
Advances in Electrical and Computer Engineering                                                                      Volume 16, Number 4, 2016 

An Efficient Tile-Pyramids Building Method for 
Fast Visualization of Massive Geospatial Raster 

Datasets 

Ning GUO, Wei XIONG*, Qiuyun WU, Ning JING
College of Electronic Science and Engineering, National University of Defense Technology, 

410073, Changsha, China 
*xiongwei@nudt.edu.cn 

 
1 Abstract—Building tile-pyramids is an effective way for 

publishing and accessing the map visualization service of large-
scale geospatial data in the web. But it is a time-consuming task 
in Geographic Information System (GIS) to build tile-pyramids 
using traditional methods. In this article, an adaptive 
multilevel tiles generation method is proposed, which first 
builds grid index for the geospatial raster dataset, and then 
generates tiles according to different hierarchy level numbers 
in the tile-pyramid. With the optimized map rendering engine 
implemented, a parallel tiles pyramid generation method for 
large-scale geospatial raster dataset is integrated into a high 
performance GIS platform. Proved by experiments, the new 
method shows acceptable applicability, stability and scalability 
besides its high efficiency. 
 

Index Terms—geographic information systems, indexing, 
parallel algorithms, spatial resolution, tiles. 

I. INTRODUCTION 

With the development of the technology of obtaining 
geospatial data, many organizations and research teams are 
able to get high resolution geographic images. High 
resolution image datasets are geographically interfaced and 
are often stored in the disk file system in the format of 
raster, while the dataset’s large-scale volume places 
restrictions on the efficient organizing and indexing of itself 
in traditional database, which becomes the bottle-neck of 
efficient image visualization. Fast browsing of massive 
raster dataset has become an urgent demand in the web 
geographic applications.  

Currently, visualization of large-scale geospatial raster 
dataset costs long time in data pre-processing, which consist 
of coordinate transforming, image mosaicking, image-
pyramid and tile-pyramid building. The long pre-processing 
time is too insufferable for the decision-making department. 
For instance, a relevant department gets thousands of raster 
images whose data size reach up to hundreds of GB in the 
resolution of 0.2 meter of a county using unmanned aerial 
vehicle. If taking the traditional methods, it will cost several 
days to mosaic them to a single geo-tiff image and build an 
image-pyramid. After that, the visualization of the area’s 
map image can be possible to realize. To be more specific, if 
we use the popular software ArcGIS, it will take a week or 
even more to process the image data. Besides, it will be an 
awful experience with intolerable time-delay when users 
zoom or drag the image in the screen using the huge well-

built image-pyramid, especially when the operations are 
highly concurrent. To solve the problem, researchers 
invented the tile technology, which caches a tile-pyramid on 
the basis of image-pyramid. When visit the map, we only 
need to call the relevant tiled image instead of the whole 
image, which increases the performance of map service 
greatly. There are many Geo-data services take advantages 
of tile technology to accelerate concurrent map service, 
including ArcGIS, MapGIS, Google Map and Baidu Map 
etc. 
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But for massive raster datasets, the traditional methods of 
building tile-pyramids are too inefficient to satisfy the 
demand of increasing size of geo-dataset. As a result, how to 
provide tile service rapidly for massive raster dataset 
becomes an urgent problem to be solved technically. This 
paper proposed an adaptive multilevel method for 
generating tiles for massive raster dataset, which can 
dynamically switch rendering tragedy according to the 
viewport display level. Apart from that, parallel ideas are 
implemented in data processing progress. Proved by 
experiments, this method can build tile-pyramids for 
massive raster datasets at a satisfying speed. By this method, 
the data production to service publishing’s cycle is 
shortened greatly. 

II. RELATED WORKS 

Research on visualization and rapid tile generation of 
large-scale data mainly focuses on the storage management 
of massive image dataset and optimization measures of the 
traditional tile generation method.  

In literature [1], X. Wang et al. proposed a construction 
and index method of tile-pyramid based on tile and 
hierarchy of the terrain data, realizing the real-time 
rendering of multi-resolution map; Wang also concerned of 
the problem encountered in the process of tiling the vector 
data of variety map projection type; In [2], Y. Wang et al. 
extended an open source application called “TileStache” 
based on OGR geographic data models, realizing the fast 
tiles generation for vector geographic data; J. Li et al. took 
advantages of parallel programming model Map-Reduce and 
used dynamic data dividing mechanism and space adjacent 
based uploading mechanism to optimize slice algorithm. And 
they proposed a real-time slicing method for geo-images [3]; 
Y. Zhao et al. proposed a dynamic projection algorithm 
which using a polynomial to do numerical projections for 
every tiles and a fast-clipping algorithm based on scan line 
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filling algorithm, finally realized efficient one-time automatic 
slicing under multi-constraint condition [4]; Z. Du proposed 
an approach to using multispectral images to store point 
cloud data and create point cloud pyramid to improve 
rendering efficiency of different LOD (level of details) [5]; 
X. Yin studied large scale terrain data’s management and 
visualization based on the CUDA GPU parallel computing 
environment [6]; C. Dai et al. proposed a terrain data 
organization method based on tile-pyramid and linear quad 
tree index. They also optimized the retrieved strategy of the 
selected area which can quickly find the target tiles [7]. 

Previous research focused mainly on a single-file raster 
data, which did not take specific consideration of some 
datasets containing large number of image files. However, a 
typical progress of building tile-pyramid for datasets is 
formed gradually and applied widely. The typical process 
including image mosaicking, image-pyramids building and 
tile slicing which is shown in Figure 1. 

…

 Image Montaging

Build Image-
pyramid

Tile Segmentation

Raster Dataset

visualization
 

Figure 1. General progress of dataset visualization 
 

Schematic of image mosaic is as shown in Figure 2. 

 
Figure 2. Sketch map of image mosaic 
 

Image-pyramid is a set of deferent resolution of image 
generated from the original image by certain sampling rules. 
It is a typical form of layered data structure designed for 
organizing multi-resolution raster data and it can 
significantly reduce image rendering time. So image-pyramid 
became a widely-used data structure in GIS. Many literatures 
have introduced the generation and maintenance theories of 
it. Some classical methods involve quad-trees triangulation 
or meshes and other adaptive optimization measures with the 
purpose of accelerating the rendering efficiency of multiple 
level-of-detail (LOD) [8-11]. The logical structure of the 
pyramid is shown in Figure 3. 

Each layer of the pyramid corresponds to a resolution of 
the raster data, and when users request the map from their 

point of view, the new display resolution and geographic 
range of the current viewport will be calculated. Then 
according to the matched resolution of the image-pyramid, 
the appropriate maps will be displayed to the users [12].  

 
Figure 3. Sketch map of image-pyramid structure 
 

When the data size reaches up to hundreds of GB scale, 
establishment of the pyramid would be an extremely slow 
process. For example, using the ArcGIS software to build a 
137GB 3-band raster image dataset’s pyramid will take more 
than 6 hours. We have proposed a MPI-based algorithm to 
accelerate the process [13], which can greatly improve the 
performance of pyramid building for single-file raster data. 
However, it is still a slow process while facing the large 
number of raster data files. 

Tile-pyramid is a similar multi-resolution data structure 
model like image pyramid. The only difference is that each 
layer in the tile-pyramid is formed by slicing the image at the 
same level in the image-pyramid. Each tile has the same size 
of 256 256  pixels and corresponds to a same geographic 
range [9], [13]. Substantially, it is equivalent to a grid index 
whose grid size is adaptive to the level. When you select a 
specific geographical area, the location of target image data 
can be obtained by some simple calculations according to the 
tile division step’s length [14]. Figure 4 shows the structure 
of a tile-pyramid. 

 
Figure 4. Sketch map of tile-pyramid structure 

 

Judging from the research status, existing GIS require 
image mosaic and pyramid construction pretreatment process 
in order to generate a complete tile-pyramid to provide map 
tile services. The overall time cost of visualization of datasets 
is far from satisfactory. And in the course of data processing, 
parallel programming is rarely adopted. Based on the above 
cogitation, we propose an adaptive Multilevel tiling method 
of a datasets. 

 4 

[Downloaded from www.aece.ro on Saturday, October 13, 2018 at 09:03:26 (UTC) by 159.226.100.198. Redistribution subject to AECE license or copyright.]



Advances in Electrical and Computer Engineering                                                                      Volume 16, Number 4, 2016 

III. MULTILEVEL ADAPTIVE TILE METHOD OF GENERATING 

Mapnik is an open source Python/C++ map rendering 
engine. Its functions are to pack geographic objects such as 
maps, layer, data source, characteristics of geometry to a 
defined XML-style file, and rendering it to a bitmap to 
provide web map services (WMS). Mapnik not only supports 
multiple platforms and data formats, but also adapts well to 
multithread environments so it is ideal to provide GIS 
services for Web applications. 

This article proposed a new layered drawing method based 
on the existing technology solution which changes drawing 
strategies in real time according to the zoom level selected by 
users. If the display level is high, it uses a low-level view of 
sampling data to build tiles. If the display level is low, it uses 
the index to query image files in the viewport. After that, 
dynamic XML-style strings required by Mapnik are 
generated in real time, so that the rendering engine can 
segment images to tiles for visualization. 

A. Overview of the new method 

The map display level refers to the viewport zoom level. 
Different levels show corresponding view scale of map. The 
smaller the level number is, the wider the viewport displays 
and calls the higher level tiles in pyramid, so the display 
resolution is lower. The bigger the level number is, the 
narrower the viewport displays and calls the lower level tiles 
in pyramid, so the display resolution is higher. Generally, the 
highest resolution that the viewport can display equals to the 
resolution of the source data. 

This paper presents an adaptive tiling method which could 
switch rendering tragedy dynamically according to the 
display level. GIS usually has 20 display levels, and we 
choose a middle threshold view level denoted as level N 
where the intersection number of image files equal to 30. 

If level number is bigger than N, that is the lower part of 
the pyramid: we call the open source slice tool Mapnik with 
a new way to provide it with the XML style sheet. According 
to each tiles’ MBR (Minimum Boundary Rectangular), 
retrieve its space cover range’s intersection with grid image 
files. And depend on the change of query window, XML 
style strings are generated dynamically to be provided to 
Mapnik for tile slicing. 

If level number is smaller than N, that is the higher part of 
the pyramid: we generate higher levels of tiles using interval 
sampling tiles data in level N hierarchically. After that a 
complete tile-pyramid is built and stored in the cache. When 
you zoom in or out to view a specific level, just call the 
appropriate levels of sliced data and it will be quickly 
displayed. 

In traversing the intersect data to build index, querying the 
data files as well as resampling the lower level tiles to 
generate the higher level tiles’ process, parallel programming 
ideas are used to maximize the use of multi-core hardware 
environments, which greatly improve the efficiency of data 
processing. 

In this way, we skip the steps of image mosaic and image-
pyramid building. Instead, we generate the tile-pyramid 
directly, and effectively speed up the process of visualization 
of datasets. The overall process is shown in Figure 5. 

Register image 
dataset
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(the bottom level of 

pyramid)

Image dataset

The number of the 
images that retrieval 
result contains≤ 30 

invoke the tile data of 
level k+1 in the cache

Resample the cache to 
generate tiles of level k 

generate the xml pattern 
string and transfer it to 

rendering engine

Cache of tile-
pyramid

Index file

Y N

Use the extend of every 
tile to be the query 

window
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query window
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k = k - 1

k ≤ 0 

Finish building the 
tile-pyramid

Y

N

Traverse the MBRs 
of all images to 

build a spatial index

 
Figure 5. Overall process of the new method 

 

B. Massive raster dataset grid index 

Because most of raster data are simple bounded, grid 
index is sufficient for querying the raster image that is 
spatially continuous. The index’s data structure is as shown 
in Figure 6 and Figure 7 

0        1        2        3        4

0        1        2        3        4

A

B
C

D

 
Figure 6. Establishment grid index for the dataset 
 

The detailed grid index’s process is described as follows: 
1. Traverse the dataset using open-source Geospatial Data 

Abstraction Library (GDAL) [15], select the appropriate grid 
size according to each single TIFF image’s MBR. We set 
the size to be a half of the minimum edge length of all 
MBRs. 

2. Established grid index storage structure, and compute 
the intersect situation between TIFF images and each grid 
according to their MBR. Then register the images to their 
intersected grids. Each grid cell maintains a list of images. 
The registered object’s data structure can be designed 
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specifically. For example, our design of the index object 
includes TIFF image’s storage path in the file system and 
their geographic coverage range, namely MBR, which could 
be used for follow-up fine filter operation. Other image 
property information can be added to the index structure in 
light of users’ requirements. The index file is stored in the 
file system to be called by rendering engine. 
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Figure 7. Data structure of the grid index 

 
The following is a simple example of querying progress. 

A

B
C

D

0        1        2        3        4

0        1        2        3        4

Query
window

 
Figure 8. Using the MBR of a tile as query window 
 

As Figure 8 shows, presume the dark grey box to be the 
coverage range of a random tile and transfer its MBR to the 
query function integrated in the rendering engine, so that we 
can retrieve the intersected grid’s ID with the pre-built index 
file. In this example, the grid ID query result is (2,0), (2,1), 
(3,0), and (3,1); After that, we pop out all the objects 
contained in these grids as Figure 9 shows and remove the 
repeated items.  
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Figure 9. Query result 
 

After we get the rough query results of A, B, C, and D, it 
is necessary to do refined filter by their MBR’s spatial 
relation with query window’s. Eventually we get the final 
query results: B and C. Their full path will be passed to a 
special function to generate XML-style string provided to the 
Mapnik rendering engine. After this tile is drawn, traverse all 
tiles hierarchically follow the procedure above, a tile-
pyramid will be built completely. 

Because the actual raster dataset may contain thousands of 
image files, using the tiling strategy described above is 
suitable for high levels’ tiles, which cover smaller spatial 
scale so that we can quickly retrieve the few intersected 
images in the dataset, and the XML-style string generated is 
also short which greatly reduce the burden of the rendering 
engine for a quick visualization purposes. 

As we can see, the query result by the grid index before 

refined filter is redundant because the objects in the grids that 
achieved are not always intersected with the query window. 
And if we reduce the grid size to improve retrieval precision, 
the generated index file volume will increase, causing 
unnecessary reading time cost and retrieving burden, which 
affect the efficiency of the visualization in the end. To tackle 
the problem, refined filter of the middle result is necessary to 
minimize the size of the result set which will be transferred 
to Mapnik. And to be more adaptive, other types of spatial 
index will be introduced to the solution in our future work, 
which can also decrease the retrieval redundancy without the 
need of an additional filter to the result. 

C. Low level tile generation method 

For the lower levels in tile-pyramid, the pre-built index is 
essential to the tiles generation. From the bottom level to 
threshold level, we use each tile’s MBR to be the query 
window and retrieve the intersected images to render the tile 
image. Since the pre-set file number threshold is 30, if the 
query window’s spacial range intersects less than 30 image 
files (assuming the progress comes to level N pyramids when 
the file number threshold is reached), in that level number 
below N, we use the original image data to generate tiles data 
in the way described in Chapter 2.2: Reading index objects’ 
full path as well as MBR information and generating XML 
style string to pass to Mapnik rendering engine. Then 
Mapnik reads image data to slice the tiles within the viewport 
according to the style string and save them in the tile-
pyramid cache. 

D. High-level parallel tiling method 

Cause the tiles in high level covers larger spatial range, 
they intersect with large quantity of images in the dataset. It 
is insufferable to render the tiles using the index method 
above. That is the main reason why existing GISs take so 
much time to build a tile-pyramid. We apply a new method 
called resampling to do the time-consuming job: based on the 
tiles data in level N, resample to generate tile data in level 1 
to N-1 layer-by-layer. Specific sampling procedures are as 
showed in Figure 10. When generating the k (1 ≤ k ≤ N-1) 
level tiles data, use the k+1 level tiles data as sampling 
source. In k+1 level tiles data, make every four adjacent tiles 
to be a unit as a tile package. In each tile package, one line is 
taken from each two lines and one column is taken from each 
two columns to generate tiles in the higher level. In other 
words, it produces a 256 256 pixels tile in the k level 
sourcing from a 512 512  pixels tile package in the k+1 
level. Because the low-level view displays larger areas, the 
sampling tile’s resolution does not affect the view effect. 

 
Figure 10. Resampling to generate higher level tile 
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IV. EXPERIMENT 

We implement the new tile-pyramid building method 
based on a high performance GIS platform named HiGIS 
[16]. The performance of this method is compared with 
ArcGIS software. 

Experimental data: Wuling district in Hunan province’s 
high-resolution raster image dataset. 

Size of experimental dataset: 10-1000 TIFF raster files. 
Single image size: 79.322MB, 5201x5201 pixels. 
Experimental environment: Super-micro high performance 

servers. 
TABLE I. HARDWARE ENVIRONMENT 

Environment HiGIS ArcGIS 

CPU 64 cores 64 cores 

RAM 512 GB 512 GB 

OS CentOS 6.5 Windows 7 

File System GPFS NTFS 
 

 To evaluate the new method, we first adopted the 
traditional visualization process like ArcGIS does, in other 
words, first mosaic dataset to one image, then build an 
image-pyramid, finally cut it to a tile-pyramid. We found that 
when process GB-sized raster dataset containing hundreds 
TIFF files. ArcGIS’s processing capacity limit has been 
reached. For example, mosaicking a 3000 TIFF-file dataset 
to a single image will cost hundreds of hours due to the 
hardware calculation resources are not fully used. As a result, 
it cannot finish building a tile-pyramid for such dataset in 
foreseeable time, so eventually we set the dataset’s upper 
limit size to be 1000 TIFF-file. 

As the most advanced GIS software in the industry, 
ArcGIS also provides a mosaic raster dataset way to display 
a regional image dataset except traditional tile-pyramid 
building method. Users can take advantages of the Mosaic 
Dataset tool in ArcGIS’s ToolBox assembly. This tool does 
not mosaic images in physical, but realizes virtual mosaic in 
memory according to each image’s geographic range. After 
that, the image-pyramid and tile-pyramid can be established 
for providing tile service for map visualization. 

The following two tables show the experimental platform 
HiGIS’s and ArcGIS’s experimental results and Figure 11 is 
the line chart of the comparison. 

Line chart’s abscissa axis refers to datasets’ scale, which is 
represented by the number of image files that the dataset 
contains; the axis of ordinate refers to the time cost of 
building a whole tile-pyramid for the corresponding dataset. 
As can be seen from the chart, when the raster datasets are in 
small scale, the efficiency of the new method and ArcGIS 
differs within an order of magnitude. But when a dataset 
contains up to hundreds or even thousands of images, new 
method can finish the building task as fast as more than 20 
times of ArcGIS does. In addition, with the datasets’ scale 
grows, this method takes a linear upward trend time cost, 
other than ArcGIS’s phenomenon of exponential growth. We 
could safely draw the conclusion that our new method 
manages to improve the efficiency of building tile-pyramids 
for large-scale raster dataset greatly. And it also has a good 
running stability. 

Besides, the indexes we built occupy tiny of memory 
space, comparing to the gigantic size of raster datasets. The 
indexs’sizes vary from 1kB to 1MB when the datasets’ scales 

range from 10 to 1000 tiff files. And we can see that the 
timecost of building the index is negligibly small. 

TABLE II. STATISTICS OF TILE-PYRAMID BUILDING TIMECOST 

Dataset 
scale 

Index 
building/s 

Generate 
the tiles in 
level 15-

20/s 

Generate the 
tiles in level 

1-14 by 
resampling/s 

Total 
timecost/s 

10 0.037 402 0.189 402.226 

20 0.045 478 0.218 478.263 

50 0.054 605 0.859 605.913 

100 0.071 957 1.737 958.808 

200 0.116 2286 0.824 2286094 

500 0.939 4227 1.071 4229.01 

1000 3.221 14250 3.942 14257.163 

 
TABLE III. STATISTICS OF TILE-PYRAMID BUILDING TIMECOST USING 

MOSAIC DATASET TOOL IN ARCGIS 

Dataset 
scale 

Build 
image-

pyramid/s 

Create 
thumbnail/s 

Build tile-
pyramid/s 

Total 
timecost/s 

10 22.66 14.14 2021.94 2058.74 

20 42.79 29.96 1768 1840.75 

50 103.1 46.98 11354 11504.08 

100 200.1 136 22489 22825.1 

200 423.16 237 47103 47763.16 

500 1160.16 615 123101 124876.16 

1000 2451.27 1320 265139 268910.27 

 

 
Figure 11. Time cost Statistics and comparison 
 

Fig.12 and Fig.13 show the visualization effects of HiGIS 
based on our new method and the mosaic dataset tool of 
ArcGIS. But as we drag the map or do zoom in or out 
operation, the user experiences differ from each other to a 
large extent. HiGIS respond quickly and displays smooth 
effect of visualization, while ArcGIS can hardly display the 
result to its users within tolerable delay time. 

 
Figure 12. Visualization of massive dataset in HiGIS 
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