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ABSTRACT

Removal of unwanted, effete, or damaged cells through
apoptosis, an active cell death culminating in phago-
cytic removal of cell corpses, is an important process
throughout the immune system in development, con-
trol, and homeostasis. For example, neutrophil apopto-
sis is central to the resolution of acute inflammation,
whereas autoreactive and virus-infected cells are simi-
larly deleted. The AC removal process functions not
only to remove cell corpses but further, to control inap-
propriate immune responses so that ACs are removed
in an anti-inflammatory manner. Such "silent" clearance
is mediated by the innate immune system via polarized
monocyte/macrophage populations that use a range of
PRRs and soluble molecules to promote binding and
phagocytosis of ACs. Additionally, attractive signals are
released from dying cells to recruit phagocytes to sites
of death. Here, we review the molecular mechanisms
associated with innate immune removal of and re-
sponses to ACs and outline how these may impact on
tissue homeostasis and age-associated pathology
(e.g., cardiovascular disease). Furthermore, we dis-
cuss how an aging innate immune system may contrib-
ute to the inflammatory consequences of aging and
why the study of an aging immune system may be a
useful path to advance characterization of mechanisms
mediating effective AC clearance. J. Leukoc. Biol. 90:
447-457; 2011.

Introduction

Death is essential to life, throughout development to the latest
point in our active lives. Estimates suggest that approximately
1 million apoptotic deaths per second occur within the human

Abbreviations: AC=apoptotic cel, ACAMP=apoptotic cell-associated mo-
lecular pattern, Axl=annexin |, CLR=C-type lectin receptor, CX3CL1=
fractalkine, DAMP=damage-associated molecular pattern, dRP S19=dimer
of ribosomal protein S19, EMAP-lI=endothelial monocyte-activating poly-
peptide I, Gas-6=growth arrest-specific 6, Lox-1=lectin-like oxidized
LDLR-1, MBL=mannose-binding lectin, Mer=myeloid epithelial reproduc-
tive tyrosine kinase, NLR=NOD-like receptor, PS=phosphatidylserine,
PTX=pentraxin(s), RLR=retinoic acid-inducible gene-I-like receptor, RP
S19=ribosomal protein S19, SP-A/D=surfactant protein A/D,
SR=scavenger receptor, TSP=thrombospondin, tRS=tyrosytRNA synthe-
tase
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body—deaths that are "balanced" against cell birth to main-
tain homeostasis. However, there is often an imbalance be-
tween the rates of cell birth and cell death to permit accumu-
lation of cells (e.g., leukocytes during infection) or to delete
cells (e.g., postinfection to permit resolution of an immune
response). Active cell death by apoptosis is a vital process to
delete such unwanted, effete, or damaged cells. Intriguingly,
AC clearance mechanisms share remarkable similarities with
those involved in recognition and removal of pathogens. De-
spite such similarities, responses to the removal of pathogens
versus ACs are diametrically opposed proinflammatory versus
anti-inflammatory. Such differences likely arise from a variety
of mechanisms, including the profound immunomodulatory
effect that ACs exert upon their phagocytes. In the following
sections, we review the molecular mechanisms by which ACs
are removed by the innate immune system, highlighting mech-
anisms that may result in an anti-inflammatory response, and
discuss how this may associate with inflammatory consequences
of aging.

THE ULTIMATE PHASE OF APOPTOSIS

Apoptosis is often considered to be a simple process of cell
inactivation and dismantling, where the functional endpoint of
apoptosis—AC clearance—is ignored. However, the final cell
clearance stage of apoptosis is arguably the most important in
the apoptosis program and is necessary for removing cells in a
variety of situations, from normal, physiological cell death (as-
sociated with tissue homeostasis) through to death associated
with pathology (inflammation and infection).

The ultimate clearance phase is a complex, multistage pro-
cess that comprises a number of steps that rely on a large
range of phagocyte receptors and AC-derived ligands, which
link directly or via soluble bridging/opsonizing molecules.
Even at a most simple level, these steps include recognition of
dying cells, binding, and phagocytosis. In vivo, however, as we
will cover later in this review, the process may involve a num-
ber of cellular and molecular functions upstream of the simple
"eating" of dying cells.
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PHAGOCYTES OF DYING CELLS

A classification of AC phagocytes as "amateur/semiprofes-
sional” or "professional" has been used for many years. Macro-
phages and neutrophils of the innate immune system are
known as "professional phagocytes" because of their powerful
and robust capacity to phagocytose particles, especially of mi-
crobial origin. Although macrophages are also proven phago-
cytes for ACs (Fig. 1), it is not clear that they are the routine
phagocytes for dying cells. Additionally, neutrophils are ex-
tremely active in the phagocytosis of microbes with little role
in dead cell clearance until activated [1]. Indeed, ACs actively
repel viable granulocytes [2].

In most sites within higher organisms, cell death will occur
in the absence of neighboring macrophages, a similar situation
to that seen in the nematode Caenorhabditis elegans, where pro-
fessional phagocytes are absent. In such situations, the usual
phagocyte is likely to be a viable neighbor. Although the abil-
ity of amateur phagocytes (i.e., non-macrophages), such as epi-
thelial cells, to eat ACs has long been noted [3-7], its impor-
tance has been under-valued. Given the strong conservation in
clearance mechanisms (in terms of phagocyte receptors [8, 9],
adaptor proteins [10, 11], and bridging molecules [12, 13])
and AC ligands [14] between C. elegans and humans, the
"traditional" phagocytes of dying cells are almost certainly the
"amateurs".

In higher organisms, macrophages are seen to clear dying
cells at sites where there is a high incidence or persistence of
AGCs. This association suggests that macrophages are the pro-
fessional phagocyte of ACs and has been clearly shown in
Burkitt’s lymphoma (for tumor-associated macrophages [15]),
lymphoid follicles (for tingible-body macrophages [16, 17]),
and experimentally, in animal models defective for certain
phagocyte receptors (e.g., CD14 [18] and MBL [19]; see be-
low). This contrasts with sites of low-level apoptosis, where dy-
ing cells are rarely imaged, as cell corpses rapidly disappear
following highly efficient phagocytosis, which may even occur
prior to any overt morphological features of apoptosis. How-
ever, given the efficiency with which dead cells are routinely
cleared within tissue homeostasis and macrophage recruitment

Figure 1. Macrophage recognition of an apoptotic B cell. Coculture of
macrophages with ACs reveals clearance of ACs (arrows). (A) Differen-
tial interference contrast microscopy; (B) acridine orange revealing
the intense punctate staining of the AC nucleus.
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to persisting death (as a consequence of high-level death or
failed/overwhelmed clearance), macrophages have been
termed "professional scavengers" of dying cells [20].

MOLECULAR MEDIATORS OF AC
CLEARANCE

Removal of dead and dying cells requires different molecular
functions at different stages. Many, largely in vitro, studies
identified a wide array of phagocyte-associated receptors that
are proposed to link to a more limited number of identified,
AC-associated ligands. This link is known to be direct or via a
soluble bridging/opsonizing molecule (Fig. 2).

The large number of molecules involved in dead cell clear-
ance provides redundancy to ensure efficient clearance even
in the face of inhibition of one or a number of pathways. De-
fects in AC clearance molecules have been linked to a range
of diseases [21]. However, as deficiency of individual mole-
cules (e.g., CD14, MBL, and Clq) may lead to defective clear-
ance, redundancy may not be so extensive as often thought,
and the superphagocyte, shown in Fig. 2, is unlikely to exist, as
it is the simple corollary of all phagocyte studies. The clear-
ance mechanisms depicted are expressed across different
phagocytes (e.g., amateur vs. professional) and within different
cell subpopulations (e.g., monocyte/macrophage subpopula-
tions). Such phenotypic variation within the phagocyte "pool"
may serve to tailor the nature of activity and response to ACs.
As the phagocyte is decisive in the net response to cell death
[22], further characterization of phagocyte phenotypes in dif-
ferent situations (i.e., aging, pathology, or normal tissue struc-
ture/function) is necessary.

These multiple mediators of clearance may work together,
perhaps sequentially, to mediate firm adhesion and ultimate
engulfment of ACs. This cooperative of molecules has been
termed the "phagocytic synapse", as a result of its proposed
similarity to the immune synapse formed between T cells and
APCs [23, 24]. In both synapses, it is likely that low-affinity in-
teractions become strengthened through activation of adhe-
sion molecules (e.g., integrins) and the net effect of many low-
affinity interactions to increase the overall avidity of binding.
Such a model would require multiple molecular interactions
and would explain the variety of molecular players.

To simplify the complexity, previous work has sought to
characterize molecules by their function. The clearance pro-
cess can be divided into a range of steps: recognition of, re-
sponses to, and engulfment of ACs, which can be subdivided
further. Consequently, it has been possible to assign a function
to certain molecules within this multistep process, and this has
led to molecules being labeled, for example, as tethering, sig-
naling, or engulfment receptors [18, 21, 25-28].

Pattern recognition and AC clearance

The fine detail of AC clearance mechanisms has been re-
viewed elsewhere and is beyond the scope of this review (re-
viewed in refs. [15, 20, 28]). Here, we consider a subset of
molecules involved in clearance, the PRRs of the innate im-
mune system. Many identified AC recognition molecules (Fig.

www jleukbio.org



CXBCR 10
----- 2
SHPS-1 FOUN ;»;“;%Q

Devitt and Marshall INnnate immune clearance of apoptotic cells

CDo1 Figure 2. Molecules implicated in the
/ binding and phagocytosis of ACs by
'V'/': CD31 phagocytes are shown on this cartoon of
.;'\ a "superphagocyte" and schematic AC.
BAI- B2GPI-R, B2-glycoprotein I receptor;
ABCAI, ATP-binding cassette transporter
TIM ‘ V- 1; aCHO, altered carbohydrate; ASGPR,
1,34 PS ASGPR asialoglycoprotein receptor; BAI-1, brain-
62GPI O ;\,\‘.ﬁ\.\\ specific angiogenesis inhibitor 1; CRT,
— calreticulin; dCD31, disabled CD31; MFG,
p2GPI-R A\‘ S '! cD14 milk-fat globule EGF-8; OxLIs, oxidized
Gas-6 I.JD'L—like site; OxPL, oxidized phospl.lo—
lipid; SHPS-1, Src homology 2 domain-bear-
\ <0 ) ing protein tyrosine phosphatase sub-
Mer PTX/ A4S - strate-1; TBS, TSP-binding site; Tim 1,3,4, T
a' ® g ! \ *7 Cg.?:‘ cell Ig and mucin domain-containing mole-
a MEG (<)) ‘ .\ CD93 cule 1, 3, or 4. Adapted from ref. [20].
Fo/R ‘ \ ’\‘/L B B2 Integrin
\ i L=t Lox-1

ayB3/5 -

R-Al SR-BI
Dag CP68 S

2) are established, active components of the innate immune
system and include SRs, complement components and their
receptors, and soluble and cell-associated pattern recognition
molecules. The concept of pattern recognition proposes that
pathogens are identified by means of evolutionarily conserved
patterns (PAMPs), which are recognized by specialized PRRs
[29]. Given the strong, immune-activating function proposed
for PRRs, it is intriguing that the innate immune system is in-
volved in AC clearance.

Macrophage PRRs and AC clearance

CD14, the prototypic PRR, promotes noninflammatory AC rec-
ognition and phagocytosis [30], while mediating proinflamma-
tory responses [31, 32] and septic shock [33, 34] to PAMPs
(e.g., LPS). CD14 appears to tether ACs to macrophages [18],
although a function for CD14 beyond the tethering stage (e.g.,
phagocytosis) remains possible, and its association with other
molecules within the phagocytic synapse remains an important
area for study, as this may influence the potential inflamma-
tory outcome of CD14 ligation.

Notably, CD14 appears nonredundant (or only partially redun-
dant) in its function. Knockout mice reveal a dramatic clearance
defect in vivo with persisting ACs in many tissues, although such
mice are healthy and fertile and do not suffer the devastating
inflammatory consequences of failed AC clearance, suggesting
that immunomodulatory functions were still intact [18].

Although CD14 was the first "defense" receptor implicated in
AC clearance, it was not the first PRR to be implicated in this
process. Early studies of AC clearance largely identified SRs [35—
40], which comprise a family of apparently highly redundant re-
ceptors for modified forms of LDL [41] and demonstrate conser-
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vation of function throughout evolution. In 1992, the class B SR
CD36 was reported to function for AC clearance in conjunction
with the previously identified integrin av33 (the vitronectin re-
ceptor) and a soluble bridging molecule TSP. Later, Croquemort
was discovered in Drosophila as a CD36 superfamily member with
equivalent capacity to clear dead cells in flies. Since these early
studies, a variety of other SRs—Lox-1, CD68, SR-AI, SR-AII, and
SR-BI—has been implicated in the removal of dead and dying
cells. This is a family of receptors that unlike CD14, appears to
exhibit redundancy. In relatively few cases do animals deficient
for molecules implicated in AC clearance exhibit defective clear-
ance of AGs. For example, SR-A-deficient mice appear to clear
ACs effectively [42], despite a clear role for SR-A-mediated AC
clearance in vitro [40].

Over recent years, different PRR classes have been identi-
fied, and understanding of the TLRs, NLRs, CLRs, and RLRs
is expanding [43]. These receptor classes reside throughout
the cell to detect ligands of microbial and nonmicrobial origin
(e.g., DAMPs released from injured, non-ACs) and signal to
promote immune responses appropriate to the ligand [43-45].
There is little evidence for the involvement of these receptor
classes in AC clearance, although given similarities in ligands for
CD14 and these receptors (e.g., muramyl dipeptide from pepti-
doglycan is bound by CD14 [46, 47] and NOD-2 [48, 49]), a role
in binding and responses to ACs are possible.

Soluble factors

The involvement of pattern recognition in dead cell clearance
is even more striking when one considers the extensive range
of soluble, bridging molecules known to opsonize ACs and
mediate their uptake (reviewed in refs. [20, 50]). These solu-
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ble opsonins include complement components [51-56]. An in
vivo deficiency of Clq results in defective AC clearance and
severe pathology and autoimmune consequences [51, 57].

The collectins, a family of C-type lectins, including SP-A and
SP-D (lung collectins), along with MBL, have all been shown
to bind and opsonize ACs for uptake [19, 54, 58—-60]. It is of
note that an in vivo deficiency in MBL, such as CD14, results
in deficient AC clearance without associated pathology [19].

A further family of soluble factors includes the PTXs, with
C-reactive protein and serum amyloid protein, which can pro-
mote AC clearance [61-63]. The long PTX3 also binds ACs
but has been suggested to moderate AC clearance [64-66].
The presence in this list of positive, acute-phase proteins sug-
gests that these molecules may play an active role in the reso-
lution of inflammatory responses [50].

Although CD14 was identified initially as a membrane recep-
tor [67, 68], it also exists as a soluble plasma protein [69-71].
Its soluble counterpart has been proposed to function as a sol-
uble pattern recognition molecule for the recognition of LPS
and to promote responses in cells that do not express CD14
[72, 73]. Although involvement of soluble CD14 in binding to
ACs has been shown experimentally, its role in mediating AC
clearance is not proven.

DISTINGUISHING DEATH

Specific recognition of dead and dying cells is essential and
during apoptosis, a loss of "don’t eat me" signals and a gain of
"eat me" signals to phagocytes. However, relatively little is
known about the identity and structure of the AC-associated
ligands for phagocyte receptors.

The most characterized of these specific surface changes is
the exposure of the anionic phospholipid PS [74, 75]. The
distribution of PS is poorly controlled in apoptosis, and its
presence in the outer leaflet of the plasma membrane is pro-
longed, generating a negative charge at the cell surface, and
can mediate clearance of ACs [76]. PS, also present in viable
cell membranes, sets an important example of how molecule
relocation (rather than fundamental structural changes) can
underlie a novel function. Beyond PS, the identification of
specific eat me signals has proved challenging. Other, less de-
fined, changes indicate an involvement of sugars [77, 78], oxi-
dation of PS [79], and exposure of intracellular components
(e.g., AxI [80]).

ICAM-3 becomes functionally altered during apoptosis to
mediate clearance of apoptotic leukocytes through suggested
generation of neo-epitopes (i.e., eat me signals) [81]. How-
ever, the proposed changes in ICAM-3 that may underlie its
change of function have remained elusive, although it may be
structurally altered (e.g., glycosylation changes) or may relo-
cate to support its change of function. The loss or gain of part-
ner molecules at the cell surface during apoptosis may generate
or alter receptor specificity for any given ligand on ACs.

The ability of phagocytes to clear dead cells is finely bal-
anced, although the detail of this important balance is still to
be fully elucidated. Coupled with the appearance of surface
alterations on dead cells is an apparent loss of other (viable
cell-associated) signals. The analysis of CD31 suggested that
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molecules on viable cells may provide so-called don’t eat me
(inhibitory) signals, which are lost during apoptosis, permit-
ting viable cellular interactions (e.g., CD31-CD31 in trans) to
become functional phagocytic interactions [82]. Further sup-
port for this has been provided through a report that disrup-
tion of CD47 on ACs removes inhibitory signals, thus allowing
cell clearance [83]. It seems likely that gain of eat me signals
and loss of don’t eat me occur at the surface of the AC, and
together, they facilitate cell removal.

Given the shortage of data describing structural alterations
within specific molecules during apoptosis, it seems likely that
careful analysis of the relative location and topology of mole-
cules will prove important in underlying any change of func-
tion associated with a molecule on dying cells. For example,
PS exposure on ACs has been noted to occur in patches, a re-
distribution that may be essential to its function [84, 85].

Similarity between pathogens and ACs

The significant involvement of the innate immune system in
recognition of pathogens and dying cells raises questions relat-
ing to the structural similarity of pathogens (unwanted "non-
self") and ACs (unwanted "self") and has led to the suggestion
that AGs, like pathogens, carry conserved molecular patterns,
which when recognized, promote their clearance; these are
termed ACAMPs [86, 87]. A key question is whether there is
structural overlap between ACAMPs and PAMPs. As CD14, lac-
toferrin, and anti-LPS antibodies reportedly bind ACs and
LPS, one may speculate that ACAMPs appear “LPS-like” in
structure [15]. The ligand repertoire of CD14, however, is
large [88, 89], although it is unclear whether within these di-
verse ligands, there resides a small, conserved submolecular
pattern that is recognized.

PHAGOCYTE RESPONSES TO ACS

Although AC clearance is considered anti-inflammatory (re-
viewed in ref. [90]), in part, through the release of immuno-
modulatory cytokines [91-93], evidence indicates that this is a
far-from-simple system of control. ACs promote proinflamma-
tory responses to PAMPs over early time-points, suggesting that
multiple inflammatory control mechanisms are working to-
gether over the period of stimulation [94]. Given the extensive
involvement of the innate immune system in AC clearance and

protective inflammatory responses to pathogens, a key remain-
ing question within this field is what dictates the net anti-in-
flammatory response following ligation of PRRs with ACs. Liga-
tion of CD14 by different ligands (ACs or PAMPs) leads to op-
posing responses, where CD14 may represent an important
decision point in the inflammatory responses of macrophages.
The molecular basis for this dichotomy has yet to be defined
and is similarly important for other implicated PRRs.

A number of possible models have been put forward to ex-
plain the divergence of response following ligation of PRRs by
PAMPs or ACAMPs [20].

Most simply, structural similarity between PAMPs and
ACAMPs may not exist, so their ligation of PRR may differ and
signal via different mechanisms for pro- and anti-inflammatory
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responses, respectively. The molecular basis for this may reside
in precise residues within CD14, which are ligated by LPS and
AGCs, and detailed mapping of CD14 is required.

A further basis may be in the constitution of the phagocytic
synapse and inherent signaling partners. Thus, the molecular
composition of the phagocytic synapse is a further important
area for study. CD14, a GPI-anchored glycoprotein, requires
signaling partners to elicit cellular activation following ligation
[95]. Studies suggest that following CD14 ligation with PAMPs,
a range of signaling molecules and receptors, including TLRs,
is recruited to generate a signaling complex [96, 97]. It seems
likely that the nature of CD14 function will rely on the consti-
tution of its signaling complex, which has been shown to alter
in a ligand-specific manner [98]. An attractive hypothesis for
testing is that the involvement of TLRs in the CD14 signaling
complex may alter when ligated with ACs or PAMPs. Some
support for this may be afforded by observations that TLR4
deficiency did not adversely affect the ability of macrophages
to bind and engulf ACs [99].

Should structural similarities between ACAMPs and PAMPs
exist, this would indicate that phagocytes do not discriminate
ligands and subsequently, direct responses at the level of the
PRR. In this situation, ligation of CD14 with ACAMPs may ini-
tiate proinflammatory signaling. The divergence of responses
must then result downstream of the CD14-containing signaling
complex. Again, the nature of the phagocytic synapse may dic-
tate the outcome, with large complex ligands (e.g., ACs) re-
cruiting receptors/signaling pathways, resulting in alternative,
downstream signaling that may mitigate the inflammatory con-
sequences of PRR ligation. Reports have highlighted a mecha-
nism by which CD14-TLR inflammatory signaling may be in-
hibited with a negative cross-talk reported between receptor
tyrosine kinases and TLRs. Mice defective in these three family
members succumb to profound systemic autoimmune disease,
resulting from a failure to induce members of silencer of cyto-
kines, which inhibit TLR signaling in these mice [100, 101].
Interestingly, this family of tyrosine kinases has been shown to
mediate binding ACs and mediate clearance [26, 102]. Liga-
tion of CD14-TLR, in addition to ligation of Mer tyrosine ki-
nase, may lead to a dominant anti-inflammatory effect and
provide a crucial point of control in the inflammatory process
within sites of inflammation. Gas-6 has been shown to activate
an anti-inflammatory pathway to modulate LPS-induced proin-
flammatory cytokine responses in monocytes and macrophages
[103].

WHICH UNDERTAKER FINDS YOU?

The decision as to which phagocyte undertakes dead cell clear-

ance at any site may be a simple competition. With low-level
death, local amateur phagocytes may remove the corpse, al-
though should the phagocytic capacity of these cells be over-
whelmed, macrophages will infiltrate to augment clearance by
scavenging dying cells in the late stages of apoptosis [20].

Most phagocyte studies in vitro rely on gravity to associate
ACs and phagocytes. In reality, the phagocyte will move to the
corpse, a movement that has been an often-neglected part of
the process until relatively recently. How do macrophages
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know where to scavenge? It is possible that in some cases, resi-
dent tissue macrophages simply patrol and chance upon dying
cells in a stochastic manner. However, over recent years, there
has been an increase in studies demonstrating a highly active
recruitment of macrophages to ACs. Within these studies, a
series of molecular mechanisms has been proposed, which has
been reviewed extensively elsewhere [21, 104, 105].

Phagocyte recruitment to situations of high-level death is
essential. This is clearly evident in, for example, models of
sterile inflammation, where "waves" of cells infiltrate in a pre-
dictable manner to result, ultimately, in the resolution of this
inflammation [106, 107]. In this context, a range of mecha-
nisms has been proposed to function in this elegant and self-
limiting inflammatory system [108-110]. Fig. 3 shows a macro-
phage approaching a monocyte dying by apoptosis. This direc-
tional movement results ultimately in clearance of released
blebs, followed by binding of the larger cell corpse.

Attractants released from dying cells include soluble pro-
teins such as RP S19 [111], whose attractive function appears
dependent on its dimerization (to form dRP S19), possibly
through the action of tissue transglutaminse-2 [112], and it
exerts its effect through CD88, the GPCR for complement
component Cba [113]. EMAP II, following caspase-dependent
processing, also mediates phagocyte recruitment [114], along
with human ttRS, which following release from ACs and pro-
teolytic cleavage, exerts its chemokine function to recruit
phagocytes. Lysophosphatidycholine was the first lipid-based

Figure 3. Movement of a macrophage toward an apoptotic monocyte.
The images depict the active movement of a macrophage toward a
dying monocyte. The dying monocyte is visible as the upper cell in all
panels, and blebbing is visible from 60 min from start of image cap-
ture. The macrophage first binds and removes the apoptotic bodies
and then turns its attention to the remaining AC body. The time in
minutes from the start of image capture is shown.
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chemoattractant identified from ACs [115]. Its caspase- and
phospholipase-dependent release results in recruitment of
monocytes via the phagocyte GPCR G2A [116]. Most recently,
nucleotides released from ACs have been reported to act as
phagocyte attractants [117]. In this study, ATP and UTP were
released to attract monocytes and macrophages in a selective
manner through the GPCR P2Y2. A number of other putative
chemoattractants are also reviewed elsewhere, although the speci-
ficity of their action and the timing, source, and/or mechanism
of release require further study [105].

Complex particulate material also exerts important phago-
cyte recruitment effects. Segundo et al. [118] characterized
loss of membrane and associated surface proteins from B cells
during apoptosis via release of "blebs" following zeiosis. These
particulates (also known as microparticles) exert chemoattrac-
tive potential on monocytes. Despite this work highlighting a
number of adhesion molecules present within the released
microparticles from B cells, the actual molecular mediators of
chemoattraction remained ill-defined until recently. Work by
Truman et al. [119] identified CX3CLI as a key chemokine
released, at least in part, in microparticles from apoptotic B
cells. This classical chemokine, the first described in this con-
text, exerts its effects through its receptor CX3CR1, where it is
proposed to also function as an adhesion molecule. Although
the involvement of CX3CL1 has been limited to recruitment
toward apoptotic B cells, the expression of CX3CL1 may not
be so restricted as reported. CX3CL1 is expressed, in some
cases following immune challenge in a wide range of cells, in-
cluding smooth muscle cells [120], endothelial cells
[121-123], fibroblasts [124], astrocytes [125], mesangial cells
[126], renal tubular epithelial cells [127], and monocyte cell
lines [128]. This raises the possibility that CX3CLI1 may be a
more general recruitment factor than anticipated initially, al-
though further work is needed.

Many molecules will be released in microparticles from ACs,
and Fig. 2 shows potential candidates already implicated in AC
clearance. Preliminary work shows ICAM-3 is released in mi-
croparticles from apoptotic B cells and promotes chemoattrac-
tion of macrophages [129]. Furthermore, Hart et al. [130]
demonstrated preferential loss of ICAM-3 over CD31 from dy-
ing neutrophils, suggesting ICAM-3, a known adhesion mole-
cule on viable cells, may be released preferentially from dying
cells to promote their chemoattractive capacity. Indeed, given
the clear role for chemokines in recruitment to ACs, it is en-
tirely reasonable that adhesion molecules are required to ef-
fect the chemoattraction. Such similar chemokine:adhesion
molecule functional associations exist in other systems, e.g.,
leukocyte extravasation.

The surface constitution of microparticles and AC requires
further study. However, AC surface protrusions (blebs) have
been shown to contain relocated/concentrated components,
including phagocytic markers, PS [84], Clq, and MBL [54,
131, 132]. Such protrusions are suggested to be the precursors
to released microparticles and as such, may suggest that micro-
particles are smaller, tastier, more edible, and consequently,
attractive to phagocytes. A key feature of ACs and bodies is
surface charge, which is known to affect phagocytosis of yeast
cells [133], and the exposure of PS generates a negative sur-
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face charge, which promotes cell sprouting toward ACs [134].
A flow of negatively charged microparticles from ACs may act
to provide an electric current to attract macrophages in a
manner similar to the effect of electrical signals in wound
healing [135, 136].

The timing of attractant release will likely be crucial in the
appropriate recruitment of phagocytes. EMAP II has been sug-
gested to function late in the death program and perhaps con-
stitute a back-up recruitment call should additional phagocytes
be required to deal with persisting death [137]. Microparticle
generation following zeiosis occurs early in apoptosis [138]
and may therefore represent a key, early attractive event for
early phagocyte recruitment.

The cellular site of action of these attractants will also be
important. Certainly, EMAP II and ttRS exert effects on differ-
ent populations, recruiting granulocytes and monocytes [139,
140]. Lactoferrin is an important factor preventing granulo-
cyte recruitment, essential if AC clearance is nonphlogistic [2,
141]. Nucleotides selectively recruit monocytes and macro-
phages, although whether there is any subtype specificity is not
known [117]. The extent to which different attractants recruit
different subpopulations of phagocytes may impact on the in-
flammatory outcome of any site of death and suggests a point
of intervention where modulation of recruitment may be
sought for therapeutic benefit.

Characterization of these functionally important, AC-derived
microparticles remains an important focus for research. Al-
though we know a little about their constitution and function,
it seems likely that they hold many other important molecular
agents, for example, the lipid mediators lipoxins, resolvins,
and protectins, so important in control of many inflammatory
situations [108, 110, 142]. It seems likely that they may have
an important role to play in the modulation of phagocyte re-
cruitment toward dying cells in situations other than acute in-
flammation and thus, help prevent inflammation associated
with failed AC clearance. Consequently, it will be important to
characterize the lipidomics and proteomics of AC-derived mi-
croparticles.

PROFESSIONAL PHAGOCYTE
POPULATIONS

Phagocyte heterogeneity can be confusing and may arise from
inherent plasticity within macrophages. Different subpopula-
tions of macrophages undertake different functions, and var-
ied macrophage receptor expression from different anatomical
locations has been clearly demonstrated [143]. Polarity within
macrophages is well-established (reviewed in refs. [144, 145]).
"M1"- and "M2"-tyPE macrophages have been functionally de-
fined as "classically-activated" (Proinflammatory, cytotoxic)
macrophages and "alternatively-activated" (reparative, scaven-
ger) macrophages, respectively [145]. Clearance of ACs and
possibly microparticles by macrophages may skew the pheno-
type toward M2 and lead to deactivation through the effects of
the anti-inflammatory cytokines TGF-1 and IL-10 (reviewed in
ref. [90]). In reality, of course, the precise macrophage phe-
notype may be any one of a huge number along a continuum
of phenotypes altered by the microenvironment, in which the
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phagocyte finds itself. It is unclear whether in vivo ACs recruit
different subpopulations of phagocytes, although it has been
proposed that ACs within tumors may recruit macrophages
and drive their phenotype toward an anti-inflammatory M2
type, such that they may support tumor growth [15].

Monocytes also exhibit subpopulations, characterized by sur-
face receptor expression, e.g., CD14 and CD16 [146], which
exhibit different functions [147]. The monocyte subsets re-
cruited to sites of apoptosis may be defined by chemokine re-
ceptors carried, and further work is needed here. However,
when considering the chemokine receptor CX3CR1, there are
interesting associations, as monocytes positive for this receptor
are preferentially recruited to atherosclerotic plaques. Given
the nature of the plaque, a nonresolving inflammatory site
with abundant ACs and failed clearance [148, 149], it is possi-
ble that CX3CL1, in apoptotic microparticles, may act to re-
cruit monocytes to this pathological site. In atherosclerosis,
CX3CLI is found on foam cells and is important in recruit-
ment of macrophages to the vessel wall during atherogenesis
(see review, ref. [150]). It will be of interest to assess if apo-
ptotic foam cells release CX3CL1 in microparticles and if this
is @ mechanism used to recruit phagocytes to plaque. Interest-
ingly, the clearance of ACs within plaque appears defective,
despite in vitro models, suggesting no fundamental defect.
This failure to adequately deal with apoptosis promotes plaque
growth and instability through secondary necrosis [148, 149].
Phagocyte recruitment to the plaque is significant, but the na-
ture of the recruited phagocyte may well impact on the inflam-
matory outcome.

FUTURE DIRECTIONS—AN AGING
PERSPECTIVE

The innate immune system, vital to detection and proinflam-
matory control of infection, also mediates noninflammatory
clearance of dying cells. Although apparently counterintuitive,
this highlights the powerful control mechanisms preventing
unwanted inflammatory consequences of AC clearance. As
such, an improved understanding of AC clearance will provide
novel opportunities for therapeutic modulation of inflamma-
tory conditions.

Our understanding of pattern recognition of microbial
PAMPs and the orchestration of inflammatory responses is ex-
panding rapidly with the analysis of different classes of PRRs,
including TLRs, RLRs, CLRs, and NLRs (reviewed in refs. [43,
151]). Ligation of these different receptor classes in different
cellular locations (e.g., cell surface, endosomal, cytoplasmic)
initiates proinflammatory consequences and ultimately acti-
vates the adaptive immune system (reviewed in ref. [152]).
These receptors are also activated by ligands of nonmicrobial
origin, i.e., damaged cells. However, our understanding of the
inflammatory control of AC-PRR ligation is not so comprehen-
sive, and there are many outstanding questions over the con-
trol of inflammatory responses to ACs. It is reported that ACs
don’t activate these PRR classes, possibly through sequestration
of stimulatory DAMPs [153], but it is unclear if AC ligands fail
to ligate these PRRs or additionally exert a dominant, anti-
inflammatory signaling. The role that these different receptor
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classes may play in supporting tolerogenic antigen presenta-
tion is unclear and is an important area for study.

Although molecular deficiency can inhibit AC clearance and
result in inflammatory consequences (e.g., complement defi-
ciency and autoimmunity [53]), it is unclear how defective re-
moval of or responses to ACs may impact on inflammation in
"normal” individuals. It is noteworthy that inflammatory dis-
eases associated with consequences associated with AC clear-
ance genes (reviewed in ref. [21]) are conditions strongly asso-
ciated with aging (e.g., atherosclerosis, cancer, autoimmunity,
arthritis) and suggest that clearance of and responses to AC
may be impaired during aging, which is an inescapable, proin-
flammatory phenomenon (termed "inflamm-aging" [154]), yet
remarkably little is known about the effect of aging on the im-
mune system and how this may affect AC clearance, its conse-
quences, and microbial defense.

Aging may exert profound effects on the innate immune
system (reviewed in refs. [155, 156]), including increased
phagocyte number and decreased cellular proinflammatory
cytokine production, coupled with increased total plasma level
of the cytokines, as a result of prolonged phagocyte activation.
These effects point to a dysregulation of inflammation associ-
ated with age. Such age-associated dysregulation may also oc-
cur within those molecular mechanisms, which ensure that AC
clearance is efficient and dominantly anti-inflammatory. A de-
tailed analysis of the innate immune system in aging may pro-
vide valuable insights to the mechanisms involved in responses
to AGs.

In this review, we have highlighted the importance of re-
cruiting the most appropriate phagocyte to mediate the de-
sired ligand-dependent responses, and the nature of cell death
signals has been suggested to dictate recruitment [45].
Whether inappropriate subpopulations of phagocytes are re-
cruited to cell death, leading to inflammation, or whether dur-
ing aging, phagocyte subpopulations change is an important
area for study. In aging, neutrophils exhibit defective che-
motaxis [157]. To assess chemotaxis of aged macrophages to a
range of stimuli, including ACs and microparticles, will be im-
portant. However, in atherosclerotic plaques, monocyte re-
cruitment is high, suggesting normal chemotaxis, although
detailed study of recruited-cell phenotype will address whether
a subpopulation of monocytes (possibly age-modified) or the
plaque environment is key to failed resolution of inflamma-
tion. Nevertheless, the phenotype of a recruited phagocyte will
often be pivotal in deciding the outcome [22].

Aging modifies innate immune receptor expression and
function. Neutrophil FcyRs and phagocytic capacity are re-
duced on neutrophils from aged individuals [158]. FcyRs pro-
mote apoptotic neutrophil opsonization and consequent clear-
ance [159, 160], and CD14 levels are reduced on aged macro-
phages [156]. Such age-associated changes may lead to age-
related persistence of ACs and exemplify how an age-
compromised innate immune system may impact on the ability
of phagocytes to effectively deal with ACs. Should AC persis-
tence lead to necrosis, released DAMPs would be proinflamma-
tory [153]. It will be important to assess the competence of
aged phagocytes to raise appropriate immunomodulation in
response to ACs. This raises the possibility that aging may
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modulate our ability to clear or respond appropriately to dying
cells.

Although our knowledge of AC clearance has expanded rap-
idly over the past 25 years, there is a need to more fully under-
stand the mechanisms by which dying cells orchestrate anti-
inflammatory clearance by phagocytes, a process that com-
prises an important and relatively unexploited natural
resource that will provide novel insights into mechanisms of
physiology and disease while raising the possibility of novel
therapies through modulation of this process (e.g., for inflam-
mation, cardiovascular disease, and autoimmunity). The study
of normal and diseased states has proved invaluable, but here,
we propose that the study of aging immune systems may fur-
ther promote this path of discovery.
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