.8 ± 0.9 μM, respectively (Figure 
4C, P = 0.881), and those in TE-5R cells were 
20.8 ± 9.2 and 59.0 ± 14.3 μM, respectively 
(Figure 4D, P = 0.023). Thus, gimeracil signifi-
cantly reduced the 5-FU resistance of TE-5R 
cells, but did not affect the 5-FU sensitivity of 
TE-5 cells.
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Discussion

In this study, we established novel 5-FU- 
resistant ESCC cells, TE-5R, by exposing paren-
tal TE-5 cells step-wisely to continuously 
increasing concentrations of 5-FU. TE-5R 
showed higher DPD expressions and a more 

rapid degradation of intracellular 5-FU than 
TE-5 cells. Furthermore, the DPD inhibitor, 
gimeracil, rapidly elevated the intracellular 
5-FU concentration in TE-5R cells treated with 
5-FU, and consequently reduced 5-FU resis-
tance. These results indicate that the 5-FU 
resistance of TE-5R cells is based on DPD-

Figure 4. Effects of DPD inhibitor on TE-5R cells. A DPD inhibitor, gimeracil, was added to the culture medium with 
the indicated concentrations of 5-FU at a molar ratio of 1:0.2 (5-FU:gimeracil) for 24 h. (i.e., 2 μM gimeracil to 10 
μM 5-FU). (A) Intracellular 5-FU concentrations in TE-5R cells in the presence or absence of gimeracil. Intracellular 
5-FU concentrations in TE-5R cells treated with 5-FU and gimeracil were markedly higher than those treated with 
5-FU alone. (n = 3). ***P < 0.001. (B) Intracellular FUPA concentrations in TE-5R cells in the presence or absence of 
gimeracil. Intracellular FUPA concentrations in TE-5R cells treated with 5-FU and gimeracil were significantly lower 
than those treated with 5-FU alone. (n = 3). **P < 0.01. (C, D) Effects of gimeracil on 5-FU sensitivity of TE-5 (C) and 
TE-5R (D) cells. Gimeracil was added to the culture medium with the indicated concentrations of 5-FU at a molar ra-
tio of 1:0.2 (5-FU:gimeracil) for 72 h. Cell viability was assessed by the WST-1 assay. A viability of 100% was defined 
as the amount of absorption at 450 nm in untreated cells. Each point represents the mean ± S.D. of sextuplicate 
wells. Note that gimeracil significantly attenuated 5-FU resistance in TE-5R but not TE-5 cells. Representative data 
from three independent experiments are shown. 
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dependent metabolism. To the best of our 
knowledge, this is the first report on elucidating 
the mechanism of 5-FU resistance in ESCC 
cells.

Our study showed that DPD played a key role in 
the acquisition of 5-FU resistance by TE-5R 
cells. DPD is produced in various tumors, 
including liver [40], breast [24], colorectal [41], 
and oral [42] cancers; however, the mecha-
nisms of DPD production in cancer cells have 
not been fully clarified. In the present study, 
aCGH analysis revealed the regional gene 
amplification of chromosome 1p including the 
DPYD gene in TE-5R cells. Consistently, expres-
sion levels of DPD mRNA as well as protein 
were increased comparably to DPD copy num-
ber amplification. These findings support the 
importance of DPD in 5-FU resistance. As DPD 
expression was not enhanced by short-term 
(one week) treatment with 5-FU (data not 
shown), we suggest that long-term 5-FU expo-
sure may lead to the selection of a unique sub-
set of TE-5 cells expressing high levels of DPD. 

This was an in vitro study of 5-FU resistance 
with DPD copy number amplification in ESCC 
cells. DNA is more stable than mRNA or protein 
expression [43], and so analysis of copy num-
ber alterations, such as of the DPYD gene, 
might be useful for predicting 5-FU resistance 
in ESCC patients. We should further examine 
whether DPD expression is increased by 5-FU 
treatment in clinical samples. 

Consistent with the result that DPD is highly 
expressed in TE-5R cells, we demonstrated a 
lower intracellular 5-FU concentration, higher 
FUPA concentration, and weaker 5-FU cytotox-
icity in TE-5R than TE-5 cells. These data sug-
gest that high DPD expression contributes to 
the degradation of 5-FU in TE-5R cells, which 
consequently decreases the intracellular 5-FU 
concentration as well as 5-FU cytotoxicity. 
Furthermore, we showed that the DPD inhibitor, 
gimeracil, elevated intracellular 5-FU levels in 
TE-5R cells treated with 5-FU and attenuated 
5-FU resistance. As gimeracil was effective for 
high DPD-overexpressing ESCC cells such as 
TE-5R cells, but not low or non-DPD-expressing 
ESCC cells (data not shown), it is considered to 
be specifically efficient for the high DPD-
expressing ESCC cells. Gimeracil has already 
been integrated into S-1, a combination drug 
containing tegafur (5-FU prodrug), potassium 
oxonate, and gimeracil, and clinically utilized for 

several cancers, such as gastric and colon can-
cers [44]. Therefore, we suggest that the thera-
peutic utility of S-1 should be verified for ESCC 
patients with high DPD expression. 

In the present study, the growth of TE-5R cells 
was not accelerated in comparison with that of 
TE-5 cells, and, moreover, TE-5R cells did not 
form xenografted tumors in nude mice (data 
not shown). Thus, high DPD expression did not 
influence cell growth or tumorigenicity, sug-
gesting that DPD overexpression may not affect 
the biological characteristics of cancer cells 
directly. Furthermore, we analyzed other possi-
ble underlying mechanisms of 5-FU resistance, 
such as the modulation of 5-FU metabolism-
related proteins [45], MDR1 overexpression 
[46], epithelial-mesenchymal transition [30], or 
deregulation of apoptosis [47]; however, none 
of them were associated with the 5-FU resis-
tance of TE-5R cells (data not shown). As other 
anti-cancer drugs such as cisplatin and 
docetaxel were equally cytotoxic to TE-5R cells, 
the drug resistance of these cells might be lim-
ited to 5-FU.

A limitation of this study was that we estab-
lished only a single 5-FU-resistant cell line; 
however, further examination of this cell line 
will contribute to the development of a novel 
therapeutic strategy against 5-FU-resistant 
ESCC. 

Overall, we established unique 5-FU-resistant 
ESCC cells with DPD overexpression. Our find-
ings provide not only useful knowledge to 
explore the mechanism of 5-FU resistance, but 
also suggest the possibility of combination 
therapy with gimeracil targeting 5-FU-resistant 
refractory ESCC.
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