
 

 

Introduction 
 
In 2008, it has been recognized that more than 
1 million of Americans and more than 10 million 
people worldwide were expected to be diag-
nosed with cancer [1]; however, in 2010 it was 
expected that the average percentage of people 
who suffer from some sorts of cancer would be 
31% (according to the recent U.N. organized 
surveys performed in multiple countries). This 
considerable increase in cancer incidence may 
relate to the fact that determination of the can-
cer is strongly dependent upon the develop-
ment of new diagnostic technologies. However, 
what is of great importance is that cancers are 
going to be a significant cause of human death 
in near future. Thus, intense scientific research 
was focused on the diagnosis and treatment of 
cancer.  
 
Due to the dysregulated cell growth in the hu-
man body, large groups of different diseases 
occurred which became recognized as cancer. 
The uncontrollable cell-cycles not only can form 

malignant tumors but also can be spread to 
other parts of the body through the lymphatic 
system or bloodstream, which is called 
“metastasis”. Although there are numerous 
available anti-cancer drugs, the main problems 
currently associated with systemic drug admini-
stration include the general systemic distribu-
tion of therapeutic drugs, the lack of drug speci-
ficity towards a pathological site, the necessity 
of a large dose to achieve high local concentra-
tion, non-specific toxicity and other adverse side 
effects [2]. Therefore, using modern drug deliv-
ery systems are essential for high-yield cancer 
therapy.  
 
The term “drug delivery” refers to the pharma-
ceutical agents of interest which are entrapped 
within, or attached to, an organic polymer matrix 
or inorganic particles, and in that case, drug 
safety and efficacy can be greatly improved and 
new targeted therapies are possible [2]. The 
strategy for drug delivery can be approached by 
many methods: (1) drug modification by chemi-
cal means [3, 4]; (2) drug encapsulated in vesi-
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cles [5-7] or inorganic hollow nanoshells [8-10]; 
(3) controlled release system such as polymer-
based [11-13] and hydrogel-based vectors [14-
16], and (4) small-scale integrated systems 
such as microchip systems [17-20]. The delivery 
routes are also an important issue for systemic 
delivery of drugs due to the systemic circulation. 
Intravenous [21, 22], intraperitoneal [23], pul-
monary [24], transdermal [25-27], nose [28, 
29], vaginal [30] and eye [31, 32] routes of ad-
ministration are the approaches designed to 
improve the selectivity of chemotherapy. 
 
Although there are significant improvements in 
targeted drug delivery systems, there is a great 
deal of commonly pursued, desirable qualities 
for such efficient drug delivery devices, which 
are not necessarily guidelines. The crucial areas 
of potential that powerful drug delivery systems 
should have are: (1) long circulation (i.e. long 
half-life), (2) high levels of bioavailability and 
specific targeting, (3) intracellular/organelle 
delivery, (4) stimuli responsiveness (i.e. effi-
cacy), (5) reporting/imaging, and (6) biodegra-
dation. 
 
In recent years, the fabrication of nanoparticles 
and exploration of their unusual properties have 
attracted the attention of physicists, chemists, 
biologists and engineers. Interest in nanoparti-
cles arises from the fact that the mechanical, 
chemical, electrical, optical, magnetic, electro-
optical and magneto-optical properties of these 
particles are different from their bulk properties 
and depend on the particle size. Entrance of 
nanoparticles in the medical field caused signifi-
cant hopes for early diagnosis and treatment of 
catastrophic diseases such as cancer. Nanopar-
ticles are typically referred to as microscopic 
particles that are between 1 nm and 100 nm in 
size. Using nanoparticles, delivery systems have 
the potential to target drugs to specific sites of 
the body or precisely control drug release rates 
for prolonged times according to body reaction 
of chemicals microenvironment [2]. More spe-
cifically, nanoparticles as drug carriers in tar-
geted delivery systems in cancer therapies can 
provide desired and precise penetration of 
therapeutic and diagnostic substances within 
for example tumor sites/tissues/cells while 
their corresponding side effects are much lower 
in comparison to conventional cancer therapies 
[2]. 
 
Nanoparticles, as smart drug delivery systems, 

have strong capability to overcome numerous 
challenges that still exist including the targeting 
of drugs to specific cells, the creation of novel 
vaccine delivery approaches, and the develop-
ment of cell-based delivery systems. Nanoscale 
drug delivery devices that are stimuli responsive 
respond dynamically to changes in the environ-
ment. These stimuli could be in the form of 
changes in temperature [33], light [16], pH [15, 
34, 35], ultrasound [35-37], or magnetic fields 
[38, 39]. Disease processes which upset ho-
meostasis can lead to environmental changes 
that can be exploited by stimuli-responsive 
therapeutics. Thus, in recent years, significant 
efforts have been devoted to develop nanotech-
nology for drug delivery since it offers a suitable 
means of delivering small molecular weight 
drugs [40], as well as macromolecules such as 
proteins, peptides [41] or genes [42, 43] by 
either localized or targeted delivery to the tissue 
of interest. It is also worthwhile to mention that 
nanoparticles may have promise for biomolecu-
lar imaging [44]; thus, another potentially impor-
tant facet of nanoparticles and its application in 
cancer research could be its capability to probe 
underlying mechanisms in cancer.  
 
In order to increase the efficiency of drug deliv-
ery, magnetic nanoparticles are defined as a 
promising candidate not only due to capacity of 
antibodies to attach to their surfaces, but also 
due to achieve targeting ability by using external 
magnetic guidance [45, 46]. Among different 
types of magnetic particles, superparamagnetic 
iron oxide nanoparticles (SPIONs), with a mean 
diameter as low as 10 nm and superior mag-
netic properties, have proven to be among the 
most capable candidates [47]. In the field of 
drug delivery, SPIONs particles are considered 
as small, thermally agitated magnets in carrier 
liquids, which are called “ferrofluids”. A distin-
guishing feature of SPIONs for drug delivery is 
their applicability for both alternatives (i.e. mag-
netic properties and antibody attachment) and 
consequently developing a targeting capability 
[2]. Superparamagnetism essentially acts as an 
activation mechanism because once the exter-
nal magnetic field is removed, the magnetiza-
tion disappears, and thus the agglomeration, 
and hence the possible embolization of the cap-
illary vessels can be avoided [48].  
 
SPIONs also have capability to be used as multi-
functional agents [49-51]. The surfaces of SPI-
ONs are engineered to have several simultane-
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ous biomedical-related functions such as drug 
carrier properties, magnetic resonance imaging 
(MRI) contrast agents, and local heat induction 
(hyperthermia) capacity. More recently, a field 
called “molecular imaging” has appeared, this 
technique allows the in vivo visualization of mo-
lecular events occurring at the cellular level and 
needs the development of high affinity ligands 
and their grafting to SPIONs [44]. SPIONs are 
also good substrates for bioconjugation, they 
are used as reporters for many physiologic proc-
esses and have a lot of clinical applications 
such as liver and spleen imaging, inflammation, 
apoptosis, and cardiovascular disease [45, 52, 
53]. 
 
SPIONs can be accumulated in a biological site 
by passive or active targeting mechanism. In 
passive targeting, contrast agents are concen-
trated in the phagocytic cells (e.g. Kupffer’s 
cells and macrophages) and corresponding or-
gans (e.g. liver, spleen, and lymph nodes) that 
are responsible for clearance from the body. For 
example, SPIONs coated with dextran, carboxy-
dextran have been used for passive targeting 
[54-56]. In active targeting, contrast agents 
need conjugation to a specific ligand to target a 
site of interest. Typical ligands include antibod-
ies, peptides, sugars, aptamers, etc. which are 
molecules that can be linked to SPIONs cova-
lently or non-covalently [52, 57, 58]. 
 
For biological applications, nanoparticles must 
be highly stable in aqueous ionic solutions at 
physiological pH. Vectors grafted on their sur-
face must be able to recognize the target cells 
or tissues. Particles must be non-toxic and re-
main in the circulation for a sufficient amount of 
time to allow targets to be reached. Intensive 
research are currently undertaken to develop 
specific contrast agents in targeted cancer im-
aging. For example, αvβ3 integrin targeted SPI-
ONs have been used for the specific MRI detec-

tion of small regions of angiogenesis associated 
with solid tumors [59, 60].  
 
In summary, SPIONs can be used as theranosis 
agent in the context of cancer, in other words it 
can serve as both a diagnostic and therapeutic 
agent. In this review, the main protocols for the 
grafting of vectors to SPIONs are reported and 
some applications are described. In addition, we 
discuss various in vitro and in vivo studies using 
surface engineered SPIONs for diagnosis and 
treatment of cancer diseases.  
 
Synthesis and stabilization of SPIONs 
 
Several methods for chemical synthesis of SPI-
ONs have been described. The most commonly 
used are summarized in Table 1. Amongst these 
methods, co-precipitation of Fe2+ and Fe3+ ions 
in a basic aqueous media (e.g. NaOH or NH4OH 
solutions) is the simplest way, but usually 
nanoparticles are polydispersed and poorly crys-
tallized [48]. To avoid these disadvantages, 
thermal decomposition methods have been 
employed to produce SPIONs with monodisper-
sity and uniform crystalline [61]. Subsequently, 
the hydrophobic iron oxide nanoparticles can be 
coated with phospholipids, silica, or amphiphilic 
polymers as shells to display good solubility and 
biocompatibility in vivo (Figure 1).  
 
SPIONs can be coated in situ during the nuclea-
tion and growth of the magnetic core (this simul-
taneous process is often referred to as the “one
-pot” method) or after the synthesis following 
the final application. Monomeric organic stabi-
lizers, polymers and inorganic coatings can also 
be used to stabilize nanoparticles in aqueous 
solutions [46, 69]. Organic surfactants are fre-
quently used for the stabilization and coating of 
magnetic nanoparticles. Fatty acids can stabi-
lize the aqueous fluids by the formation of a 
surface bilayer with a chemisorbed fatty acid 

Table 1. Principal preparation methods of SPIONs 
Synthetic method Advantages Disadvantages References 

Coprecipitation Rapid synthesis with high yield Problem of oxidation and aggregation [48, 62] 

Hydrothermal reac-
tions 

Narrow size distribution and good 
control, scalable 

Long reaction times [63, 64] 

High temperature 
decomposition 

Good control of size and shape, 
High yield 

Furthers steps needed to obtain water 
stable suspension 

[61, 65, 66] 

microemulsion Control of particle size Poor yield and large amounts of solvent 
required, excess of surfactant to elimi-
nate 

[51, 67, 68] 
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primary layer and an interpenetrating second 
layer, the latter is physisorbed onto the primary 
layer with the hydrophilic head-groups pointing 
outwards [70]. 
 
Coating agents which are physically adsorbed 
(by electrostatic interactions or hydrogen bind-
ing) show limited stability in comparison to coat-
ing agents which are chemically adsorbed. The 
stability of the coating grafting also depends on 
the quantity of the chemical interaction that 
each molecule or macromolecule can establish 
with the SPION surface. The most common coat-
ings for biocompatible iron oxide suspensions 
are polymers [71] such as derivatives of dextran 
[72, 73] (dextran, carboxymethylated dextran, 
carboxydextran), arabinogalactan, glycosami-
noglycan, starch, polyethyleneglycol, siloxane, 
sulphonated styrene-divinylbenzene, poly(lactic 
acid), poly(ε-caprolactone) or polyalkyl-
cyanoacrylate [74-76].  
 
Due to their good solubility in water and biocom-
patibility, polysaccharides are among the most 

commonly used coating for the 
stabilisation of SPIONs. Dextran
-SPION can be prepared using 
co-precipitation method with in 
situ coating by polysaccharide
[77]. Molday and MacKenzie 
used ferrous and ferric chloride 
under basic condition in the 
presence of dextran. Dextran-
coated SPIONs with surface 
functionalities were also devel-
oped for specific applications: 
carboxydextran for cell labeling 
[78] or aminodextran for graft-
ing with DNA [79]. The chemical 
modifications of dextran have 
showed that reduction of termi-
nal sugars can have a signifi-
cant effect on particle size and 
coating stability [80]. Particles 
prepared with carboxydextran 
yielded a more stable coating 
[71, 81]. Considering the dex-
tran-coated particles, no evi-
dence of strong chemical ad-
sorption was observed by FTIR 
(Fourier transform infrared 
spectroscopy) and SSIMS 
(statistic secondary ion mass 
spectra) analysis [82]. The na-
ture of the interactions between 
the dextran and the SPION sur-

face and its evolution with temperature has 
been investigated by thermogravimetric and 
differential thermal analyses and by coupling 
these data with FTIR analysis [83]. Noteworthy, 
these dextran-coated iron oxide particles do not 
show any toxicity [84-87].  
 
Other surface-modifying agents have been ex-
plored to increase stability of magnetic nanopar-
ticles. In order to obtain a strong conjugation of 
dextran to the maghemite surface, Mornet et al. 
[88] have described a synthetic route consisting 
of surface modification of SPIONs by silanation 
of the iron core with aminopropylsilane groups 
and covalent conjugation with partially oxidized 
dextran and subsequent reduction of the shiff 
base [89]. 
 
The bonding nature of organosilanes to iron 
surfaces can be analyzed by FTIR and secon-
dary ion mass spectroscopy (ToF-SIMS). The Si-
O-Fe bond is commonly described as covalent 
[90]. Such systems are ordered molecular as-
semblies formed by the adsorption of an active 

Figure 1. Scheme showing representative groups that can be used to stabi-
lize the SPIONs.  
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molecule (e.g. siloxane, carboxylates, thiolates, 
and phosphate) on a solid surface (as iron ox-
ide) with different terminal groups (usually -OH, -
COOH, and -NH) [91, 92]. This coating can pre-
sent terminal groups allowing further function-
alization by chemical reactions. These function-
alities are also frequently incorporated in vari-
ous polymers where attachment of species on 
the surface is desired. The stability depends 
basically on the affinity of the active molecule 
for the substrate (solid surface), pH and ionic 
strength of the environment. 
 
Dextran-coated superparamagnetic iron oxide 
particles can also form stable complexes with 
transfection agents. Moreover, such complexes 
can be internalized by endosomes/lysosomes, 
and have been utilized for tell labeling and in 
vivo MRI tell tracking [93]. Alginate, another 
polysaccharide, has also been used for the 
coating and stabilization of magnetic nanoparti-
cles [51]. Starch-coated SPIONs, obtained via co
-precipitation in the presence of starch were 
also investigated for targeting of brain tumors in 
rats [94]. Chitosan, a biocompatible and bio-
degradable polymer, is of particular interest 
for coating magnetic nanoparticles [95, 96]. It 
has been reported that oleic acid-coated SPI-
ONs can be easily dispersed in chitosan, pro-
ducing stable ferroflu­ids with a typical hydrody-
namic diameter of approximately 65 nm [97]. 
 
Polylactic acid, another biodegradable poly-
mer, has been used to prepare stable biocom-
patible ferrofluids with different ferromagnetic 
particle sizes, ranging from 10 to 180 nm 
[98]. Polylactic acid-coated nanoparticles can 
also be loaded with anticancer drugs (e.g., 
tamoxifen), which allows their use in simulta-
neous tumor imaging, drug delivery and the 
real-time monitoring of therapeutic effects [99]. 
Similar biocompatible nanoparticles have 
also been prepared via an in situ controlled 
co-precipitation of magnetite from aqueous 
solutions containing suitable Fe2+ and Fe3+ 
salts, in a polymeric starch matrix. This proc-
ess resulted in starch-coated SPIONs that 
demonstrated good potential for the imaging of 
nerve tells and the brain [94]. 
 
One very successful strategy for the prepara-
tion of stable and biocompatible nanoparticles 
is to graft polyethylene glycol (PEG) onto the sur-
face (a process known as PEGylation). PEG is not 
only biocompatible but also has favorable chemi-

cal properties and solubility. In this situation, 
the stabilization is due primarily to steric inter-
actions, while PEGylation can be used to fur-
ther enhance the pharmacokinetic properties 
and improve the blood circulation times [100, 
101]. For example, an increased image contrast 
in MRI was achieved by using polymeric mi-
celles formed from SPIONs encapsulated in 
biocompatible, biodegradable poly(ε-
caprolactone)-β-PEG copolymers. These materi-
als have demonstrated significantly improved r2 
relaxivities and a good sensitive MRI detection 
[102]. Copolymers of PEG were also used to 
stabilize the SPIONs [51, 62]. 
 
Aside from the extended half-life that it can pro-
vide, one of the great advantages of PEG coat-
ing is that it can also be easily conjugated to 
antibodies or to peptides to achieve a specific 
targeted delivery. For example, in a recent re-
port, biocompatible water-soluble magnetite 
nanocrystals were fabricated via the thermal 
decomposition of ferric triacetylacetonate in 2-
pyrrolidone in the presence of monocarboxyl-
terminated PEG (MPEG-COOH) [103]. The car-
boxylic acid groups on the surface of the parti-
cles were conjugated with a cancer-targeting 
anti-carcinoembryonic antigen (CEA) mono-
clonal antibody, via a carbodiimide coupling 
reaction. The resultant materials were as-
sessed for their ability to label cancer tissues 
in vivo, for subsequent MRI detection [2]. PEG-
coated iron oxide nanoparticles may also be 
conjugated to specific targeting peptides and 
receptors such as chlorotoxin [104], transac-
tivator protein (Tat) of HIV-1 [105], and in-
tegrins [59]. 
 
The high temperature decomposition process, 
known to give nanoparticles a better control of 
particle size and monodispersity, was described 
as a one-pot method by decomposition of Fe
(acac)3 in 2-pyrolididinone in the presence of 
MPEG-COOH [103]. Another way to introduce 
PEG onto SPIONs is to use PEG-silane [106]. 
This involves reaction of the triethoxysilane 
group with the hydroxyl group of the SPION sur-
face. Sun et al showed that SPIONs can be 
treated successively with a bifunctional silane 
PEG trifluoroethylester linker, ethylenediamine 
and folic acid (FA). The specificity of these vec-
torized SPIONs was demonstrated by an in-
creased nanoparticle uptake and a significant 
contrast enhancement of tumor cells. An alter-
native protocol to prepare SPION-PEG-FA in-
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volved the reaction of FA with tertbutyl-
oxycarbonyl (t-BOC) and N-hydroxysuccinimide 
(NHS), followed by the reaction of (t-boc)folate-
NHS with amino-PEG-carboxyl [107]. The resul-
tant (t-boc)folate-PEG-carboxyl was then reacted 
with SPION with have NH2 groups obtained by 
reaction with 3-aminopropyl-trimethoxysilane. 
Finally, the t-boc protective group was removed. 
Recently, another anchor, dopamine (DPA) has 
been proposed due to its high affinity for the 
iron oxide nanoparticle surface and the possibil-
ity of functionalization with other molecules 
through amide bonds [108]. 
 
Other polymers and copolymers, which have 
been used to coat magnetic nanoparticles, 
include PVP), polyethylenimine (PEI), polyvinyl 
alcohol (PVA), polysodium-4-styrene sulfonate, 
poly(trimethylammonium ethylacrylate methyl 
sulfate)-poly-(acrylamide), polyvinylbenzyl-O-beta
-D-galactopyranosyl D-gluconamide (PVLA), poly-
caprolactone, and gummic acid [51, 62]. In 
addition, several stable and biocompatible 
magnetic fluids have been prepared by coating 
magnetic nanoparticles with proteins, such as 
human serum albumin (HSA), avidin, and 
Annexin AS (anxA5)-VSOP [109, 110]. 
 
Dicarboxylic or tricarboxylic acids (citric, tartaric 
or dimercaptosuccinic acids) [111, 112] are 
also used for the surface functionalization and 
stabilization of SPIONs. Some of the functional 
groups can bind to the surface of the iron oxide, 
while the remaining carboxylate groups provide 
negative charges (depending on the pH) and 
improve the hydrophilicity of the SPION surface. 
Several studies are reported and demonstrated 
that phosphonates and phosphates bind effi-
ciently to iron oxide particle surfaces and can 
serve as potential alternatives to fatty acids [92, 
113, 114]. Functionalized phosphonate and 
phosphate seems to have an acceptable bio-
compatibility [115] and it is possible to suggest 
their utilization as coating agents of magnetic 
nanoparticles in medical applications [116]. 
Phosphonates are molecules that contain one 
or more R-PO(OH)2 Lewis acid groups. The P-C 
bond is very stable toward oxidation or hydroly-
sis. These compounds possess a very high abil-
ity to form strong complexes with transition met-
als in aqueous solution and show a large affinity 
for the metal oxide surfaces [117].  
 
The mechanism of adsorption of dimercapto-
succinic acid (DMSA) has been studied by con-

ductimetric measurements and adsorption iso-
therms curves. DMSA is oxidized during the 
coating process in tetrameric polysulfide chains 
[DMSAox]4 which are absorbed by the carboxy-
late moiety on the particles after alkalisation 
and neutralisation. The obtained particles are 
stable particles at pH = 7 [118, 119]. 
 
Among the inorganic coatings, silica, carbon, 
precious metals (e.g., Ag and Au), or metal ox-
ides are the most frequently used [69]. The 
silica coating significantly improves the stability 
of magnetic nanoparticles, protecting them 
from oxidation, and reduces any potential toxic 
effects of the nanoparticles [62]. Silica coat-
ing can be achieved by using several different 
approaches; the most popular is the sol-gel 
process with tetraethyl orthosilicate (TEOS) 
(known as the Stober method) [120, 121]. Sil-
ica shell formation is achieved by the hydrolysis 
of TEOS in the presence of ammonia and SPI-
ONs, the thickness of the silica coating can be 
controlled by varying the concentration of am-
monium and the ratio of TEOS to water. Amino-
silane coatings were activated using glutaralde-
hyde, which served as a linker for the binding of 
a monoclonal antibody directed against can-
cer. This process resulted in new immu-
nomagnetic nanoparticles for the targeted 
MRI of cancer [122]. 
 
Strategies of vectorization of magnetic nanoma-
terials for targeted imaging 
 
Targeted cellular labeling and molecular imag-
ing require further functionalization in order to 
provide molecular recognition for specific biologi-
cal sites. Vectorization is also critical for the 
further stabilization of nanoparticles, to im-
prove their biocompatibility, and to reduce their 
potential toxicity. The main vectorization strate-
gies include: (i) the noncovalent grafting of bio-
molecules (e.g., antibodies or proteins) via 
ionic bonding or adsorption; and (ii) the cova-
lent conjugation of biomolecules via strong 
chemical bonding [123]. Typical examples of 
the noncovalent approach include the prepa-
ration of streptavidin-coated iron oxide 
nanoparticles [124-126]. Although the nonco-
valent methods are relatively easy to undertake, 
the results are very often not reproducible and 
the response of the materials may be very 
difficult to control. In addition, noncovalently 
functionalized nanocomposites are sometimes 
unstable in variable biological media, and may 
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lose their biological coating and undergo pre-
cipitation. Therefore the development of a co-
valent approach has attracted much more at-
tention during recent years. This involves the 
formation of linkages between vectors and 
nanoparticles (see Figure 2). 
 
The linkage must be stable (it should be resis-
tant to hydrolysis, oxidizing and reducing condi-
tions) and performed in mild conditions to avoid 
vector degradation. Typical vector are peptides, 
proteins, antibodies, mimetic molecules, carbo-
hydrates, lipids, etc. The usual reacting group is 
an amine or a carboxylic function in the pres-
ence of carbodiimine as activator of the carbox-
ylic group but reactions with hydroxyl, thiol or 
phenol residues are also possible.  
An oxidative conjugation strategy has been used 
in previous studies. This method is based on 
the periodate oxidation of a carbohydrate poly-
mer like dextran or carboxydextran to aldehydes, 
which may then be linked to biomolecules 
through the formation of a Schiff base. This 
strategy has been used for the covalent conju-
gation of dextran coated magnetic nanoparti-
cles with peptides [127], proteins [128, 129], 
monoclonal antibodies [130-132] or agglutinin 
[133]. A substantial loss of the biological activ-
ity of the protein has been observed. To mini-
mize this effect, Hogemann et al. [134] have 
linked proteins and iron oxide particles via a 
linker. Their results suggest that the oxidative 

conjugation chemistry significantly interferes 
with the binding of the conjugates of the recep-
tor. Current efforts are devoted in the direction 
of non oxidative strategies. The target mole-
cules can be covalently linked through a 3 step-
reaction sequence described by Josephson et 
al. [135]. This approach is based on amine-
terminated CLIO nanoparticles, which can be 
obtained from dextran-coated nanoparticles by 
cross-linking using epichlorohydrin and then 
ammonia. A peptide was attached to the amino 
group of a cross linked dextran iron oxide (CLIO-
NH2) using SPDP through a disulfide exchange 
reaction. A range of target biomolecules can be 
conjugated by using standard organic chemis-
try methods: formation of disulfide, carbon-
thiol, and amide bonds [105, 136-139]. 
 
In the so-called “DMSA techniques” 2,3-
dimercaptosuccinic acid (DMSA) -coated mag-
netic nanoparticles can be covalently linked to a 
variety of biomolecules via S-S bonds using N-
succinimidyl 3-(2-pyridyldithio) propionate 
(SPDP) as a coupling agent (see Figure 3) [118]. 
This approach has been used to couple antibod-
ies, lectins and annexin V to DMSA-coated mag-
netic nanoparticles [119, 140, 141].  
 
Magnetite nanoparticles coated with silica were 
prepared, after surface modification with an 
amino-silane coupling agent, SG-Si900, amine 
was covalently linked using glutaraldehyde as a 
cross-linker [142]. Alternatively, vectors with 
carboxylic functions can be directly grafted on 
the silica coated particles using EDC to activate 
the carboxyl groups [143]. The silane coupling 
materials (like 3-aminopropyltrimethoxysilane or 
p-aminophenyl trimethoxysilane) [144] are able 
to adsorptively or covalently bind to the metal 
oxide and are able to form covalent bonds with 
bioaffinity adsorbents through organo-
functionalities. The mechanism of the silane 
coupling agents reaction according to Arkles 

Figure 2. Covalent grafting of vectors (V) onto the 
nanoparticles (P) such as for a molecular imaging 
probe. 

Figure 3. Formation of grafted particles via S-S bridge: the pyridyl sulfide moiety of SPDP grafted on the vector is sub-
stituted by the SH group on the nanoparticles. Reprinted with permission from (reference 52). Copyright 2010 Ameri-
can Chemical Society.  
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was depicted in Figure 4 [145].  
 
The silane is deposited on the metal oxide core 
from acidic solution (see Figure 5). The siliniza-
tion reaction occurs in two steps: (i) the trimeth-
oxysilane is placed in acidic water, phosphorous 
acid and glacial acetic acid and it condenses to 
form silane polymers; (ii) these polymers associ-
ate with the metal oxide by forming covalent 
bond with surface OH groups through dehy-
dratation or by adsorption of silane polymers to 
the metal oxide. Diazotation of aminophenyl- 
terminated silane or the use of glutaraldehyde 
on 3-aminopropyl-terminated silane can be 
used to couple antibodies or immunoglobulins. 
This second procedure also consists of two ba-
sic steps: (i) activation of the particle by reaction 
with glutaraldehyde followed by (ii) removal of 
unreacted glutaraldehyde and reaction of the 
proteins with the activated particles followed by 
removal of the unreacted proteins. If the mag-
netic particles are coated by carboxy-terminated 
silanes, proteins can be coupled to them by 

t reat ing the part ic les wi th  3- (3-
dimethylaminopropyl) carbodiimide. The surface 
chemsitry involving reactions with alkyltrialkox-
ysilane or trichloroalkylsilane compounds is a 
good way for grafting biomolecules [146, 147].  
 
Finally, the recently developed “click” chemistry, 
based on the azide-alkyne reaction, has been 
applied to the functionalization of iron oxide 
nanoparticles [114, 148, 149], and allows the 
relatively simple synthesis of azido- or alkyne-
functionalized nanoparticles, which then can be 
linked to appropriate target molecules. For ex-
ample, Turro et al. [114] described the stabiliza-
tion of Fe2O3 nanoparticles using alkyne-
terminated organophosphate or carboxylic acid 
groups to exchange with oleic acid on the Fe2O3 
surface. The IONPs were subsequently cova-
lently attached to poly(tert-butyl acrylate) via 
click reactions using CuSO4. 
 
A pan-bombesin analog was conjugated through 
a linker to dye-functionalized superparamag-

Figure 4. Adsorption mechanism of organosilane and chemical reactions of silane coupling agents on magnetic parti-
cles (R= CH2CH2CH2NH2, CH2CH2CH2CN, …; R’=CH3, C2H5). Reprinted with permission from (reference 52). Copyright 
2010 American Chemical Society.  
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netic iron oxide nanoparticles for the targeting 
of prostate cancer cells. The peptide was conju-
gated via click chemistry. The peptide-
functionalized nanoparticles were then demon-
strated to be selectively taken up by PC-3 pros-
tate cancer cells relative to unfunctionalized 
nanoparticles and this uptake was inhibited by 
the presence of free peptide, confirming the 
specificity of the interaction [150]. 
 
SPIONs against cancer diseases 
 
Drug delivery 
 
Widder et al. [151] employed the first magnetic 
drug (i.e. doxorubicin (Dox)) delivery systems, 
where Dox was encapsulated in albumin mag-
netic nanoparticles. After this report, intense 
research has focused on targeted delivery and 
imaging using magnetic nanoparticles [152-
169]. Some of the developed magnetic 
nanoparticles have rapid hepatic uptake after 
intravenous administration; these uptakes 
would be of crucial importance for hepatic tu-
mors diagnosis and treatment [170, 171]. How-
ever, the crucial matter for high-yield drug deliv-
ery using magnetic nanoparticles is their target-
ing capabilities. In order to increase the target-
ing capability of magnetic particles, it is essen-
tial to attach targeting moieties (e.g. antibodies 
and hormones) to the surface of magnetic 
nanoparticles. In this case, there are varieties of 
methods for conjugation of antibodies to the 
surface of magnetic nanoparticles with no de-
tectable effects on the colloidal stability of the 

particles [172, 173]. Attachment of epidermal 
growth factor (EGF) to the magnetic nanoparti-
cles can be useful in treatment of colorectal and 
breast cancers [174]. HER2 antibody was also 
conjugated with glycerol mono-oleate coated 
SPIONs and the resulting materials showed en-
hanced uptake in human breast carcinoma cell 
line (i.e. MCF-7) [175]. Hormones (e.g. LHRH) 
conjugated SPIONs also showed good capability 
for targeting of cancer cells in both the primary 
breast tumors and the lung metastases cells 
[176]. 
 
In relation to targeting properties, there are also 
two main additional problems for high yield tar-
geted delivery. First, as the drug coats the sur-
face of nanoparticles, a significant portion of it 
is quickly released upon injection (i.e. burst ef-
fect). Therefore, only small amounts of the drug 
reach the specific site after, for instance, mag-
netic drug targeting. Second, once the surface-
derivatized nanoparticles are inside the cells, 
the coating is likely digested, leaving the bare 
particles exposed to other cellular components 
and organelles, thereby potentially influencing 
the overall integrity of the cells. To overcome 
these two shortcomings, Mahmoudi et al. [177] 
used cross-linked poly (ethylene glycol)-co-
fumarate (PEGF) coating on the surface of SPI-
ONs. To investigate if the coating could reduce 
the burst effect, nanoparticles were prepared by 
incorporating the anticancer drug Tamoxifen 
(TMX). The cross-linked PEGF coating reduced 
the burst effect rate by 21% in comparison with 
the noncross-linked tamoxifen nanoparticles 

Figure 5. Possibilities of surface 
modification with organosilane 
following the chemical reac-
tions described in Figure 4. 
Reprinted with permission from 
(reference 52). Copyright 2010 
American Chemical Society.  
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[177]. Thus, the authors claimed that the SPI-
ONs with coating based on crosslinked unsatu-
rated aliphatic polyesters are potentially useful 
to develop novel carriers for drug and gene de-
livery applications [177].  
 
Another crucial matter is the multifunctional 
capabilities of the engineered SPIONs, which 
are a key focus in bionanotechnology and will 
have profound impact on molecular diagnostics, 
imaging and therapeutic of cancer diseases. 
Gao et al. [178] prepared FePt coated SPIONs 
and claimed that their core-shell particles have 
good capability to be functionalized by various 
targeting molecules (e.g. antibodies). These 
multifunctional nanoparticles can enhance the 
capability of magnetic particles for simultane-
ous detection and monitoring of the transforma-
tion of tumors by noninvasive MRI during che-
motherapeutic treatment by nanoparticles. In 
order to combine multiple components on a 
nanometer scale for creation of new imaging 
modalities, which are unavailable from individ-
ual components, Jin et al. [179] prepared multi-
functional nanoprobes. These not only offered 
contrast for electron microscopy, MRI and scat-
tering-based imaging but also, more impor-
tantly, enabled a new imaging mode, magneto-
motive photoacoustic imaging. This form of im-
aging with remarkable contrast enhancement 
compared with photoacoustic images using con-
ventional nanoparticle contrast agents; these 
particles were composed of thin gold coated 
SPIONs by creating a gap between the core and 
the shell. Very recently, Mahmoudi et al. [50] 
synthesized a multi-component system made of 
gold-coupled core-shell SPIONs, as a new nano-
probe with signal enhancement in surface Ra-
man spectroscopy, due to its jagged-shaped 
gold shell coating. These new classes of multi-
functional magnetic nanoparticles [50, 179] 
may have great impact in the future in relation 
to cancer diagnosis and therapy.  
 
Amiri et al. [180] reported cell endocytosis, drug 
release, NMR relaxometry and in vitro MRI stud-
ies on a novel class of superparamagnetic col-
loidal nano-crystal clusters (CNCs) with various 
biocompatible coatings. They claimed that the 
transverse relaxivity r2, the parameter repre-
senting the MRI efficiency in negative contrast 
agents, for the polyvinyl alcohol (PVA)-coated, 
polyethylene glycol-co-fumarate (PEGF)-coated, 
and crosslinked PEGF-coated CNCs was effi-
cient enough to contrast suitably the MRI (see 

Figure 6). In addition, their prepared samples 
have been shown to facilitate controlled drug 
release (particularly the crosslinked PEGF-
coated compound), thereby finally allowing 
them to propose this class of compounds for 
future applications in cancer, as theranostics 
agents.  
 
Besides in vitro evaluations of drug loaded sur-
face engineered magnetic nanoparticles, there 
are numerous in vivo targeting assessments. 
For instance SPIONs have been injected very 
close to tumor sites in animal models and hu-
man clinical studies for targeting delivery of 
anticancer drugs [181-188]. SPIONs have the 
capability to enhance MRI in combination with 
diffusion weighted MRI, which can be a novel, 
accurate, and fast method for detecting pelvic 
lymph node metastases even in normal-sized 
nodes of patients with bladder or prostate can-
cer [189]. The surface engineered SPIONs can 
be also employed in diagnosis and treatment of 
colorectal cancer [190].  
 
In order to increase the yield of magnetic target-
ing, Widder et al. [191, 192] employed intra-
arterial injection proximal to the tumor site (Dox 
filled magnetic particles). Their results demon-
strated a 200-fold increased targeting yield in 
comparison with intravenous injection [193]. 
Since this study, success in cytotoxic drug deliv-
ery and tumor remission has been reported by 
several groups using animals models including 
swine [194, 195], rabbits [196] and rats [197-
199]. In order to increase the targeting yield of 
magnetic nanoparticles, permanent magnets 
can be implanted in a targeted site; for exam-
ple, permanent magnets were implanted at 
solid osteosarcoma sites in hamsters and anti-
cancer drugs subsequently delivered to the tar-
geted site using magnetic liposomes [200]. Us-
ing magnetic implantation methods, the yield of 
targeting were enhanced four-fold in compari-
son with normal intravenous (non-magnetic) 
delivery. Results also showed significant in-
crease in anti-tumor activity and the elimination 
of weight-loss as a side effect [201]. This tech-
nique has also been employed to target cyto-
toxic drugs to brain tumors, where passing the 
drugs through the blood-brain barrier is difficult 
[199]. Preliminary successful animal trials have 
lead to the development of magnetic nanoparti-
cles for use in human trials. For example, mag-
netic nanoparticles (metallic Fe coated with 
activated carbon) which carried the Dox as drug 
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is employed by FeRx [195]. It is noteworthy to 
mention that FeRx Inc. was granted fast-track 
status to proceed with multi-centre Phases I and 
II clinical trials of their magnetic targeting sys-
tem for hepatocellular carcinomas. However, in 
April 2004 FeRx halted its clinical trial, putting 
into doubt company’s ability to continue as a 

going concern [2].  
 
Hyperthermia 
 
One of the crucial capabilities of Magnetic 
nanoparticles is that they can be made to gen-
erate heat, which leads to their use as hyper-

Figure 6. (a-c) Schemes of the various synthesized magnetic nanoparticles including (a) single coated SPIONs, (b) 
crosslinked coated SPION, and (c) PVA- and crosslinked PEGF- coated CNCs. (d) TEM images of crosslinked PEGF-
coated CNCs with various magnifications. (e) MRI image of vials containing different samples with the same iron con-
centrations (0.02 mg/ml) obtained by Artoscan S.p.A. imager at H=0.2T: (1) Endorem (commercially available dextran 
coated SPIONs), (2) bare SPIONs, (3) PVA-Coated CNCs, (4) PEGF-coated CNCs, (5) Crosslinked PEGF-Coated CNCs. 
Release profiles of (f) TMX and (g) DOX from PEGF- and crosslinked PEGF- coated single nanoparticles; and PVA-, 
PEGF- and crosslinked PEGF- coated CNCs over 300 and 200 hours, respectively. With permission from reference 
[180]. 
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thermia agents, delivering toxic amounts of 
thermal energy to cancerous tumors where a 
moderate degree of tissue warming results in 
more effective cell destruction [202, 203]. The 
production of local heat in magnetic nanoparti-
cles is due to the fact that the magnetic anisot-
ropy of magnetic nanoparticles can be much 
greater than those of a bulk materials, while 
differences in the Curie or Néel temperatures, 
i.e., the temperatures of spontaneous parallel 
or antiparallel orientation of spins between 
magnetic nanoparticles and the corresponding 
microscopic phases, reach hundreds of degrees 
[203, 204]. Magnetic nanoparticles were first 
employed in hyperthermia application in the 
work of Chan et al. [205] and Jordan et al. [206] 
in 1993, where they proved that superparamag-
netic crystal suspension had great capability to 
absorb the energy of an alternating magnetic 
field; this absorbed energy can in turn be con-
verted into heat. Given that tumor cells are 
more sensitive to a temperature increase than 
healthy ones [207, 208], this property can be 
used in vivo to increase the temperature of can-
cerous tissue and to destroy the pathological 
cells by hyperthermia.  
 
During the last 2 decades, intense efforts were 
focused on improvement of hyperthermia tech-
niques for clinical applications. Advances in the 
area of nanotechnology have contributed to the 
development of superparamagnetic fluid hyper-
thermia, which is well recognized as promising 
method for cancer treatment because of the 
ease of targeting the cancerous tissue and 
hence having fewer side effects than chemo-
therapy and radiotherapy, as proven by the re-
sults of current/ongoing clinical trials [209].  
 
Hergt et al. [210] injected 100 mg dextran 
coated magnetic nanoparticles into the tail vein 
of Sprague Dawley rats, treated with AC mag-
netic field (12 min, 450 kHz, unknown field and 
SAR). According to authors’ considerable the 
tumor shrinkage and tissue necrosis was ob-
served. Jordan and co-workers [211-225] did 
the first clinical patient trials [226] with mag-
netic nanoparticles. In this case, a special hy-
perthermia-generating prototype instrument 
was developed which is able to generate vari-
able magnetic fields in the range of 0 - 15 kA/m 
at a frequency of 100 kHz. At the same time, 
the machine allows for real-time patient tem-
perature measurements to ensure that neither 
the upper limit of the therapeutic temperature 

threshold is exceeded, thus preventing thermal 
ablation, nor the lower, ineffective limit is 
crossed. This prototype is capable of treating 
tumors placed in any region of the body (e.g., 
prostate cancer, brain tumors).  
 
Maier-Hauff et al. [227] injected neuro-
navigationally controlled intra-tumoral instilla-
tion of an aqueous dispersion of iron-oxide 
nanoparticles in 66 patients (59 with recurrent 
glioblastoma) and subsequently the particles 
were heated up using an alternating magnetic 
field. Treatment was combined with fractionated 
stereotactic radiotherapy. A median dose of 30 
grays (Gy) using a fractionation of 5 × 2 Gy/
week was applied. The primary study endpoint 
was overall survival following diagnosis of first 
tumor recurrence (OS-2), while the secondary 
endpoint was overall survival after primary tu-
mor diagnosis (OS-1). The median overall sur-
vival from diagnosis of the first tumor recur-
rence among the 59 patients with recurrent 
glioblastoma was 13.4 months (95% CI: 10.6-
16.2 months). Median OS-1 was 23.2 months 
while the median time interval between primary 
diagnosis and first tumor recurrence was 8.0 
months. The authors claimed that the side ef-
fects of their new therapeutic approach were 
moderate, and no serious complications were 
observed [227]. According to these results, one 
can conclude that thermotherapy using mag-
netic nanoparticles in conjunction with a re-
duced radiation dose is reasonably safe and 
effective and leads to longer OS-2 compared to 
conventional therapies in the treatment of re-
current glioblastoma [227]. Till now, only local 
hyperthermia is applicable for magnetic fluid 
hyperthermia; in this case, surface-engineered 
magnetic nanoparticles, which are dispersed in 
a carrier fluid, are placed inside the cancerous 
tumor through direct injection or tumor specific 
antibody targeting. This specific antibody target-
ing cause the attachments of nanoparticles to 
the cancerous cells and the labeled-cells are 
exposed to an alternating magnetic field. This 
field makes the magnetic nanoparticles gener-
ate heat by magnetic relaxation mechanisms; 
these local heats can induce apoptosis to the 
labeled cells.  
 
Simultaneous drug delivery and hyperthermia 
 
One of the crucial problems with magnetic tar-
geted hyperthermia is that a limited dose of 
nanoparticles reached the tumor tissue. This 
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resulted in insufficient temperature enhance-
ment in the cancerous sites; thus there is a risk 
of proliferation of cancer cells that survived dur-
ing thermotherapy [229]. In order to overcome 
the problem, several specific tumor receptor 
targeting moieties together with anticancer 
drugs can be attached to the surface of parti-
cles. These employed targeting moieties to-
gether with anti-cancerous drugs may induce 
cell apoptosis. In this case, the hyperthermia 
treatment was used as a driving force for simul-
taneous drug delivery purposes (e.g. using ther-
mosensitive polymers [203], as nanoparticle’s 
coating) [230]  For example, β-cyclodextrin (CD) 
was used as a drug container for hydrophilic 
(paclitaxel) or lipophilic (doxorubicin) structures. 
Drugs incorporated in the CD can thus be re-
leased through the use of induction heating, or 
hyperthermic effects, by applying a high-
frequency magnetic field. In this case, folic acid 
(FA) and CD-functionalized magnetic nanoparti-
cles were synthesized and it was found that by 
induction of heating, drug release was triggered 
from the CD cavity on the particle - a behavior 
that was controlled by switching the high-
frequency magnetic field on and off.  
Another drug delivery system, based on cova-
lently attaching genistein onto SPIONs coated 
by cross-linked carboxymethylated chitosan 
(CMCH), has been developed [231] and the re-
sults confirmed that the nanosystem could sig-
nificantly enhanced cancer cell apoptosis. 
 
Importance of protein-nanoparticle interactions 
 
It has been long recognized that proteins were 
associated with nanoparticles, upon entrance of 
nano-objects into a biological fluid [232-235]. 
The amount and types of the associated pro-
teins, which is called a protein “corona”, on the 
surface of the nanoparticles leads to an in vivo 
response [232]. More specifically, composition 
of the obtained protein corona can be used for 
prediction of the way cells interact with, recog-
nize and process the nanoparticles [236].  
 
It also has been shown that the composition of 
the hard corona protein profiles can be signifi-
cantly different due to the changes in surface 
chemistries of the same materials [237]. Thus, 
decoration of the surface of magnetic nanopar-
ticles would be very useful for the efficient de-
sign of targeted delivery systems where the tar-
geting moieties are covered on the surface of 
SPIONs. More specifically, inappropriate surface 
chemistry of nanoparticles have great capability 

to be severely covered by the proteins which 
may causing the elimination of targeting moie-
ties; in contrast, the targeting species of the 
well surface decorated particles are active due 
to their lower protein affinity (lowest thickness 
of protein corona in comparison with inappropri-
ate surface) to proteins causing the highest tar-
geting yields (see Figure 7). Clearly there is a 
significant amount of work to be done to con-
firm these issues.  
 
Conclusions and future perspectives  
 
Multifunctional SPIONs play an important role in 
the development of simultaneous targeted de-
livery, imaging, and hyperthermia for diagnosis 
and treatment of cancerous tumors in vivo. 
Deeper understanding on the protein corona 
compositions at the surface of nanoparticles 
are essential for development of nanoparticle 
specific uptake by desired cells in vivo. In addi-
tion, control of the protein corona which is 
formed at the surface of magnetic particles, 
which are decorated by cancer-specific binding 
agents, would make targeted delivery and mag-
netic fluid hyperthermia treatment much more 
selective than traditional chemotherapy and 
even conventional hyperthermia. Furthermore, 
multifunctional magnetic particles can be mag-
netically targeted and concentrated in the target 
tissue, and drug release together with heating 
are then only induced to significant burst effects 
and temperatures where the magnetic nanopar-
ticles have been deposited. In addition, tissue-
deposited magnetic particles will generally stay 
where they were initially deposited, thus allow-
ing for repeated and concentrated drug release 
and hyperthermia treatments in the same area.  
 
At the moment the amount of particles deliv-
ered to the cancerous tissues/cells by means of 
antibody targeting is too low for a sufficient drug 
release and temperature increase. Thus, the 
main challenges in this field will be the design 
of stealth nanoparticles able to circulate in the 
blood compartment for a long time and the sur-
face grafting of ligands able to facilitate their 
specific internalization in cancerous cells. Al-
though the results obtained from the first clini-
cal trials of magnetic nanoparticles are very 
promising, it would be premature to claim that 
these molecules contribute therapeutic advan-
tages because survival and disease progression 
benefits were not defined endpoints of the fea-
sibility studies.  
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There are several matters that should be con-
sidered to enhance the targeted drug delivery, 
targeted imaging and hyperthermia yield of SPI-
ONs. These include the exact definition of cell 
membrane composition; in vivo control of drug 
release; in vivo control of heat distribution; man-
agement surface of the nanoparticles’ for for-
mation of desired protein corona composition 
followed by fast internalization by the target 
cells; and optimization of the biophysicochemi-
cal properties of the particles. A non homogene-
ous particle distribution in the tissue may lead 
to the occurrence of uncontrollable targeting, 
drug release, and hot spots where the high drug 
amounts/temperature could cause non-specific 
necrosis of the tissue. In contrast, in regions 
with a low particle concentration the drug and/
or temperature would not be sufficiently high 
enough to trigger the onset of apoptosis and a 
proliferation of surviving cancerous cells can 
still occur. Both effects should be prevented 
and thus more even distribution of particles in 
the tissue as well as the monitoring of the spa-
tial heat distribution should form the focus of 
future research. 
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