
Advances in Electrical and Computer Engineering Volume 16, Number 4, 2016

An Efficient Tile-Pyramids Building Method for
Fast Visualization of Massive Geospatial Raster

Datasets

Ning GUO, Wei XIONG*, Qiuyun WU, Ning JING
College of Electronic Science and Engineering, National University of Defense Technology,

410073, Changsha, China
*xiongwei@nudt.edu.cn

1 Abstract—Building tile-pyramids is an effective way for

publishing and accessing the map visualization service of large-
scale geospatial data in the web. But it is a time-consuming task
in Geographic Information System (GIS) to build tile-pyramids
using traditional methods. In this article, an adaptive
multilevel tiles generation method is proposed, which first
builds grid index for the geospatial raster dataset, and then
generates tiles according to different hierarchy level numbers
in the tile-pyramid. With the optimized map rendering engine
implemented, a parallel tiles pyramid generation method for
large-scale geospatial raster dataset is integrated into a high
performance GIS platform. Proved by experiments, the new
method shows acceptable applicability, stability and scalability
besides its high efficiency.

Index Terms—geographic information systems, indexing,
parallel algorithms, spatial resolution, tiles.

I. INTRODUCTION

With the development of the technology of obtaining
geospatial data, many organizations and research teams are
able to get high resolution geographic images. High
resolution image datasets are geographically interfaced and
are often stored in the disk file system in the format of
raster, while the dataset’s large-scale volume places
restrictions on the efficient organizing and indexing of itself
in traditional database, which becomes the bottle-neck of
efficient image visualization. Fast browsing of massive
raster dataset has become an urgent demand in the web
geographic applications.

Currently, visualization of large-scale geospatial raster
dataset costs long time in data pre-processing, which consist
of coordinate transforming, image mosaicking, image-
pyramid and tile-pyramid building. The long pre-processing
time is too insufferable for the decision-making department.
For instance, a relevant department gets thousands of raster
images whose data size reach up to hundreds of GB in the
resolution of 0.2 meter of a county using unmanned aerial
vehicle. If taking the traditional methods, it will cost several
days to mosaic them to a single geo-tiff image and build an
image-pyramid. After that, the visualization of the area’s
map image can be possible to realize. To be more specific, if
we use the popular software ArcGIS, it will take a week or
even more to process the image data. Besides, it will be an
awful experience with intolerable time-delay when users
zoom or drag the image in the screen using the huge well-

built image-pyramid, especially when the operations are
highly concurrent. To solve the problem, researchers
invented the tile technology, which caches a tile-pyramid on
the basis of image-pyramid. When visit the map, we only
need to call the relevant tiled image instead of the whole
image, which increases the performance of map service
greatly. There are many Geo-data services take advantages
of tile technology to accelerate concurrent map service,
including ArcGIS, MapGIS, Google Map and Baidu Map
etc.

This work was supported in part by the National Natural Science

Foundation of China under Grants 41271403 and Grant 41471321.

But for massive raster datasets, the traditional methods of
building tile-pyramids are too inefficient to satisfy the
demand of increasing size of geo-dataset. As a result, how to
provide tile service rapidly for massive raster dataset
becomes an urgent problem to be solved technically. This
paper proposed an adaptive multilevel method for
generating tiles for massive raster dataset, which can
dynamically switch rendering tragedy according to the
viewport display level. Apart from that, parallel ideas are
implemented in data processing progress. Proved by
experiments, this method can build tile-pyramids for
massive raster datasets at a satisfying speed. By this method,
the data production to service publishing’s cycle is
shortened greatly.

II. RELATED WORKS

Research on visualization and rapid tile generation of
large-scale data mainly focuses on the storage management
of massive image dataset and optimization measures of the
traditional tile generation method.

In literature [1], X. Wang et al. proposed a construction
and index method of tile-pyramid based on tile and
hierarchy of the terrain data, realizing the real-time
rendering of multi-resolution map; Wang also concerned of
the problem encountered in the process of tiling the vector
data of variety map projection type; In [2], Y. Wang et al.
extended an open source application called “TileStache”
based on OGR geographic data models, realizing the fast
tiles generation for vector geographic data; J. Li et al. took
advantages of parallel programming model Map-Reduce and
used dynamic data dividing mechanism and space adjacent
based uploading mechanism to optimize slice algorithm. And
they proposed a real-time slicing method for geo-images [3];
Y. Zhao et al. proposed a dynamic projection algorithm
which using a polynomial to do numerical projections for
every tiles and a fast-clipping algorithm based on scan line

 3
1582-7445 © 2016 AECE

Digital Object Identifier 10.4316/AECE.2016.04001

[Downloaded from www.aece.ro on Saturday, October 13, 2018 at 09:03:26 (UTC) by 159.226.100.198. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 16, Number 4, 2016

filling algorithm, finally realized efficient one-time automatic
slicing under multi-constraint condition [4]; Z. Du proposed
an approach to using multispectral images to store point
cloud data and create point cloud pyramid to improve
rendering efficiency of different LOD (level of details) [5];
X. Yin studied large scale terrain data’s management and
visualization based on the CUDA GPU parallel computing
environment [6]; C. Dai et al. proposed a terrain data
organization method based on tile-pyramid and linear quad
tree index. They also optimized the retrieved strategy of the
selected area which can quickly find the target tiles [7].

Previous research focused mainly on a single-file raster
data, which did not take specific consideration of some
datasets containing large number of image files. However, a
typical progress of building tile-pyramid for datasets is
formed gradually and applied widely. The typical process
including image mosaicking, image-pyramids building and
tile slicing which is shown in Figure 1.

…

 Image Montaging

Build Image-
pyramid

Tile Segmentation

Raster Dataset

visualization

Figure 1. General progress of dataset visualization

Schematic of image mosaic is as shown in Figure 2.

Figure 2. Sketch map of image mosaic

Image-pyramid is a set of deferent resolution of image
generated from the original image by certain sampling rules.
It is a typical form of layered data structure designed for
organizing multi-resolution raster data and it can
significantly reduce image rendering time. So image-pyramid
became a widely-used data structure in GIS. Many literatures
have introduced the generation and maintenance theories of
it. Some classical methods involve quad-trees triangulation
or meshes and other adaptive optimization measures with the
purpose of accelerating the rendering efficiency of multiple
level-of-detail (LOD) [8-11]. The logical structure of the
pyramid is shown in Figure 3.

Each layer of the pyramid corresponds to a resolution of
the raster data, and when users request the map from their

point of view, the new display resolution and geographic
range of the current viewport will be calculated. Then
according to the matched resolution of the image-pyramid,
the appropriate maps will be displayed to the users [12].

Figure 3. Sketch map of image-pyramid structure

When the data size reaches up to hundreds of GB scale,
establishment of the pyramid would be an extremely slow
process. For example, using the ArcGIS software to build a
137GB 3-band raster image dataset’s pyramid will take more
than 6 hours. We have proposed a MPI-based algorithm to
accelerate the process [13], which can greatly improve the
performance of pyramid building for single-file raster data.
However, it is still a slow process while facing the large
number of raster data files.

Tile-pyramid is a similar multi-resolution data structure
model like image pyramid. The only difference is that each
layer in the tile-pyramid is formed by slicing the image at the
same level in the image-pyramid. Each tile has the same size
of 256 256 pixels and corresponds to a same geographic
range [9], [13]. Substantially, it is equivalent to a grid index
whose grid size is adaptive to the level. When you select a
specific geographical area, the location of target image data
can be obtained by some simple calculations according to the
tile division step’s length [14]. Figure 4 shows the structure
of a tile-pyramid.

Figure 4. Sketch map of tile-pyramid structure

Judging from the research status, existing GIS require
image mosaic and pyramid construction pretreatment process
in order to generate a complete tile-pyramid to provide map
tile services. The overall time cost of visualization of datasets
is far from satisfactory. And in the course of data processing,
parallel programming is rarely adopted. Based on the above
cogitation, we propose an adaptive Multilevel tiling method
of a datasets.

 4

[Downloaded from www.aece.ro on Saturday, October 13, 2018 at 09:03:26 (UTC) by 159.226.100.198. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 16, Number 4, 2016

III. MULTILEVEL ADAPTIVE TILE METHOD OF GENERATING

Mapnik is an open source Python/C++ map rendering
engine. Its functions are to pack geographic objects such as
maps, layer, data source, characteristics of geometry to a
defined XML-style file, and rendering it to a bitmap to
provide web map services (WMS). Mapnik not only supports
multiple platforms and data formats, but also adapts well to
multithread environments so it is ideal to provide GIS
services for Web applications.

This article proposed a new layered drawing method based
on the existing technology solution which changes drawing
strategies in real time according to the zoom level selected by
users. If the display level is high, it uses a low-level view of
sampling data to build tiles. If the display level is low, it uses
the index to query image files in the viewport. After that,
dynamic XML-style strings required by Mapnik are
generated in real time, so that the rendering engine can
segment images to tiles for visualization.

A. Overview of the new method

The map display level refers to the viewport zoom level.
Different levels show corresponding view scale of map. The
smaller the level number is, the wider the viewport displays
and calls the higher level tiles in pyramid, so the display
resolution is lower. The bigger the level number is, the
narrower the viewport displays and calls the lower level tiles
in pyramid, so the display resolution is higher. Generally, the
highest resolution that the viewport can display equals to the
resolution of the source data.

This paper presents an adaptive tiling method which could
switch rendering tragedy dynamically according to the
display level. GIS usually has 20 display levels, and we
choose a middle threshold view level denoted as level N
where the intersection number of image files equal to 30.

If level number is bigger than N, that is the lower part of
the pyramid: we call the open source slice tool Mapnik with
a new way to provide it with the XML style sheet. According
to each tiles’ MBR (Minimum Boundary Rectangular),
retrieve its space cover range’s intersection with grid image
files. And depend on the change of query window, XML
style strings are generated dynamically to be provided to
Mapnik for tile slicing.

If level number is smaller than N, that is the higher part of
the pyramid: we generate higher levels of tiles using interval
sampling tiles data in level N hierarchically. After that a
complete tile-pyramid is built and stored in the cache. When
you zoom in or out to view a specific level, just call the
appropriate levels of sliced data and it will be quickly
displayed.

In traversing the intersect data to build index, querying the
data files as well as resampling the lower level tiles to
generate the higher level tiles’ process, parallel programming
ideas are used to maximize the use of multi-core hardware
environments, which greatly improve the efficiency of data
processing.

In this way, we skip the steps of image mosaic and image-
pyramid building. Instead, we generate the tile-pyramid
directly, and effectively speed up the process of visualization
of datasets. The overall process is shown in Figure 5.

Register image
dataset

k = Max_Level
(the bottom level of

pyramid)

Image dataset

The number of the
images that retrieval
result contains≤ 30

invoke the tile data of
level k+1 in the cache

Resample the cache to
generate tiles of level k

generate the xml pattern
string and transfer it to

rendering engine

Cache of tile-
pyramid

Index file

Y N

Use the extend of every
tile to be the query

window

Retrieve The images
that intersected with the

query window

Render the tiles and
store them in the cache

k = k - 1

k ≤ 0

Finish building the
tile-pyramid

Y

N

Traverse the MBRs
of all images to

build a spatial index

Figure 5. Overall process of the new method

B. Massive raster dataset grid index

Because most of raster data are simple bounded, grid
index is sufficient for querying the raster image that is
spatially continuous. The index’s data structure is as shown
in Figure 6 and Figure 7

0 1 2 3 4

0 1 2 3 4

A

B
C

D

Figure 6. Establishment grid index for the dataset

The detailed grid index’s process is described as follows:
1. Traverse the dataset using open-source Geospatial Data

Abstraction Library (GDAL) [15], select the appropriate grid
size according to each single TIFF image’s MBR. We set
the size to be a half of the minimum edge length of all
MBRs.

2. Established grid index storage structure, and compute
the intersect situation between TIFF images and each grid
according to their MBR. Then register the images to their
intersected grids. Each grid cell maintains a list of images.
The registered object’s data structure can be designed

 5

[Downloaded from www.aece.ro on Saturday, October 13, 2018 at 09:03:26 (UTC) by 159.226.100.198. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 16, Number 4, 2016

specifically. For example, our design of the index object
includes TIFF image’s storage path in the file system and
their geographic coverage range, namely MBR, which could
be used for follow-up fine filter operation. Other image
property information can be added to the index structure in
light of users’ requirements. The index file is stored in the
file system to be called by rendering engine.

(0,0) A

(1,0) A

(2,0) A

(3,0) C

(4,0) C

(0,1) A (0,2) A (0,3) (0,4)

(3,4)

(4,4)

(1,4)

(2,4)

(3,2)

(4,2)

(1,2) A B B

B

B B

B B

D

(2,3) B D

(1,3) B D

(4,3) B

(3,3) B

(2,2) A B D

(1,1) A B D

(2,1) A B D

(3,1) C B

(4,1) C B

Figure 7. Data structure of the grid index

The following is a simple example of querying progress.

A

B
C

D

0 1 2 3 4

0 1 2 3 4

Query
window

Figure 8. Using the MBR of a tile as query window

As Figure 8 shows, presume the dark grey box to be the
coverage range of a random tile and transfer its MBR to the
query function integrated in the rendering engine, so that we
can retrieve the intersected grid’s ID with the pre-built index
file. In this example, the grid ID query result is (2,0), (2,1),
(3,0), and (3,1); After that, we pop out all the objects
contained in these grids as Figure 9 shows and remove the
repeated items.

(0,0) A

(1,0) A

(2,0) A

(3,0) C

(4,0) C

(0,1) A (0,2) A (0,3) (0,4)

(3,4)

(4,4)

(1,4)

(2,4)

(3,2)

(4,2)

(1,2) A B B

B

B B

B B

D

(2,3) B D

(1,3) B D

(4,3) B

(3,3) B

(2,2) A B D

(1,1) A B D

(2,1) A B D

(3,1) C B

(4,1) C B

Figure 9. Query result

After we get the rough query results of A, B, C, and D, it
is necessary to do refined filter by their MBR’s spatial
relation with query window’s. Eventually we get the final
query results: B and C. Their full path will be passed to a
special function to generate XML-style string provided to the
Mapnik rendering engine. After this tile is drawn, traverse all
tiles hierarchically follow the procedure above, a tile-
pyramid will be built completely.

Because the actual raster dataset may contain thousands of
image files, using the tiling strategy described above is
suitable for high levels’ tiles, which cover smaller spatial
scale so that we can quickly retrieve the few intersected
images in the dataset, and the XML-style string generated is
also short which greatly reduce the burden of the rendering
engine for a quick visualization purposes.

As we can see, the query result by the grid index before

refined filter is redundant because the objects in the grids that
achieved are not always intersected with the query window.
And if we reduce the grid size to improve retrieval precision,
the generated index file volume will increase, causing
unnecessary reading time cost and retrieving burden, which
affect the efficiency of the visualization in the end. To tackle
the problem, refined filter of the middle result is necessary to
minimize the size of the result set which will be transferred
to Mapnik. And to be more adaptive, other types of spatial
index will be introduced to the solution in our future work,
which can also decrease the retrieval redundancy without the
need of an additional filter to the result.

C. Low level tile generation method

For the lower levels in tile-pyramid, the pre-built index is
essential to the tiles generation. From the bottom level to
threshold level, we use each tile’s MBR to be the query
window and retrieve the intersected images to render the tile
image. Since the pre-set file number threshold is 30, if the
query window’s spacial range intersects less than 30 image
files (assuming the progress comes to level N pyramids when
the file number threshold is reached), in that level number
below N, we use the original image data to generate tiles data
in the way described in Chapter 2.2: Reading index objects’
full path as well as MBR information and generating XML
style string to pass to Mapnik rendering engine. Then
Mapnik reads image data to slice the tiles within the viewport
according to the style string and save them in the tile-
pyramid cache.

D. High-level parallel tiling method

Cause the tiles in high level covers larger spatial range,
they intersect with large quantity of images in the dataset. It
is insufferable to render the tiles using the index method
above. That is the main reason why existing GISs take so
much time to build a tile-pyramid. We apply a new method
called resampling to do the time-consuming job: based on the
tiles data in level N, resample to generate tile data in level 1
to N-1 layer-by-layer. Specific sampling procedures are as
showed in Figure 10. When generating the k (1 ≤ k ≤ N-1)
level tiles data, use the k+1 level tiles data as sampling
source. In k+1 level tiles data, make every four adjacent tiles
to be a unit as a tile package. In each tile package, one line is
taken from each two lines and one column is taken from each
two columns to generate tiles in the higher level. In other
words, it produces a 256 256 pixels tile in the k level
sourcing from a 512 512 pixels tile package in the k+1
level. Because the low-level view displays larger areas, the
sampling tile’s resolution does not affect the view effect.

Figure 10. Resampling to generate higher level tile

 6

[Downloaded from www.aece.ro on Saturday, October 13, 2018 at 09:03:26 (UTC) by 159.226.100.198. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 16, Number 4, 2016

IV. EXPERIMENT

We implement the new tile-pyramid building method
based on a high performance GIS platform named HiGIS
[16]. The performance of this method is compared with
ArcGIS software.

Experimental data: Wuling district in Hunan province’s
high-resolution raster image dataset.

Size of experimental dataset: 10-1000 TIFF raster files.
Single image size: 79.322MB, 5201x5201 pixels.
Experimental environment: Super-micro high performance

servers.
TABLE I. HARDWARE ENVIRONMENT

Environment HiGIS ArcGIS

CPU 64 cores 64 cores

RAM 512 GB 512 GB

OS CentOS 6.5 Windows 7

File System GPFS NTFS

 To evaluate the new method, we first adopted the
traditional visualization process like ArcGIS does, in other
words, first mosaic dataset to one image, then build an
image-pyramid, finally cut it to a tile-pyramid. We found that
when process GB-sized raster dataset containing hundreds
TIFF files. ArcGIS’s processing capacity limit has been
reached. For example, mosaicking a 3000 TIFF-file dataset
to a single image will cost hundreds of hours due to the
hardware calculation resources are not fully used. As a result,
it cannot finish building a tile-pyramid for such dataset in
foreseeable time, so eventually we set the dataset’s upper
limit size to be 1000 TIFF-file.

As the most advanced GIS software in the industry,
ArcGIS also provides a mosaic raster dataset way to display
a regional image dataset except traditional tile-pyramid
building method. Users can take advantages of the Mosaic
Dataset tool in ArcGIS’s ToolBox assembly. This tool does
not mosaic images in physical, but realizes virtual mosaic in
memory according to each image’s geographic range. After
that, the image-pyramid and tile-pyramid can be established
for providing tile service for map visualization.

The following two tables show the experimental platform
HiGIS’s and ArcGIS’s experimental results and Figure 11 is
the line chart of the comparison.

Line chart’s abscissa axis refers to datasets’ scale, which is
represented by the number of image files that the dataset
contains; the axis of ordinate refers to the time cost of
building a whole tile-pyramid for the corresponding dataset.
As can be seen from the chart, when the raster datasets are in
small scale, the efficiency of the new method and ArcGIS
differs within an order of magnitude. But when a dataset
contains up to hundreds or even thousands of images, new
method can finish the building task as fast as more than 20
times of ArcGIS does. In addition, with the datasets’ scale
grows, this method takes a linear upward trend time cost,
other than ArcGIS’s phenomenon of exponential growth. We
could safely draw the conclusion that our new method
manages to improve the efficiency of building tile-pyramids
for large-scale raster dataset greatly. And it also has a good
running stability.

Besides, the indexes we built occupy tiny of memory
space, comparing to the gigantic size of raster datasets. The
indexs’sizes vary from 1kB to 1MB when the datasets’ scales

range from 10 to 1000 tiff files. And we can see that the
timecost of building the index is negligibly small.

TABLE II. STATISTICS OF TILE-PYRAMID BUILDING TIMECOST

Dataset
scale

Index
building/s

Generate
the tiles in
level 15-

20/s

Generate the
tiles in level

1-14 by
resampling/s

Total
timecost/s

10 0.037 402 0.189 402.226

20 0.045 478 0.218 478.263

50 0.054 605 0.859 605.913

100 0.071 957 1.737 958.808

200 0.116 2286 0.824 2286094

500 0.939 4227 1.071 4229.01

1000 3.221 14250 3.942 14257.163

TABLE III. STATISTICS OF TILE-PYRAMID BUILDING TIMECOST USING

MOSAIC DATASET TOOL IN ARCGIS

Dataset
scale

Build
image-

pyramid/s

Create
thumbnail/s

Build tile-
pyramid/s

Total
timecost/s

10 22.66 14.14 2021.94 2058.74

20 42.79 29.96 1768 1840.75

50 103.1 46.98 11354 11504.08

100 200.1 136 22489 22825.1

200 423.16 237 47103 47763.16

500 1160.16 615 123101 124876.16

1000 2451.27 1320 265139 268910.27

Figure 11. Time cost Statistics and comparison

Fig.12 and Fig.13 show the visualization effects of HiGIS
based on our new method and the mosaic dataset tool of
ArcGIS. But as we drag the map or do zoom in or out
operation, the user experiences differ from each other to a
large extent. HiGIS respond quickly and displays smooth
effect of visualization, while ArcGIS can hardly display the
result to its users within tolerable delay time.

Figure 12. Visualization of massive dataset in HiGIS

 7

[Downloaded from www.aece.ro on Saturday, October 13, 2018 at 09:03:26 (UTC) by 159.226.100.198. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 16, Number 4, 2016

 8

[4] Y. Zhao and N. Wang, “A Quick Tile Caching Generating Method
Based on Dynamic Projection and Scan-Line Cropping,” Geomatics
Science and Technology, vol. 34, no. 41, pp. 34-41, April 2015. doi:
10.12677/GST.2015.32006.

[5] Z. Du and Q. Li. “A New Method of Storage and Visualization for
Massive Point Cloud Dataset,” In Proc. CIPA Symposium, Kyoto,
Japan, Oct. 2009.

[6] N. Kang, Q. Xu, Y. Zhou and C. Lan, “A Graphic Hardware-based
Algorithm for Visualization of Massive Terrain Dataset,” Journal of
System Simulation, vol. 19, no. 17, pp. 61-64, Sept. 2007. doi:
10.16182/j.cnki.joss.2007.17.039.

Figure 13. Visualization of mosaic dataset in ArcGIS [7] C. Dai, Y. Zhang, X. Deng and Z. Geng, “Fast Rendering of Massive
Textured Terrain Data,” In proc. ASPRS Annual Conference, Reno,
Nevada, May 2006. V. CONCLUSION

With experimental validation, the Multilevel adaptive
method of building tile-pyramids for massive raster dataset
shows dozen times of efficiency improvement comparing
with ArcGIS, the most common-used GIS software in the
geographic information industry. And it is also capable of
supporting the tiling process for much larger size of dataset.
In our practical application, the method has completed many
tiling tasks which far beyond ArcGIS’s capability. With the
high performance of the methods, we get closer to the target
of “visualizing upon obtaining” for geographic image data,
which promotes time-sensitive decision and application
based on fast visualization [17].

In our future work, further enhancement to the universality
of the method will be under thought. For large scale spatial
data in different formats, we can make use of the multilevel
adaptation strategy similar to the new method [18]. Besides,
more efficient and diverse spatial indexes, like Quad-tree
[19], r-tree and Geohash, could be applied in the method to
improve query precision in order to reduce the retrieval
redundancy, which will further alleviate rendering pressure.
If possible, distributed spatial index structure could be
designed to take advantages of the distributed hardware
environment [20-21].

[8] R. Pajarola, “Large Scale Terrain Visualization Using the Restricted
Quadtree Triangulation,” In Proc. IEEE Visualization Conference,
IEEE, pp. 19-26, Oct. 1998. doi:10.1109/VISUAL.1998.745280.

[9] L. Hwa, M. Duchaineau and K. I. Joy, “Real-time Optimal Adaptation
for Planetary Geometry and Texture: 4-8 Tile Hierarchies,” IEEE
Transactions on Visualization and Computer Graphics, vol. 11, no. 4,
pp. 355-368, June 2005, doi: 10.1109/-TVCG.2005.65.

[10] R. Westerteiger, A. Gerndt, B. Hamann, “Spherical terrain rendering
using the hierarchical HEALPix grid,” In Proc. IRTG, Kaiserslautern,
Germany, pp. 13-23, Oct. 2011. doi: 10.4230/OASIcs.VLUDS.-
2011.13

[11] P. Lindstrom and V. Pascucci, “Terrain simplification simplified: A
general framework for view-dependent out-of-core visualization,”
IEEE Transaction on Visualization and Computer Graphics, vol. 8,
no. 3, pp. 239-254, July-Sept. 2002.
doi:10.1109/TVCG.2002.1021577.

[12] F. Losasso and H. Hoppe, “Geometry clipmaps: terrain rendering
using nested regular grids,” ACM Transactions on Graphics, vol. 23,
no. 3, pp. 766-773, 2004. doi: 10.1145/1015706.1015799.

[13] G. He, W. Xiong, L. Chen, “A MPI-based parallel pyramid building
algorithm for large-scale remote sensing images,” In Proc.
Geoinformatics, 2015 23rd International Conference on. IEEE, pp. 1-
4, 2015. doi: 10.1109/GEOINFORMATICS.2015.7378567.

[14] A. Liu, Q. Du, D. Zhang, Z. Cai and H. Li, “Organization and
Indexing Mechanism for Global Tile Map Data Under Embedded
Environment,” Geomatics and Information Science of Wuhan
University, vol. 40, no. 4, April 2015, doi: 10.13203/j.whugis-
20140415.

[15] C. Qin, L. Zhan and A. Zhu, “How to Apply the Geospatial Data
Abstraction Library (GDAL) Properly to Parallel Geospatial Raster
I/O,” Transactions in GIS, vol. 18, no. 6, pp. 950-957, 2014, doi:
10.1111/tgis.12068.

[16] W. Xiong, L. Chen, “HiGIS: An Open Framework for High
Performance Geographic Information System,” Advances in
Electrical and Computer Engineering, vol.15, no. 3, pp. 123-132,
2015. doi: 10.4316/AECE.2015.03018.

ACKNOWLEDGMENT

Thanks to the hardware maintainers and software
developers in DBRG, especially to Xing Jin, a young skilled
front-end web programmer. Thanks to senior laboratory
Anran Yang, an experienced, talented PhD, who gave me
plenty valuable advices on algorithm development.

[17] R. Barton, “Modern Algorithms for Real-Time Terrain Visualization
on Commodity Hardware,” In Proc. Geoinformatics FCE CTU, 2010.
doi: 10.14311/gi.5.1.

[18] M. Duchaineau, M. Wolinsky, D. Sigeti, M. Miller, M. Mineev-
Weinstein and C. Aldrich, “ROAMing Terrain: Real-time Optimally
Adapting Meshes,” In Proc. IEEE Visualization, pp. 81–88, Oct.
1997. doi: 10.1109/VISUAL.1997.663860. REFERENCES

[19] R. Pajarola, M. Antonijuan and R. Lario, “QuadTIN: Quadtree Based
Triangulated Irregular Networks,” In Proc. VIS’02: Proceedings of
the Conference on Visualization, pp.395–402, Nov. 2002. doi:
10.1109/VISUAL.2002.1183800.

[1] X. Wang, F Zhang and L Zhang, “Tile-pyramid Construction and
Organization Based on Terrain Data,” Mapping and Geospatial
Information, vol. 35, no. 6, pp. 49-51, Jun. 2012. doi: 10.3969-
/j.issn.1672-5867.2012.06.014.

[20] M. Clasen and H. Hege, “Terrain Rendering Using Spherical
Clipmaps,” In Proc. Joint Eurographics - IEEE VGTC Symposium on
Visualization, pp.91-98. May 2006. doi: 10.2312/VisSym/EuroVis06-
/091-098.

[2] Y. Wang, Y. Pu, L. David and X. Song. “Tile Generation of Multi-
Source Projection Vector Data Based on TileStache,” Geo-
information World, vol. 22, no. 1, pp. 77-81, Jan. 2015. doi:
10.3969/j.issn.1672-1586.2015.01.020.

[21] S. Rusinkiewicz and M. Levoy, “QSplat: A Multiresolution Point
Rendering System for Large Meshes,” In Proc. International
Conference on Computer Graphics and Interactive Techniques, pp.
343-352, 2000, doi: 10.1145/344779.344940.

[3] J. Li, B. Gan, L. Meng, W. Zhang and H. Duan, “Fast Section of
Sequential Remote Sensing Image Cache in the Cloud Environment,”
Journal of Information Sciences, Wuhan University, vol. 40, no. 2, pp.
243-248, Feb. 2015. doi: 10.13203/j. wugis20130079.

[Downloaded from www.aece.ro on Saturday, October 13, 2018 at 09:03:26 (UTC) by 159.226.100.198. Redistribution subject to AECE license or copyright.]

