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ABSTRACT: We investigated how weather conditions and environmental
factors affect the spatiotemporal variability in Culex pipiens population using the
data collected from a surveillance program in Ontario, Canada, from 2005 to
2008. This study assessed the relative influences of temperature and precipitation
on the temporal patterns of mosquito abundance using harmonic analysis and
examined the associations with major landscape predictors, including land-use
type, population density, and elevation, on the spatial patterns of mosquito
abundance. The intensity of trapping efforts on the mosquito abundance at each
trap site was examined by comparing the spatial distribution of mosquito abun-
dance in relation to the spatial intensity of trapping efforts. The authors used a
mixed effects modeling approach to account for potential dependent structure in
mosquito surveillance data due to repeated observations at single trap sites and/or
similar mosquito abundance at nearby trap sites each week. The model fit was
improved by taking into account the nested structure of mosquito surveillance
data and incorporating the temporal correlation in random effects.

KEYWORDS: Mathematical and statistical techniques; Spectral analysis/
models/distribution; Models and modeling; Model comparison; Applications;
Disease; Geographic information systems (GIS); Land use

Global warming and wide fluctuation in weather contributed to the emergence of
West Nile virus (WNV) data across most of the United States of America by 2002
and further spread to Canada and Central America by 2004 (Epstein 2005; Hayes
et al. 2005; Komar and Clark 2006; DeGroote et al. 2014). As warmer summers and
shorter winters are more frequently encountered, blood feeding and reproductive
activity are accelerated (Soverow et al. 2009). It is important to understand how
weather affects WNV in order to inform control efforts. Many studies have shown
that the abundance of city-dwelling and bird-biting Culex pipiens mosquitoes is
strongly linked to the transmission of WNV (Epstein 2005; Bolling et al. 2009;
Kilpatrick and Pape 2013) and have suggested that identifying habitat associations
and spatiotemporal distributions of the vector species is a key to implement ef-
fective control strategies (Diuk-Wasser et al. 2006; Rosa et al. 2014).

Developing a robust spatiotemporal model that predicts mosquito population
dynamics is a challenging task because mosquito abundance is determined by
complex interactions among weather, land-use, and vegetation coverage as well as
the blood meal availability and intensity of mosquito control efforts. Our under-
standing of the effects of weather and environmental factors is limited, and the
availability of data at a fine spatial and temporal resolution is not guaranteed. Data
contaminated by measurement error may further hamper our efforts to improve the
understanding of mosquito feeding behavior and population dynamics. While it has
not drawn enough attention, ignoring the dependence structure underlying mosquito
surveillance data may lead to underestimation of standard errors in linear regression
models and invalid conclusions (Jones 2004; Zuur et al. 2009; Yoo et al. 2014).

In the current paper, we aimed to identify predictors of spatiotemporal variation
in the Culex pipiens population in Ontario, Canada, with the ultimate goal of
facilitating the monitoring efforts of WNV transmission risk. To achieve the goal,
we assessed the relative influence of temperature and precipitation on the temporal
patterns of mosquito abundance using harmonic analysis, which is a promising tool
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to characterize time series data in the frequency domain by effectively eliminating
noise in the original data (Moody and Johnson 2001). We also examined the rel-
ative influence of major landscape predictors, including land-use type, population
density, and elevation, on the spatial patterns of mosquito abundance. Last, we used
a mixed effects modeling approach to account for the nested structure of the data
due to the surveillance design and the presence of potential dependent structures in
random effects. To demonstrate the potential pitfalls by ignoring or misspecifying
the random effects and their structure in the surveillance-based WNV mosquito
abundance model, we proposed four statistical models and provided model com-
parison results.

Culex pipiens mosquitoes lay their eggs in water and require aquatic habitats for
their larva development (Horsfall 1955; Merritt et al. 1992). Rainfall is important in
creating and maintaining suitable larval habitats, but excess rainfall would flush the
drains and catch basins and thus strongly affects the abundance of adult mosquitoes
(Epstein 2001). Meanwhile, high temperatures increase the abundance of mosquitoes
and accelerate the development of WNV within the mosquitoes (Epstein 2001; Dohm
et al. 2002; Reisen et al. 2006; Soverow et al. 2009; Wang et al. 2011). Local envi-
ronmental conditions also increase the potential for mosquito breeding. In urban
structures, for example, stagnant rivers and streams are prevalent and artificial con-
tainers of water are numerous along with high numbers of catch basins, and these
provide habitats for Culex pipiens (Deichmeister and Telang 2011). Vegetation density
also contributed to mosquito abundance as trees and shrubs may offer resting habitats
to adult mosquitoes and roosting for birds (Chuang et al. 2011; Gardner et al. 2013).

Given that climatic constraints have significant effects on the transmission of WNV,
many researchers have examined and documented the factors associated with WNV
transmissions over the United States (Anderson et al. 2006; Gingrich et al. 2006; Ruiz
et al. 2010; Chuang et al. 2012). However, the spatial distribution and the study of
landscape influences on WNV transmission and mosquito abundance are still under
investigation. Based on a recent literature review, we summarized influential weather
conditions and environmental factors associated with Culex pipiens in Table 1.

3.1. Mosquito surveillance data

The greater Toronto area (GTA) is the largest urban agglomeration in Canada.
The study area consists of four health regions—Hamilton, Peel, city of Toronto,
and York—with a population size of 3 328 590 (2006 census) and diverse land uses.
Mosquito data were obtained from a surveillance program conducted by the On-
tario Ministry of Health and Long-Term Care, which collects adult female mos-
quitoes on a weekly basis. More specifically, the Ontario mosquito surveillance
system used U.S. Centers for Disease Control (CDC) light traps that attract host-
seeking mosquitoes via both CO, and ultraviolet light. During the mosquito season,
traps were placed at the beginning of the week for one night and were collected the
following morning and then submitted to a service provider who would sort,
identify, and test certain species. The total of 7812 records were collected over 4
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years between 2005 and 2008 from 341 trap sites. In the study region, the mosquito
season lasts about 17 weeks between late May and October (weeks 24—40).

3.2. Weather and environmental factors

Daily temperature and precipitation data were obtained from the Toronto weather
station (Toronto Pearson, Ontario). To match the temporal scale of mosquito data,
weekly weather variables, including average temperature and accumulated precipi-
tation, were computed and used in the analysis. Following Kilpatrick et al. (2008),
we considered 14°C the minimum temperature threshold for amplification of WNV
in Culex pipiens in the study area and calculated the fraction of the number of weeks
below the threshold temperature during the trap season (Fmint<i4c°) €ach year (see
Table 3). Based on the weekly average temperature, we created a variable of degree
week (DW) with a base temperature of 14°C (Reisen et al. 2006; Ruiz et al. 2010).

The land-use data of GTA have seven classes—waterbody, residential, commer-
cial, government and industry, open area, parks/recreational, and resources—which
were aggregated into four major classes: water surface, built-up area (residential,
commercial, government, and industry), open area, and vegetation area (parks/
recreational and resources). To analyze the association between land use and Culex
pipiens, we calculated the proportion of reclassified land-use type within 1-km-
radius buffer zones centered at mosquito trap sites. The size of buffer zone was less
than the maximum flight distance of Culex pipiens (Ciota et al. 2012; Diuk-Wasser
et al. 2006). We also included both elevation and normalized difference vegetation
index (NDVI) as environmental predictors, which were available at the spatial res-
olution of 250 m. Last, population data at the census tract level in 2006 were used to
create a dummy variable for urban and rural area. If a trap site was located in a census
tract whose population was above 1000 and a population density over 400 persons
per square kilometer, the value for the urban variable was 1, and it was 0 otherwise.
Covariates used in the study and their sources are summarized in Table 2.

For an exploratory data analysis, we used harmonic analysis and kernel density
estimation as a means of characterizing temporal and spatial patterns of mosquito
abundance. Both methods have been widely used to explore the majority of the
temporal and spatial variations because of their insensitivity to the inherent noise in
the data. The harmonic analysis is particularly efficient to capture a long-term trend
and short-term variations of data through the first few harmonic components,
whereas the kernel density method effectively describes the spatial intensity of
mosquito surveillance data than other sophisticated methods (O’Sullivan and Unwin
2003). We further developed spatiotemporal mosquito abundance models using a
mixed effect modeling framework to explicitly account for site-specific or week-
specific differentials in mosquito abundance.

4.1. Harmonic analysis

Harmonic analysis (also known as Fourier analysis) decomposes time series data,
such as the average number of Culex pipiens per trap night and temperature, in the
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Table 2. Description of covariates and data sources.

Variables Data Source
Weekly average temperature Daily weather conditions National Climate Data and
Weekly accumulated Information Archive,
precipitation Environment Canada
Built-up area Land use* Land Information Ontario

Water surface
Vegetation area

Open area
Elevation Canadian digital elevation data GeoBase
NDVI Moderate Resolution Imaging NASA
Spectroradiometer (MODIS) 16-day
vegetation index products
Urban indicator 2006 census Stats Canada

* Proportion of reclassified land-use type within a buffer of radius 1km centered at each trap site.

frequency domain to capture their seasonal changes and intra-annual trends (Legates
and Willmott 1990; Justino et al. 2011). As a result, the complex time-dependent
periodic phenomenon is characterized with an additive term and a series of sine
and cosine waves (Briggs and Henson 1995; Jakubauskas et al. 2001; Moody and
Johnson 2001). The additive term is the arithmetic mean value over the time
series, where each decomposed wave is defined by a unique amplitude and phase
value. The phase represents the offset between the origin and the peak of the
wave, whereas amplitude denotes half the height of the wave. Successive har-
monic terms are added to simulate the original time series curve. That is, the
variance of a time series is equal to the sum of the variances of all harmonic terms
and the percent of variance for each decomposed wave is calculated by dividing
the individual variance by the total variance (Jakubauskas et al. 2001; Davis
2002). Similar to principal component analysis, the majority of the variance can
often be explained by the first few components. The equation of harmonic
analysis can be written as

f(x)=co+ icncos(zﬂx—d)n), (D)
n=1 N

where c¢( is the arithmetic mean value of a time series, and ¢, and ¢, are the
amplitude and phase angle of the nth-order trigonometric, respectively. The length
of the time series is denoted by N, that is, 52 corresponding to the weekly sampling
rate in our study. Each order designates a decomposed wave with a unique cycle.
When n equals one, ¢; and ¢, are the amplitude and phase value of the first-order
trigonometric, and the decomposed wave is unimodal with only one cycle over the
time series. For example, the mean value of the harmonic of temperature denotes
the average temperature over the year, while the amplitude and the phase value of
the first-order harmonic indicates the variation and seasonal range of the temper-
ature and the time of the maximum temperature, respectively. Further details about
harmonic analysis can be found in Jakubauskas et al. (2001) and Moody and
Johnson (2001).
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4.2. Kernel density estimation

Kernel density estimation (KDE) is used to summarize spatial density of trap-
ping efforts and mosquito abundance. The spatial density of trap sites can be
calculated by placing the surface at each trap location and evaluating the distance
between the trap site and a reference point using a mathematical (kernel) function.
The kernel density value at that reference location is obtained by summing the
value for all the surfaces (Silverman 1986; Anderson 2009). The resulting surface
is typically smooth and continuous, although the level of smoothness is controlled
by the choice of the kernel bandwidth. Bandwidths that are too large are likely to
produce an overly smooth surface where density estimates are similar everywhere,
but those that are too small are likely to produce a surface that focuses only on
individual trap sites. As suggested by O’Sullivan and Unwin (2003), we have
chosen the bandwidth for KDE of mosquito trapping efforts and mosquito abun-
dance as the half of its maximum flying range of Culex pipiens, that is, 1 km (U.S.
Environmental Protection Agency 2004).

4.3. Statistical model development

We examined associations of weather and environmental conditions with spatio-
temporal distributions of Culex pipiens using the mean pooled mosquito abundance
per trap and per night, respectively. The effects of weather conditions on the mean
pooled mosquito abundance per trap night were assessed under the consideration of
weather variables up to five prior weeks. Correlations with the harmonic predictions of
weekly average temperature and precipitation were also calculated. Influential land-
scape variables were also identified by correlation analyses between the site-specific
mean abundance and multiple landscape variables, including the areal proportion of
the major land-use type around trap locations, NDVI, elevation, and the indicator
variable for an urban/rural area. Based on the correlation analyses and guided by a
stepwise linear regression, we selected influential weather and environmental variables
for a spatiotemporal WNV mosquito abundance model, which can be written as

Yij = Boij t B1 Xy t B2 X, (2)

where Y;; denotes the square root transformed mosquito data observed at the ith
trap site with coordinates s; = (x;, y;), i =1, ..., 341 and at the jth trap night with
ti,j=1, ..., 68. The time-indexed variables, including an indicator for the year of
observation and harmonic predictions of temperature and 5 weeks of accumulated
precipitation, are denoted as Xj;, and three landscape predictors, which consist of
the proportion of vegetation areas within the 1-km buffer zones, elevation, and the
proportion of built-up area in the urban setting, are denoted as Xo;.

As shown in the previous studies (Yoo 2013, 2014; Yoo et al. 2014), the vari-
ability in the mosquito abundance per trap and per night could be substantial. Thus,
mixed effects models are an efficient and effective means to account for site-
specific or trap night—specific differentials in mosquito abundance. We extended
the “fixed effects model” in Equation (2), referred to as model A, to mixed effects
models that shared the same covariates with model A but differed in terms of their
random effect specification and error structures.
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Table 3. Descriptive statistics for weekly Culex pipiens and weather conditions
during 2005 and 2008. Fyini<i14°c is the fraction of weeks with minimum temperature is
below 14°C during trap weeks (weeks 24-40).

Mosquito counts

Sites Trap nights Weather conditions

Year Total Max Mean Std dev Total Total Mean temperature Mean precipitation Fuint<iac

2005 12141 231 6.15 14.82 224 1818 20.06 2.69 0.24
2006 14523 418 7.73 2286 140 1879 20.06 2.69 0.18
2007 7470 113 3.82 10.10 141 1958 18.75 3.76 0.41
2008 23331 210 11.54 2284 145 2022 19.37 2.88 0.18

In the fixed effects model, the intercept B; was defined as a sum of an overall
mean mosquito abundance B, and purely random errors ¢&;. On the other hand,
random effects models (models B and C) take explicit account for the nested
structure of the dependent variable: multiple observations taken per trap night and
at each trap site, respectively. Models B and C do not assume any systematic
structure for their random effects, whereas model D in Equation (5) assumes that
the random effects for each trap site have a temporal correlation. The random
effects of models B, C, and D are summarized below as the combination of the
overall mosquito abundance S, across sites and trap nights, random effects for a
trap night u;, random effects for a trap v;, and within-group errors ¢;:

Boj=Bo+ui+e; ui~N©O,00), &~NQ,07), 3)
Boj=Bo + v+, v~N©,0,), & ~N©O,07), (4)
Boij = Bo +vj + &5 v ~NI0,0i(h)], & ~N(O,07). (5)

We further assumed that the covariance structure of random effects is a function of
the lag distance h between any pair of trap nights, which takes a form of an
exponential function o(h) = b exp(—h/r). The nugget effects and range parame-
ters, denoted as b and r, were estimated from observed data. The unit of the range
parameter r for model D is weeks.

5.1. Spatiotemporal distribution of Culex pipiens abundance

Total of 23 331 adult females per trap night in 2008 tripled the previous year’s
record (7470 counts) despite similar trap nights—1958 records in 2007 and 2022
records in 2008. As summarized in Table 3, trap nights for the 4 years were
comparable, although there was a change in trapping strategy over the years. That
is, the number of trapping frequency at each trap site increased over the 4 years but
the total number of sites employed decreased since 2006. The highest record of
females per trap night was on week 27 of 2006 (a total of 418), and the second
highest was on week 33 of 2008 (210).
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Figure 1. Spatiotemporal pattern of mosquito abundance data: (a) spatial average
of female mosquitoes per trap night, (b) spatial averages of female
mosquitoes per trap night by week, (c) temporal average of female
mosquitoes per trap site, and (d) the number of trap nights per site.

To characterize the temporal distribution of female mosquito abundance, we
calculated the mean pooled mosquito abundance per trap night. The mean pooled
abundance of Culex pipiens per trap night ranges between 0.20 and 24.67 with an
average of 7.10. Large zero values are also shown in Figure la, and the weekly
variation in mosquito abundance is well summarized by the box plot in Figure 1b.
Over the 4 years, mosquito abundance during week 29-33 was higher than the
average abundance (7.10) with yearly variation: a total of 11 weeks were above the
4-yr average in 2008, but only 3 weeks later in the season (week 31 to 33) were
above the average in 2007. We also noticed that the high mosquito abundance
season lasted longer in 2008 (up to week 36), whereas the typical peak season
ended at week 33 in the other 3 years.

It is necessary to understand the effects of different trapping efforts per site in
quantifying site-specific mosquito abundance. Only 6 trap sites out of a total of 341
sites were consistently operated during the 4 years of the study period. The average
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Figure 2. Kerel density estimation of the number of trap weeks and mosquito population
in the year of (a),(e) 2005; (b),(f) 2006; (c),(g) 2007; and (d),(h) 2008.

number of trap nights at each site was 23 with a standard deviation of 23.14 over 4
years. As shown in the empirical cumulated density function of trapping frequency
per site in Figure 1d, half of the sites had less than 16 trap nights and 75% of sites
had 47 trap nights. Similar to the mean pooled mosquito abundance per trap night
summarized in Figure la, we calculated the mean pooled mosquito abundance at
each site by dividing the total number of Culex pipiens captured at each trap site by
the total number of trap nights. The mean pooled mosquito abundance may be quite
different from the total number of mosquitoes captured at each site due to the
differences in trap nights at each site. The mean pooled mosquito abundance at
each trap site form a positively skewed distribution that ranges between 0 and
51.31 with an average of 8.00 and a standard deviation of 9.61 [see Figure 1c].
The spatial density of trap sites operated each year was calculated using KDE, and
the results are shown in Figures 2a—d. A total of 224 trap sites were operated in 2005,
mostly concentrated in the city of Toronto [Figure 2a], but in 2006 half of the trap sites
were closed. In both years of 2007 and 2008, the spatial distribution of trap sites was
rather evenly distributed across the study area. Meanwhile mosquito abundance per
year has been shifted from the city of Toronto in 2005 to the region of Hamilton and
Peel from 2006 to 2008. Particularly, there was substantial increase in mosquito
abundance along the coastal area of the Lake Ontario since 2006. The spatial distri-
bution of mosquito abundance per year is presented in Figures 2e—h. Mosquito in-
tensity has increased in Hamilton since 2006 and expanded into a larger area without
substantial changes in trap sites. The visual inspection of two maps in Figures 2¢ and
2g suggested that the mosquito abundance of the city of Toronto in 2007 was lower
than any other region in the study area despite the intense trapping efforts made. The
association of trapping efforts with mosquito abundance at each trap site was further
examined by calculating correlation between the total number of observation weeks
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Table 4. Amplitude and phase values for the first harmonics of the discrete Fourier
transform for the time series variables.

2005 2006 2007 2008

Mosquito abundance Mean 5.53 8.08 4.11 11.58
Amplitude I 5.86 6.52 3.30 9.85

Phase I 30.77 29.95 30.23 31.35

Temperature Mean 10.57 10.56 8.34 9.18
Amplitude I 11.66 11.66 13.26 12.75

Phase 1 29.32 29.46 29.61 30.16

Precipitation Mean 12.60 12.61 13.37 11.49
Amplitude I 2.33 2.39 5.20 4.16

Phase 1 3791 37.28 29.85 27.90

and the trap site—specific average mosquito counts per year. We found little to no
associations between them as suggested by the low correlation coefficients for 2005 to
2008 as —0.06, —0.05, —0.15, and 0.03, respectively.

5.2. Harmonic analysis

We performed a harmonic analysis to characterize the seasonal pattern of mean
pooled mosquito abundance per trap night and weather variables such as weekly
average temperature and 5-week precipitation accumulation. Harmonic predictions
of the three temporal variables were calculated each year, and the results are
summarized in Table 4 and Figure 3. The variability in the mosquito abundance and
average temperature was mostly captured by the first harmonic, which had a much
larger amplitude value than the successive components. The mean of the first
harmonic for mosquito abundance and average temperature each year in Table 4
matched with their yearly variability summarized in Table 3.

The summary statistics of original weather variables in Table 3 indicated that the
annual average temperature of 2007 and 2008 was slightly lower than that of 2005
and 2006, whereas the fraction of weeks with minimum temperature below 14°C was
smallest in 2008 (0.18) and largest in 2007 (0.41). Harmonic analysis captured this
yearly variability as well as the seasonality when the peak of temperature occurred;
the peak occurred at week 29 in the first 3 years, as shown in the phase I values of
2005 to 2007, but hot summer lasted longer in 2008, as evidenced in the larger phase
I value 30. We selected only the first three harmonics to simulate the original time
series because most variability was explained for both variables.

Unlike the first two variables, it was challenging to capture the intrinsic trend of
precipitation by the harmonic analysis, and thus we incorporated more harmonic
terms to explain the temporal variability in precipitation. Unusually large precip-
itation in 2007 (447 mm) was summarized by the harmonic mean 13.37 mm. The
seasonality summarized by phase I values was substantially different in accumu-
lated precipitation, as that of 2008 was earlier in week 28 than other years. Figure 3
illustrated the harmonic predictions of the three variables each year.

5.3. Correlation analysis and model development

For a correlation analysis with weather conditions, we considered the fol-
lowing five variables—weekly average temperature, accumulated precipitation,
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Figure 3. Harmonic predictions of weekly mosquito abundance, weekly average
temperature, and accumulated precipitation (5 weeks prior to observa-
tion) in the year of (a) 2005, (b) 2006, (c) 2007, and (d) 2008.

degree weeks based on 14°C (DW'#C), and the harmonic predictions of tem-
perature and accumulated precipitation—across multiple lags. The results sum-
marized in Table 5 clearly show the delay effects of weather conditions, particularly
precipitation, on the mosquito population abundance. The temperature-derived
variables—average temperature, DW, and the harmonic predictions of average
temperature—showed relatively strong correlation with mosquito abundance, while
the harmonic predictions of temperature were the strongest at 0.71. The correlation
of mosquito abundance with precipitation variables was comparable at 0.43 for the
harmonic predictions of accumulated precipitation and 0.41 for the original variable.

We also examined the associations of trap site—specific mean pooled mosquito
abundance with environmental factors around the trap sites, such as elevation,
NDVI, population density, and the proportion of land use within the spatial buffer
centered at each trap site. We found that mosquito abundance was negatively
correlated with the elevation of the trap site (—0.24) and the proportion of open
space within 1-km buffer around trap sites (—0.20) but positively correlated with
the proportion of vegetation areas (0.19) and urban area (0.15). The correlation
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Table 5. Correlation analysis with weather variables at multiple lags.

Lag O Lag 1 Lag 2 Lag 3 Lag 4 Lag 5
Average temperature 0.61* 0.59* 0.56* 0.40% 0.26 0.17
Accumulated DW'4C 0.62% 0.66" 0.67* 0.68* 0.64" 0.59*
Average precipitation 0.08 0.25° 0.32¢ 0.38¢ 0.40° 0.41*
Harmonic temperature 0.69* 0.71* 0.65* 0.49* 0.28" 0.11
Harmonic precipitation 0.42% 0.43* 0.33° 0.15 -0.09 —0.33¢
@ p<0.001.
® 5 <0.05.
¢ p<0.0l.

with NDVI and the proportion of open waterbody surrounding trap sites was weak
and negative as —0.08 and —0.07, respectively.

Based on the exploratory analysis of spatially and temporally marginal mosquito
abundance, we selected the variables with the most influential effects on the spatial
and temporal variability in mosquito abundance per trap per night. Some variables,
such as average temperature, NDVI, and proportion of open space in affinity of trap
sites, were correlated with the mosquito abundance, but they were not included in
the final model because of their collinearity with other variables. The covariates of
the spatiotemporal WNV mosquito prediction model in Equation (2) included an
indicator variable for the year of observation, two weather variables (harmonic
predictions of average temperature of coincident week and accumulated precipi-
tation up to prior 5 weeks), and three environmental variables (elevation, the
proportion of vegetation areas within the 1-km buffer zone, and the proportion of
built-up area in urban setting).

5.4. Model fit and validation

Table 6 summarizes the four WNV mosquito abundance models fit by restricted
maximum likelihood (REML). The two weather variables and three landscape
predictors were statistically significant across all four models. The yearly variation
in mosquito abundance was reflected in the sign of model coefficient estimates:
increased mosquito abundance in the year of 2006 and 2008 matched with the
positive coefficient estimates for the corresponding dummy variables. Model co-
efficient estimates of the fixed effects model (model A) confirmed the results of
correlation analysis showing that the temperature of the same week of mosquito
data collection and accumulated precipitation are important predictors of mosquito
abundance. The negative association of mosquito abundance with the elevation
(—0.08) of trap sites was also statistically significant. The two land-use types
surrounding trap sites include vegetation areas, such as parks and forest, and built-
up areas in the urban setting.

We assessed the residuals of the model A in terms of its normality and temporal
and spatial correlation structure. Figure 4a shows the distribution of residuals
overlaid with normal density with the same mean and variance. The long tail in
high values and the absence of low values of the residuals may violate a strict
normality assumption, but the sample size (7677) is large enough to alleviate the
problem. Figures 4b and 4c show the variogram and autocorrelation (ACF) plot of
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Table 6. Results of statistical model estimates. 1(.) denotes the indicator (dummy)
variable, and P(.) denotes the proportion of the land-use type.

Model A Model B Model C Model D
Fixed effects
(Intercept) —0.18(0.02)* —0.19(0.04)* —0.14(0.04)* —0.22(0.04)*
1(2006) 0.13(0.03)* 0.14(0.04)* 0.18(0.03)* 0.20(0.05)*
1(2007) —0.07(0.03)>  —0.09(0.03)°  —0.07(0.03)>  —0.03(0.05)
1(2008) 0.37(0.04)* 0.41(0.05)* 0.32(0.04)* 0.41(0.06)*
Harmonic temperature 0.26(0.01)* 0.23(0.02)* 0.25(0.01)* 0.28(0.01)*
Harmonic precipitation 0.19(0.01)* 0.14(0.02)* 0.20(0.01)* 0.18(0.01)*
Elevation —0.08(0.01)* —0.08(0.01)* —0.09(0.04)° —0.07(0.03)°
P(Green) 0.12(0.01)* 0.12(0.01)* 0.14(0.04)* 0.11(0.03)*
P(Built up) X I(Urban) 0.08(0.02) 0.08(0.02)* 0.11(0.05)° 0.09(0.04)"
Random effects
Level 2 6'3‘1 G2° é'gf

NaN 0.19? 0.43% 0.18?

Level 1
6?2 0.912 0.90% 0.832 0.842
b, 7 (0.45, 6.76)
AIC 20761.17 20668.39 19742.54 17021.34
Bayesian Information Criterion (BIC) 20830.79 20744.98 19819.13 17111.62
Log likelihood —10370.59 —10323.20 —9860.27 —8497.67
4 p<0.001.
b p<0.05.
¢ p<0.01.

4 Trap week effects.
¢ Trap site effects.
f Trap site effects with temporal correlation.

the residuals, respectively, which indicate the presence of temporal autocorrelation
but not strong spatial dependence in residuals.

The two unstructured random effects models (models B and C) improved models
fit as shown in the smaller Akaike information criterion (AIC). Compared with the
AIC of fixed effects model, the AIC decreased (20 668.39) when the differentials of
mosquito abundance for trap nights in model B were taken into account and further
decreased (19 742.54) when the random effects for trap sites were considered in
model C. When the two random effects models (models B and C) were compared
using a likelihood ratio test, however, the improvement of model C with the smaller
AIC than model B was not statistically significant.

We also examined the correlation structure of the two random effects models: for
the spatial autocorrelation in random effects at each week in model B and the
temporal autocorrelation of random effects at each trap site in model C. The em-
pirical variograms of random effects were calculated for both models, and the
results are shown in Figures 4d and 4e. Figure 4d did not reveal any systematic
pattern in random effects of model B, whereas Figure 4e clearly indicated the
presence of temporal autocorrelation of model C.

For modeling the temporal autocorrelation structure for the random effects in
model D, we considered both an autoregressive model of order 6 and an expo-
nential correlation function in Equation (5). Both correlation structure models
improved the model fit based on AIC values—17 051.75 for the AR(6) model and
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Figure 4. (a),(b),(c) Histogram, variogram, and autocorrelation function (ACF) of
Model A residuals, respectively. (d) The variogram of random effects of
Model B. (e) The ACF of random effects of Model C.

17021.34 for the exponential model, which were lower than those of other three
models, but we imposed an exponential correlation function for the temporal
correlation structure for the random effects in model D due to the model parsimony.
The parameters for range and nugget effects were estimated as 6.70 and 0.45,
respectively (see Table 6). The random effects models did not have a direct impact
on the fixed effects estimates except for model B where the explicit consideration
of trap nights affected both weather variables—harmonic prediction of temperature
dropped to 0.23 from 0.26 and precipitation to 0.14 from 0.19. However, random
effects models affected the quality of the fixed effects through the standard errors
of the slopes for the fixed effects—standard errors of all predictors in model D are
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Figure 5. Distribution of model prediction errors; (a) pooled model prediction
errors vs reference values, (b) spatial average of prediction errors per
trap site, and (c) temporal average of prediction errors per trap night. The
large circles with bright colors (yellow, orange, and magenta in order) in
the regions of Peel and Hamilton indicate that large prediction errors and
the high mosquito abundance per trap nights in 2009 were concentrated
in these regions. The smaller circles with dark colors (black and blue)
represent the smaller prediction errors

greater than or equal to those of model A. In addition, the within-group error
estimates 6 decreased in model D as the variation in mosquito abundance not
modeled in terms of fixed effects was incorporated in mixed effects models.
Last, we evaluated model prediction performance with mosquito surveillance data
collected from 110 sites between week 24 and 40 in 2009. We used all four models to
predict female mosquito abundance at 1597 trap nights. The predicted mosquito
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Figure 6. Sensitivity of model predictability to extreme values.

abundance was compared with the observation and the sum of absolute values of
prediction errors, that is, the difference between the predicted abundance and the
observed mosquito abundance was calculated. Prediction errors were larger for the
higher values of validation data across all four models. The results are illustrated in
Figure 5a, where the pooled model prediction errors matched for corresponding
reference values. The spatial and temporal patterns of prediction errors are also
illustrated in Figures 5b and 5c, respectively. The circle symbols in Figure 5b rep-
resent the magnitude of prediction errors at the locations of 110 trap sites. The large
circles in the regions of Peel and Hamilton indicate that large prediction errors and
the high mosquito abundance per trap nights in 2009 were concentrated in these
regions. The temporal distribution of prediction errors also indicates pooled mean
mosquito abundance per trap night in 2009, where unusually high abundance was
observed at the weeks of 27, 28, and 34. We further conducted a sensitivity analysis
of model validation by taking a subset of validation data. The four model prediction
performance was evaluated using the 50th to 100th percentile of 2009 mosquito
abundance data. The result is summarized in Figure 6 where the sum of prediction
errors of the four models is plotted over the percentile of data used. The prediction
accuracy of model C is the equal or superior to that of model D above the 94th
percentile, whereas model D consistently performs best up to the 94th percentile. In
summary, model C is better than model D in terms of predicting extremely high
values, and model B yielded the largest prediction error across all percentiles.

We examined the spatial and temporal distribution of mosquito surveillance data
collected from Ontario, Canada, between 2005 and 2008. Our primary focus was
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on Culex pipiens, which is known for their preference of urban settings for their
habitats. Statistical analyses and mapping revealed strong and statistically signif-
icant associations with weather conditions and environmental factors. They in-
cluded the average temperature, accumulated rainfalls 5 weeks prior to the data
collection, elevation, and land-use type such as built-up areas and vegetation areas.
We identified the presence of the temporal correlation in mosquito surveillance
data and incorporated this in the statistical model.

The warmest spring and summer in 2008 and the coldest summer accompanied
with large rainfall in 2007 attributed to the unusually high and low mosquito
abundance of each year. Apparently this hotter and longer summer in 2008 con-
tributed to the elongated breeding season of Culex pipiens and, consequently, re-
sulted in the high mosquito abundance. It has also been noted that temperature and
photoperiod can have an effect on Culex pipiens host seeking and induction of
diapause behavior (Eldridge 1968; Sanburg and Larsen 1973; Madder et al. 1983).
These higher temperatures experienced in 2008 may account for an elongated
season. Harmonic analysis facilitated the identification of a coherent seasonal
variability of weather conditions and weekly mosquito abundance as evidenced in
the correlation analysis; the harmonic predictions of temperature and precipitation
have stronger correlations (0.71 and 0.43) with the mean pooled mosquito abun-
dance per trap night than original weather variables (0.61 and 0.41). By decom-
posing the time series data into different harmonics, we were able to characterize
the variability in each variable over the year and detected similarities in amplitude
between mosquito abundance and temperature. We also identified the timing of the
peak in female adult mosquito adults in relation to temperature and precipitation
from the phase values. Visual comparisons of harmonic predictions particularly
improved our understanding of the adult mosquito population dynamics with re-
spect to weather conditions in various weather conditions as shown in 2007 and
2008. Our findings are consistent with previous research (Trawinski and MacKay
2008; Soverow et al. 2009; Ruiz et al. 2010) that weekly variation in the mosquito
abundance is strongly and positively correlated with coincident and antecedent
measure of local climate.

We compared the spatial distribution of mosquito abundance in relation to the
spatial intensity of trapping efforts each year. The influence of mosquito surveil-
lance intensity on the spatial patterns of mosquito abundance was visually and
statistically investigated using the KDE method and correlation analysis. The re-
sults suggested that mosquito abundance was not necessarily induced from intense
surveillance efforts. Except the year 2005 when high mosquito surveillance efforts
were concentrated on the city of Toronto, the relationship was not found in the
other 3 years. We also found that high mosquito abundance areas shifted from the
city of Toronto to other neighboring regions, including the border region of Peel
and the region of Hamilton, in the following years. Further spatial analysis with
detailed environmental data is needed.

To assess the effects of weather and landscape conditions on mosquito abun-
dance under the consideration of the nested structure of data, we proposed mixed
effects models with correlated structure. The consideration of random effects for
trap sites or trap nights improved the model fit, but it did not substantially affect
fixed effects estimates. Empirical variogram analysis for the random effects
(models B and C) revealed the presence of strong temporal correlation in model C.
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The improved model fit result (the smallest AIC) of model D allowed us to draw a
conclusion that a site-specific random effects model with temporal autocorrelation
may be the optimal framework for the WNV mosquito surveillance data—driven
mosquito abundance model. The landscape variables that established statistically
significant associations across all four models include elevation and land-use patterns
surrounding trap sites, such as vegetation areas and built-up areas. The negative
correlation with elevation might be due to the habitat availability of Culex pipiens at
higher elevation—the relative scarcity of catch basins due to the better drainage in
high elevation. NDVI was not a strong predictor of mosquito abundance unlike other
studies (Diuk-Wasser et al. 2006; Bisanzio et al. 2011), although we found the
affinity of Culex pipiens to urban structures characterized by an urban indicator
variable and their preference to built-up areas as well as green areas for their habitats.

Our findings have multiple implications for better understanding of WNV
mosquito abundance and potential risk model development in the study region.
First, we found a high correlation with weather variables, which provides the
opportunity to forecast Culex pipiens abundance in the study region and a ca-
pability to guide intervention efforts at local and state levels. However, our results
are based on the assumption that weather conditions are homogeneous and uni-
form across study areas, and the generalization of our findings would fail to
capture dynamic interactions between the Culex pipiens life cycle and environ-
mental variability over time. Chuang et al. (2012) demonstrated the usefulness of
the satellite remote sensing data—derived environmental metrics as spatiotem-
poral predictors of mosquito abundance, although the availability and com-
pleteness of the data depends on sparse networks and resource availability. On the
other hand, the harmonic analysis used in this paper could be a promising means
of characterizing seasonal variability and establishing associations if such re-
motely sensed data are available for multiple time instants. In addition, we
demonstrated that intense trapping efforts have not always been placed at the
areas with high mosquito abundance through the retrospective analysis of two
spatial density maps—mosquito abundance and trapping efforts. Future mosquito
abundance is hard to predict based only on past mosquito surveillance data, but
focused analyses on the areas with high mosquito abundance might guide optimal
surveillance design in epidemiological studies, which are typically costly and
labor intensive. Last, we demonstrated that the proposed site-specific random
effects model with temporal autocorrelation addressed the nature of mosquito
surveillance data and thus have the potential to improve our understanding of
dynamic changes in the mosquito population.
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