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Abstract: Alteration of ubiquitin-proteasome system (UPS) mediated protein degradation has been implicated in the 
progression from a large subset of heart disease to congestive heart failure, rendering it extremely important to 
elucidate the cellular and molecular mechanism by which the UPS is regulated. Cullin-RING ligases (CRLs) represent 
the largest family of ubiquitin ligases crucial for UPS-dependent proteolysis. Serving as a cullin deneddylase, the 
COP9 signalosome (CSN) regulates the activity and assembly of CRLs. In the past several years, emerging studies 
have begun to unveil the role of the CSN and some of the CRLs in cardiomyocytes or the heart under physiological 
and pathological conditions. This review article will highlight and analyze these recent progresses and provide the 
author’s perspective on the future directions for this research field.
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Heart failure is infamously a leading cause of 
human death and disability. Obviously deci-
phering the regulation of cardiac function at the 
cellular and molecular levels will lay the founda-
tion for a better understanding of the patho-
genesis of cardiovascular diseases and thereby 
developing strategies to prevent and/or more 
effectively treat these diseases. Protein degra-
dation and quality control pathways, which are 
pivotal to maintaining protein homeostasis in 
the cell, have been increasingly found to be 
dysregulated in the heart with various forms of 
heart disease [1-4]; importantly, this dysregula-
tion has proven in some cases to be causative 
to cardiac dysfunction [5-7]. Hence, elucidation 
of the mechanisms by which protein degrada-
tion and quality control pathways are regulated 
in the heart is expected to produce and, in fact, 
has been yielding highly significant insights into 
cardiac physiology and pathophysiology. The 
COP9 signalosome (CSN) and cullin-RING ligas-
es (CRLs) are among the most important molec-
ular machineries that regulate major protein 
degradation pathways in the cell [8-11]. In the 
past several years, rapid and exciting progress 
has been made in deciphering the physiological 
roles of the CSN and CRLs in the heart. This 

review article will highlight and analyze these 
recent advances with an intention to provide a 
perspective for further effort in this important 
research field. 

An introduction into the ubiquitin-proteasome 
system 

In the cell, the degradation of most proteins is 
performed by the ubiquitin-proteasome system 
(UPS). In addition to removal of abnormal pro-
teins for the purpose of protein quality control, 
regulatory degradation is the other fundamen-
tal role of UPS-mediated proteolysis through 
degradation of normal but no longer needed 
proteins in the cell [5]. In general, UPS-mediated 
protein degradation consists of two major pro-
cesses: (1) ubiquitination of the substrate pro-
tein molecule and (2) 26S proteasome-mediat-
ed degradation of the ubiquitinated protein. 
Ubiquitination refers to the process that cova-
lently attaches the carboxyl terminus of a ubiq-
uitin (a highly conserved small protein with 76 
amino acid residues) to the e-amino group on 
the side chain of a lysine residue of the target 
protein via an isopeptide bond. Although ubiqui-
tination, especially poly-ubiquitination, often 

http://www.AJCD.us


COP9 and CRLs in hearts

2	 Am J Cardiovasc Dis 2015;5(1):1-18

targets proteins for degradation, it has been 
well demonstrated that ubiquitination can also 
serve as a type of post-translational modifica-
tion to signal for a non-proteolytic fate of the 
modified protein [12]. In both cases, ubiquitina-
tion is achieved by a cascade of enzymatic 
reactions involving the ubiquitin activating 
enzyme (E1), ubiquitin conjugating enzyme 
(E2), and ubiquitin ligase (E3), where the E3 
confers substrate specificity and catalyzes the 
rate-limiting step of ubiquitination. An E3 may 
be able to ubiquitinate several target proteins 
while a protein may be targeted for ubiquitina-
tion by several E3s depending on cellular and 
functional context. 

All known E3s are characterized as harboring 
one of the following three catalytic domains: an 
HECT (Homologous to E6AP Carboxyl Terminus) 
domain [13], a RING (Really Interesting New 
Gene) domain, or a U-box domain [14]. The 
U-box can also be considered a distant relative 
of the RING domain because it has a RING-like 
conformation but lacks the canonical Zn- 
coordinating residues possessed by bona fide 
RING fingers [15]. In the human genome, 
approximately 40 HECT domain-encoding ge- 
nes, more than 380 RING finger protein genes, 
and 9 U-box genes are identified [16, 17]. As 
exemplified by human E6AP, HECT E3s are 
monomeric enzymes that directly participate in 

Figure 1. Subfamilies of cullin-RING ligases (CRLs). Each CRL complex consists of a cullin (CUL) protein, a variable 
substrate receptor (SR) module that bind to the amino-terminal of the CUL, and a RING-E2 module (RBX1 or RBX2) 
at the carboxyl terminal of the CUL. CUL7 and CUL9 have larger size and additional homology domains, thus are 
referred to as atypical cullins. APC2 is a distant relative to cullins, constituting the core of the APC/C (anaphase 
promoting complex; also known as the cyclosome) which uses APC11 to recruit E2; hence APC/C is included as 
cullin-related ligases. CRL1 (better known as SCF complex) uses SKP1 and F-box proteins as the SR module. The 
SR modules for CRL2 and CRL5 are formed by elongin B, elongin C and SOCS (suppressor of cytokine signalling) 
box proteins. CRL3 uses BTB (bric-a-brac-tramtrack-broad complex) proteins as SRs. The SR modules for CRL4A and 
CRL4B consist of DDB1 (DNA damage-binding protein 1) and DCAF (DDB1- and CUL4-associated factor) proteins. 
The SR module of CRL7 uses SKP1 and a single F-box protein (F-box and WD40 domain 8 (FBXW8)). The SR mod-
ule for CRL9 remains to be identified. The complete molecular architecture of the APC/C remains unclear, partly 
because it contains many more proteins (shown in blue) than the CRL complexes. APC/C uses either CDC20 or 
CDH1 (CDC20 homologue 1) as an SR. The substrate for each complex is shown in yellow. RBX1, RING-box protein 
1. (Adopted from Skaar JR et al. Nat Rev Mol Cell Biol 2013 [8], with permission from the publisher).
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ubiquitination reactions by taking the activated 
ubiquitin from E2-ubiquitin intermediates to 
form an E3-ubiquitin thioester intermediate 
and then transferring the ubiquitin to the target 
protein molecule during each round of the ubiq-
uitin-isopeptide bond formation [18]. In sharp 
contrast, the RING finger domain proteins usu-
ally team up with several partner proteins to 
form a multi-subunit modular E3 complex which 
brings ubiquitin-charged E2s to the close prox-
imity of the substrate protein, thereby facilitat-
ing a direct transfer of activated ubiquitin from 
the E2 to the substrate protein and the isopep-
tide bond formation. In ubiquitination catalyzed 
by the RING finger family of E3s, no E3-ubiquitin 
thioester intermediate is formed [15]. The CRLs 
are a superfamily of ubiquitin RING ligases and 
by far the most studied ubiquitin E3s in terms 
of assemblies and constituents, catalytic dy- 
namics, and activity regulation of these modu-
lar ligase complexes. Altered ubiquitination has 
been linked to human pathogenesis and target-
ing ubiquitination machineries is an emerging 
strategy for development of new therapeutics 
[19]. 

Cullin-RING ubiquitin ligases 

The CRL superfamily 

It is estimated that CRLs are responsible for as 
much as 20% of ubiquitin-dependent protein 
degradation in the cell [20]. All CRLs share a 
similar modular architecture in which the elon-
gate-shaped cullin protein serves as the scaf-
fold. The amino-terminal helical domain of cul-
lin binds distinct sets of substrate receptor (SR) 
modules and the carboxyl terminal globular 
domain of cullin engages a RING finger protein 
(RBX1 or RBX2) which recruits ubiquitin-char- 
ged E2; hence, a CRL complex can bring ubiqui-
tin-loaded E2 and specific substrate protein 
into close proximity allowing the transfer of the 
activated ubiquitin from the E2 to the substrate 
(the first ubiquitin) or to the preceding ubiquitin 
on the substrate (to form a ubiquitin chain) [9]. 
To date, 8 cullins have been identified to form 
CRLs, constituting 8 subfamilies of CRLs: CRL1, 
CRL2, CRL3, CRL4A, CRL4B, CRL5, CRL7, and 
CRL9 (Figure 1). APC2 of the anaphase-promot-
ing complex/cyclosome (APC/C) is distantly 
related to cullins, constituting the backbone of 
the APC/C ligases which use RING protein 
APC11 to recruit E2s [21]; hence APC/C is 

included as a subfamily of cullin-related ligas-
es. With the exception of CRL7, which appears 
to use only one SR protein (FBXW8), each sub-
family of CRLs encompasses a number of CRLs, 
resulting from SR switch within the subfamily. 
This is exemplified by the CRL1 subfamily which 
is better known as the SCF (SKP1-Cullin1-F-box 
protein) complex, the prototype of CRLs. There 
are at least 68 F-box proteins, each of which 
can serve as the SR in a specific CRL1 for 
recruitment of its specific substrates. For 
example, F-box protein βTrCP serves as the SR 
to recruit phosphorylated β-catenin for ubiquiti-
nation by SCFbTrCP and similarly, SKP2 recruits 
p27 for ubiquitination by SCFSKP2. There are ~20 
BC box proteins, ~70 BTB (broad complex, 
tramtrack, ‘bric‑a-brac’), ~25 DCAF (DDB1 CU- 
L4 associated factor), and ~30 SOCS (suppres-
sors of cytokine signaling), serving as the SR for 
CRL2, CRL3, CRL4, and CRL5 subfamilies, 
respectively [9]. 

Cullin neddylation activates CRLs 

The assembly and the catalytic activity of a CRL 
are highly regulated by sophisticated mecha-
nisms, with some aspects of the regulation 
being perplexing and incompletely understood. 
Both biochemical and structural studies have 
demonstrated that CRL activation requires 
covalent link of a ubiquitin-like protein NEDD8 
(Neural precursor cell Expressed Developme- 
ntally Downregulated protein 8) to a conserved 
lysine residue in the carboxyl-terminal winged-
helix motif of cullins (Lys720 in human CUL1) 
through a process known as neddylation [22]. 
Similar to ubiquitination, cullin neddylation is 
catalyzed by a NEDD8 activating enzyme (NAE, 
E1), conjugating enzyme (E2, UBC12, UBE2F), 
and ligase (E3, including RBX1, RBX2, DCN1) 
[23-26]. It turns out that when the cullin of a 
CRL is not neddylated the distance between 
the substrate loaded SR adaptor arm and the 
RING-E2 module arm of the CRL is too large to 
allow efficient ubiquitin transfer from the RING 
protein engaged E2 to the substrate [27]; this 
distance is markedly shortened by conforma-
tion changes triggered by cullin neddylation, 
allowing catalysis of ubiquitination to occur 
[28]. Thus, cullin neddylation is essential to 
activation of CRLs. Inhibition of CRLs by a small 
molecule inhibitor of NAE (e.g., MLN4924) can 
result in accumulation of a host of CRL sub-
strate proteins in the cell, underscoring the 
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importance of neddylation in protein degrada-
tion mediated by CRLs [20, 29]. NAE inhibition 
has shown great promise to treat disease such 
as cancer [30]; however, given that CRLs play a 
pivotal role in maintaining protein homeostasis 
and that neddylation also occurs to a number 
of non-cullin proteins in normal cells [31], we 
caution that NAE inhibition might yield adverse 
impact on normal functioning of critical organs 
and systems.

The COP9 signalosome mediates cullin dened-
dylation 

Neddylation is countered by deneddylation 
which removes NEDD8 from neddylated pro-
teins. It was discovered more than a decade 
ago that cullin deneddylation is carried out by 

the COP9 signalosome (CSN). The COP9 stands 
for Constitutive Photomorphogenic 9, an Ara- 
bidopsis mutant which when grown in dark dis-
plays the same morphology as it would when 
grown in light [32-34]. Subsequent studies 
revealed that the CSN is evolutionarily con-
served from yeast to humans [35-37]. Ma- 
mmalian CSN consists of 8 unique protein sub-
units (CSN1 through CSN8). The crystal struc-
ture of human CSN was recently solved [10]. 
The bona fide biochemical activity of the CSN is 
cullin deneddylation [38, 39]. Although CSN 
deneddylase activity resides in CSN5 subunit, 
cullin deneddylation is performed by the CSN 
holocomplex formed by all CSN subunits [40]. 
Loss of any of the CSN subunits will impair CSN 
deneddylation activity. In addition to cullin 
deneddylation, recent studies have suggested 

Figure 2. A model for the role of the COP9 signalosome and CAND1 in the activation and substrate receptor module 
exchange of CRLs. This model is based on the role of the COP9 signalosome (CSN) complex as both a catalytic and 
binding-dependent inhibitor of CRLs, the action of which can be reversed by substrate [97-99]; the stoichiometries 
of the various components in vivo [97] and the recently unveiled role for CAND1 as an SR exchange factor [44] are 
also taken into consideration. The model starts with empty or newly synthesized cullin (step 1). This RBX-bound cul-
lin could be engaged by a substrate receptor (SR1) module (step 2). The basal CRL complex could either enter into a 
CAND1-dependent exchange cycle (step 3) or become rapidly neddylated and engage substrates (steps 4 and 5). As 
substrates for SR1 are diminished, CRLs can associate with the CSN, and become deneddylated (step 6), followed 
by dissociation of the CRL complex to re-enter the cycle. The CAND1-associated cullin-RBX intermediate complex al-
lows the exchange of SR1 with either a pre-existing or newly synthesized SR2 module (step 3), which would change 
the substrates to be targeted in the cell. CUL, cullin; CRL, cullin–RING E3 ubiquitin ligase; SR, substrate receptor. 
(Adopted from Lydeard JR et al. EMBO Rep 2013 [9], with permission from the publisher).
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that the CSN is more than a deneddylase [11]. 
Individually or by forming heteromeric mini 
complex with other subunits, each of the CSN 
subunits may exert subunit-specific functions 
in regulating cellular processes but most of 
these non-deneddylase functions have not 
been well established [41-43]. 

Since cullin neddylation activates CRLs, CSN-
mediated cullin deneddylation would simply 
inhibit the function of CRLs and evidence col-
lected from earlier in vitro biochemical studies 
indeed supported this proposition. However, in 
vivo genetic studies failed to observe enhanced 
degradation of many CRL substrates in cells 
deficient of CSN deneddylation [11]. On the 
contrary, CRL substrates are often accumulat-
ed in CSN deficient cells, indicating that the 
CSN is required for the proper functioning of 
CRLs. The mechanistic detail by which CSN-
mediated cullin deneddylation regulates the 
function of CRLs has not been completely 
worked out. A current model posits that the 
CSN competes with substrates to bind a ned-
dylated CRL (Figure 2) [9]; when substrates for 
the active CRL run low the CSN gets to bind the 
neddylated CRL, deneddylate the cullin, and 
thereby inactivate the CRL; subsequent disso-
ciation of the CSN from the unloaded and 
deneddylated CRL allows binding by CAND1 
(Cullin-Associated and Neddylation-Dissociated 
1); the binding of CAND1 to CRL dissociates the 
old SR module to spare the SR binding site for a 
new SR, allowing the formation of a new CRL 
that is specific for a different class of sub-
strates, where CAND1 function as an SR ex- 
change factor [44]. According to this model, 
CSN-mediated cullin deneddylation functions 
to avail the shared components (the cullin-RBX 
assembly) from a no longer needed CRL to 
other SR modules, which is obviously critical to 
maintaining homeostasis of the large number 
of CRL substrates in the cell. In addition, some 
studies showed that knockdown of the CSN 
depleted some of the SR proteins (e.g., F-box 
proteins) by promoting autoubiquitination of 
the SR proteins in the CRLs [45-48], suggesting 
a role of cullin deneddylation by the CSN in pre-
serving SRs by timely inactivating the CRL when 
its job is done. Therefore, from the perspective 
of the entire landscape of CRLs and homeosta-
sis of the proteome in a cell, both inhibition of 
cullin neddylation and suppression of CSN 
would yield similar outcome to the cell. 

Glomulin blocks RBX1 from binding E2 

It was recently discovered that the activity of 
CRLs is also regulated by glomulin, a heat 
repeat protein. Glomulin binds to RING protein 
RBX1 in cullin1-RBX1 assemblies irrespective 
of their neddylation status. Binding of RBX1 by 
glomulin masks the E2 binding site of CRLs, 
thereby blocking the catalytic activity of the 
CRL [49]. This has proven to be the case in vitro 
for both SCFSKP2 and SCFFBXW7 but in vivo study 
revealed that glomulin seemed to affect pri-
marily SCFFBXW7 [50]. Glomulin is mutated in 
familial glomuvenous malformations (gloman-
giomas), a vascular disorder characterized by 
abnormal cutaneous growth of venous vessels 
and associated increased smooth muscle cell 
proliferation [51]. Interestingly, loss of glomulin 
causes marked decreases in cellular levels of 
cullin1 and RBX1, as well as rapid turnover of 
FBXW7 [50, 51]. Glomulin is also associated 
with other cullins via its binding to RBX1; hence 
it might exert additional functions through mod-
ulating the protein levels of these cullins [9, 
49]. The functional integration between glomu-
lin and the CSN in inhibiting CRLs remains to be 
investigated.

The CSN in the heart

To date, only a few reported studies have direct-
ly investigated the CSN in cardiomyocytes or 
the heart. Using a yeast two-hybrid system, 
Kameda et al. reported that CSN5 interacts 
specifically with the II-III linker of the α1c sub-
unit of the L-type calcium channel [52]. This 
interaction is confirmed in vivo via co-immuno-
precipitation between the α1c subunit and 
CSN5 in rat myocardium and the co-localization 
of both proteins in sarcolemmal membranes 
and transverse tubules of cardiomyocytes. 
Knockdown of endogenous CSN5 using siRNA 
activated L-type calcium channels expressed in 
COS7 cells [52]. These findings suggest that 
CSN5 may play a role in controlling cardiac 
L-type calcium channel activity but this remains 
to be established in the heart. In a yeast two-
hybrid screen with a human heart library, 
Hunter et al. discovered that CSN3 interacts 
specifically with muscle-specific β1D integrin 
but not with β1A integrin [53]. Based on this 
interaction and the intracellular localization of 
CSN3 and other CSN subunits in cardiomyo-
cytes, the authors proposed that the CSN3 is 
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well-positioned to promote the communication 
between extracellular matrix and the nucleus of 
cardiomyocytes [53]; however, this proposal 
has not been further tested by any reported 
study yet. Taking advantage of conditional gene 
targeting of CSN8, our group has made exciting 
progress in deciphering the physiological sig-
nificance of the CSN in cardiac development 
and heart function and expanded our under-
standing of the role of CSN8 in regulation of 
protein degradation and quality control.

Perinatal ablation of csn8 in cardiomyocytes 
causes lethal dilated cardiomyopathy 

Germline ablation of genes encoding CSN sub-
units (e.g., csn2, csn3, csn5, csn6, csn8) all led 
to early embryonic lethality [54-58]; hence, the 
loss-of-function study on the physiological sig-
nificance of the CSN in adult organs has relied 
primarily on conditional gene targeting of CSN 
subunits. To date, mice harboring a conditional 
allele of csn5 or csn8 for gene knockout have 
been reported [57, 59]. CSN8 and CSN5 condi-
tional knockout mice have both been employed 
to study the role of the CSN in T-cell differentia-
tion and development [57, 59], whereas the 
csn8-floxed mouse has also been used to 
achieve hepatocyte- and cardiomyocyte-specif-
ic inactivation of the CSN [60-64]. 
Immunohistological characterization of mouse 
myocardium reveals that CSN8 is expressed in 
both cardiomyocyte and non-cardiomyocyte 
compartments, displaying a diffused expres-
sion pattern in the cytoplasm but enriched in 
the nucleus [62]. Coupling the csn8-floxed 
allele with a transgenic cre recombinase driven 
by the myh6 promoter (csn8flox/flox:myh6-cre), 
we achieved perinatal homozygous cardiomyo-
cyte-restricted knockout of csn8 (CR-CSN8KO). 
In these mice, CR-CSN8KO occurs before birth, 
resulting in substantial decreases in myocardi-
al CSN8 protein levels at postnatal day 1 and 
cardiac depletion of CSN8 protein is completed 
within the first week after birth. Mice with peri-
natal CR-CSN8KO are born with the expected 
Mendelian frequency and are grossly indistin-
guishable from their non-knockout littermates 
during the first 3 weeks after birth. However, 
global growth retardation kicks in at week 4; 
this is evidenced by the observation that the 
rapid increase in body weight between the 
postnatal weeks 3 and 4 observed in the litter-
mate controls is lost in the CR-CSN8KO group. 

The CR-CSN8KO mice undergo premature 
death with a median lifespan of ~30 days and 
100% lethality by day 52. Although cardiac 
anatomy and histology of CR-CSN8KO hearts 
are not discernibly different from littermate 
controls at birth and during postnatal week 1, 
cardiac hypertrophy is detectable at 2 weeks 
and becomes more pronounced thereafter. 
Echocardiography revealed left ventricle cham-
ber dilatation and marked decreases in ejec-
tion fraction and fractional shortening at 3 
weeks and full-blown dilated cardiomyopathy 
and congestive heart failure at 4 weeks [62]. 
Interestingly, despite CR-CSN8KO imposed to 
the whole heart, heart failure appears to be lim-
ited to the left heart because pulmonary con-
gestion is observed in absence of systemic 
venous congestion [62]. The underlying factors 
for this differential effect are currently unknown. 
These findings clearly demonstrate that cardiac 
CSN8 is required for normal postnatal cardiac 
development and functioning.

Cardiomyocyte-restricted CSN8 deficiency im-
pairs UPS performance in the heart

Biochemical analyses of myocardial proteins 
from CR-CSN8KO mice revealed that depletion 
of CSN8 disables CSN holocomplex formation 
and destabilizes other CSN subunits, including 
CSN1, CSN2, CSN3, CSN5, CSN6, and CSN7; 
CR-CSN8KO impairs cullin deneddylation activ-
ity in cardiomyocytes as evidenced by marked 
increases in neddylated forms of cullin 1, 2, 3, 
and 4a that were examined and by increased 
myocardial NEDD8 conjugates. Among the 4 
cullins examined, the native forms of cullin 2, 3, 
and 4a were significantly down regulated [62]. 
These data indicate that CSN8, which is not 
found in C. elegans or S. pombe CSN holocom-
plexes [11, 45, 65, 66], is essential to CSN 
bona fide activity in mammalian hearts. 
Consistent with the proposition that the CSN 
prevents SRs from auto-ubiquitination and deg-
radation [45-48], some of the SR proteins such 
as atrogin1 (Fbxo32), VHL (von Hippel-Lindau), 
and β-TrCP (Fbxw1a), are moderately decreased 
in the CR-CSN8KO heart. However, down-regu-
lation of these SRs in CR-CSN8KO hearts does 
not seem to cause an accumulation of calci-
neurin-A, hypoxia-inducible factor 1, and β-ca- 
tenin, which are the representative substrates 
respectively for atrogin-1, VHL, and β-TrCP [62]. 
The performance of UPS-mediated protein deg-
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radation was probed by introduction of a trans-
genic surrogate substrate protein GFPdgn via 
cross-breeding. Myocardial GFPdgn protein lev-
els were not changed at 2 weeks but were sig-
nificantly increased in absence of changes in 
mRNA levels by 3 weeks of age, indicating a 
severe UPS impairment by CSN8 deficiency at 3 
weeks. This impaired UPS performance does 
not appear to be caused by reduced ubiquitina-
tion because immunoprecipitated GFPdgn pro-
teins from CR-CSN8KO and control hearts dis-
played a comparable level of ubiquitin conju-
gates and the total myocardial ubiquitin conju-
gates were significantly increased in CR- 
CSN8KO hearts. It does not seem to be caused 
by proteasome malfunction either. This is 
because myocardial proteasome abundance 
and proteasomal peptidase activities are mod-
erately increased [62]. Hence, this raises a 
question as to how loss of CSN8 leads to a 
delayed impairment of UPS performance in the 
heart, a perplexing question that also has been 
puzzling cell biologists of the CSN field for over 
a decade [11]. 

The CSN regulates autophagosome maturation

Additional studies were carried to tackle the 
puzzle mentioned above by investigating the 
functional status of the autophagic-lysosomal 
pathway (ALP) in the CR-CSN8KO heart [63]. It 
was found in CR-CSN8KO hearts that biochemi-
cal and morphological markers of both autopha-
gosomes and lysosomes were remarkably 
increased in the cardiomyocytes, along with 
increased levels of p62/SQSTM1, a protein pri-
marily degraded by the ALP. Conversion of 
microtubule-associated protein 1 light chain 3 
(LC3-I) to a lipidated form (LC3-II) is a critical 
step of autophagosome formation and LC3-II 
stays with autophagosomes throughout their 
lifetime; hence, the cellular LC3-II protein level 
is widely used as a marker for the abundance of 
autophagosomes [67]. Acute inhibition of lyso-
somes using bafilomycin A1 (BFA), an inhibitor 
of the vacuolar type H+-ATPase, was able to 
increase significantly LC3-II protein levels in 
both the liver and the heart in littermate control 
mice but only increase LC3-II in the liver not the 
heart of CR-CSN8KO mice. These findings dem-
onstrate for the first time that CSN8/CSN is 
required for the removal of autophagosomes by 
lysosomes. Further investigation collected evi-
dence that the fusion between autophagosome 

and lysosomes, a process also known as 
autophagosome maturation, is impaired in the 
heart with CR-CSN8KO. This defective fusion 
leads to accumulation of autophagosomes in 
cardiomyocytes, which were found to co-local-
ize with and correlate to the down-regulation of 
Rab7, a small GTPase protein known to be criti-
cal to the fusion process and vesicle trafficking 
[68-73]. In cultured cardiomyocytes, siRNA-
mediated Rab7 knockdown indeed could impair 
autophagosome maturation and exacerbated 
cytotoxicity of proteasome inhibition, corrobo-
rating the in vivo findings that impaired autopha-
gosome maturation is associated with massive 
cardiomyocyte necrosis in CR-CSN8KO hearts 
[63]. Experiments to test whether overexpres-
sion of Rab7 rescues CR-CSN8KO-induced ALP 
impairment and cardiomyocyte necrosis are 
ongoing. 

Atrogin-1 (Fbxo32) is a muscle-specific F-box 
protein, which teams up with SKP1 and Cullin1 
to form a SCF ubiquitin ligase for the ubiquitina-
tion of a host of proteins in striated muscle [74-
78]. Many studies have shown that atrogin-1 is 
capable of suppressing cardiac hypertrophy 
and is required for cardiac atrophy in unloaded 
hearts [74, 75, 79]; however, there was also a 
report showing that endogenous atrogin-1 
mediates cardiac pathological hypertrophy in-
duced by pressure overload [80]. A more recent 
study reveals that autophagosome maturation 
is impaired in heart muscle cells of atrogin-1 
null mice which display a late-onset cardiomy-
opathy [81]. The impaired autophagy in atro-
gin-1 deficient mouse hearts was associated 
with elevated levels of CHMP2B (charged multi-
vesicular body protein 2B) which is a part of an 
endosomal sorting complex (ESCRT) required 
for autophagy. The study further shows that 
atrogin-1 targets CHMP2B for ubiquitination 
and degradation. Moreover, knockdown of 
CHMP2B in atrogin-1 null mice via viral vector-
mediated expression of small hairpin RNA 
against CHMP2B restores autophagy and 
attenuates proteotoxicity and cell death, dem-
onstrating that loss of atrogin-1 impairs au- 
tophagosome maturation through accumulat-
ing CHMP2B. Given that atrogin-1 is significant-
ly decreased in mouse heart deficient of CSN8 
[62], it will be interesting and important to test 
whether decreased atrogin-1 contributes to 
autophagy impairment in CR-CSN8KO hearts. 
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A time course comparison showed that the ALP 
impairment in perinatal CR-CSN8KO mice was 
discernible as early as 2 weeks of age, which is 

earlier than the appearance of compromised 
UPS performance [63]. Could the poor UPS per-
formance be attributable to the ALP impair-

Figure 3. Fluorescence confocal micrographs of mouse ventricular myocardium. Mice with cardiomyocyte-restricted 
csn8 knockout (CR-CSN8KO) or wild type littermates (Control) at 3 weeks of age were subject to intraperitoneal 
injection of a dose of Evans blue dye (EBD, 100mg/kg) at 18 hours before the terminal experiment. At the terminal 
experiment, the hearts were perfused first with phosphate saline (PBS) to clear EBD from coronary vessels and the 
interstitial space and then with 4% paraformaldehyde in PBS to fix the tissue. The fixed heart tissue was processed 
and embedded for collection of cryosections. Before imaged with a confocal microscope, the tissue sections were 
treated with TRITC-conjugated phalloidin to stain F-actin (blue in the image) for identification of cardiomyocytes 
and with FITC-conjugated wheat germ agglutinin to stain plasma membrane (green in the image). Cells undergoing 
necrosis show increased membrane permeability which allows EBD to enter the cell and accumulate there; the ac-
cumulated EBD emits autofluorescence (red in the image) when examined using fluorescence imaging (Ex = 620 
nm, Em = 680 nm). Scale bar = 50 µm. 
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ment in the CR-CSN8KO heart? Direct answer 
to this question is not available yet but emerg-
ing evidence indicates that long term impair-
ment of the ALP accumulates p62/SQSTM1 
which, in turn, hinders proteasomal degrada-
tion of ubiquitinated proteins by binding to, and 
promoting aggregation of, ubiquitinated pro-
teins [82, 83]. Indeed, p62 protein levels are 
remarkably increased, starting as early as 1 
week of age and myocardial total ubiquitinated 
proteins are significantly increased in mouse 
hearts with perinatal CR-CSN8KO. Furthermore, 
ubiquitinated proteins are distributed predomi-
nantly in the form of aggregates in the cardio-
myocytes of CR-CSN8KO mice, as opposed to a 
diffused pattern in littermate controls [63]. All 
these changes support a hypothesis that ALP 
impairment contributes to poor UPS perfor-
mance in CSN8 deficient hearts.

CSN8 deficiency causes massive cardiomyo-
cyte necrosis in mouse hearts 

Another important finding resulting from char-
acterization of CR-CSN8KO mice is that mas-
sive cardiomyocyte necrosis occurs and is 
associated with impaired lysosomal removal of 
autophagosomes. Starting at 3 weeks of age, 
the CR-CSN8KO heart displays massive cardio-
myocyte necrosis as detected by increased per-
meability to an intraperitoneal injected Evans 
blue dye (Figure 3) as well as to endogenous 
IgG. Myocardial interstitial CD45 positive cells 
are significantly increased in CR-CSN8KO mice, 
indicative of inflammatory responses that cor-
roborate cardiomyocyte necrosis [62]. Cardio- 
myocytes with more severe accumulation of 
autophagosomes showed greater probability to 
be necrotic in CR-CSN8KO mice at 3 weeks of 
age. Additional experiments performed with 
wild type mice showed that chronic lysosomal 
inhibition via administration of chloroquine for 
3 weeks was sufficient to induce cardiomyo-
cyte necrosis and leukocyte infiltration in the 
heart [63]. Taken together, these findings sug-
gest that ALP impairment may cause cardiomy-
ocytes death in the form of necrosis. The ALP 
plays a critical role in mitochondrial quality con-
trol by removal of defective mitochondria. 
Mitochondrial DNA that escaped autophagy 
has been shown to be capable of triggering 
inflammation and leading to heart failure in 
mice [84]. Corroborating this proposition, a 
recent report shows massive cardiomyocyte 

necrosis along with impaired autophagic flux 
and accumulation of damaged mitochondria in 
a mouse model of adult-onset conditional abla-
tion of MCL-1 in cardiomyocytes [85]. The 
mechanism by which CSN8 deficiency causes 
cardiomyocyte necrosis is currently unknown 
but is under active investigation. 

CR-CSN8KO initiated in adult mice through an 
inducible cre system yielded a similar pheno-
type to perinatal CR-CSN8KO, including im- 
paired cullin deneddylation, impaired UPS per-
formance, increased autophagosomes due to 
decreased autophagic flux, massive cardiomyo-
cyte necrosis, rapidly progressed dilated car-
diomyopathy, and premature death of the ani-
mal [60]; hence, findings from both perinatal 
and adult CR-CSN8KO demonstrate that CSN8/
CSN regulates both the UPS and the ALP path-
ways and is required for cardiomyocyte survival 
and normal functioning in postnatal hearts. 

CRLs in the heart 

Some of the components of CRLs have been 
studied for their role in cardiomyocytes or the 
heart. These include cullin 7 and a few F-box 
proteins (FBXO32, FBXO25, FBXL22, SKP2, 
FBXW7). This section will highlight some of 
these studies.

As described in an earlier section, CUL7 serves 
as the backbone of CRL7 which uses SKP1 and 
a single F-box protein FBXW8 as its SR module; 
hence, presumably CRL7 targets fewer sub-
strates than many other subfamilies of CRLs. 
Cullin 7 is also known as p193 that was origi-
nally identified as a 193-kDa SV40 large T- 
antigen binding protein [86]. More than a 
decade ago, the Field laboratory created a 
transgenic mouse model of cardiomyocyte-
restricted expression of a carboxyl terminal 
truncation mouse p193/Cul7 designated as 
the MHC-1152 stop mouse [87]. Under basal 
conditions, MHC-1152 stop mice did not show 
any discernible phenotype. However, a remark-
able induction of cardiomyocyte cell cycle activ-
ity in the border zone of infarcted myocardium 
occurred and a marked reduction of cardiomyo-
cyte hypertrophic growth in the mutant Cul7 
expressing area was observed in these trans-
genic mice at 4 weeks after myocardial infarc-
tion produced by permanent ligation of the left 
anterior descending coronary artery (LAD). 
These findings suggest that antagonism of 
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p193/Cul7 activity relaxes the otherwise strin-
gent regulation of cardiomyocyte cell cycle 
reentry in the injured adult heart [87]. A subse-
quent study used this mouse model to evaluate 
further the impact of p193/Cul7 antagonism on 
infarct size and cardiac function after experi-
mental myocardial infarction. The results 
showed that the infarct size was indistinguish-
able between MHC-1152 stop mice and non-
transgenic littermates at 24 hours after LAD 
ligation but the infarct scar size at 4 weeks 
after LAD ligation was significantly smaller in 
the MHC-1152 stop mice. Left ventricular pres-
sure-volume relationship analysis showed no 
differences in cardiac function between sham-
operated MHC-1152 stop mice and their non-
transgenic littermates. However, at 4 weeks 
after myocardial infarction, the ventricular con-
tractility and active relaxation were both sub-
stantially improved in infarcted MHC-1152 stop 
mice as compared with the infarcted non-trans-
genic littermates [88]. This truncated p193/
Cul7 was considered a dominant interfering 
mutant [89]; hence, findings of these studies 
suggest that antagonism of p193/Cul7 activity 
may represent an important strategy for the 
treatment of myocardial infarction. Notably, the 
impact of the truncated p193/Cul7 on endoge-
nous CRL7 ligase activity has not been re- 
ported.

The most studied substrate receptor protein of 
cardiac CRLs is FBXO32, commonly known as 
atrogin-1 or muscle atrophy F-box (MAFbx). As a 
major E3 for muscle atrophy, atrogin-1 is ex- 
pected to target sarcomeric proteins for degra-
dation but it is also known to target signaling 
proteins such as calcineurin [75], AKT [74], 
MAPK phosphatase-1 [90], and more recently 
CHMP2B [81]. As discussed in Section 3, loss-
of-function studies have revealed an important 
role for atrogin-1 in cardiac physiology and 
pathophysiology. Besides atrogin-1, the role of 
a few other F-box proteins in cardiomyocytes or 
the heart has also begun to be described. 
Through targeting p27Kip1 for degradation, SKP2 
(FBXL1) promotes cell proliferation of neonatal 
rat cardiomyocytes whereas impaired SKP2-
dependent p27Kip1 degradation may contribute 
to the loss of proliferation in cardiomyocytes 
during terminal differentiation [91]. Mouse 
embryos deficient of Fbxw7 (often known as 
Fbw7) die around 10.5 days post coitus due to 
a combination of defects in hematopoietic and 

vascular development and heart chamber mat-
uration [92]. Jang et al. recently reported their 
identification of Fbxo25 as a nuclear-enriched 
ubiquitin ligase for destruction of cardiac spe-
cific transcription factors including Nkx2-5, 
Isl1, and Hand1 [93]. 

A comprehensive study by Frey and colleagues 
has recently identified Fbxl22 (F-box and leu-
cine-rich repeat protein 22) as a cardiac 
enriched F-box protein that is localized to the 
sarcomeric z-disc [94]. Immunoprecipitation 
showed that Fbxl22 binds to Skp1 and Cul1, 
indicating Fbxl22 can potentially serve as an 
SR in the CRL1 type of ubiquitin E3. Indeed, the 
z-disc proteins α-actinin and filamin C were 
identified as potential substrates of Fbxl22. 
Overexpression of Fbxl22 in cultured cells 
increased proteasomal degradation of both 
α-actinin and filamin C in a dose-dependent 
fashion. Moreover, targeted knockdown of 
Fbxl22 in rat cardiomyocytes as well as zebraf-
ish embryos led to the accumulation of α-ac- 
tinin, severely impaired contractile function, 
and development of cardiomyopathy. Therefore, 
this study concludes that Fbxl22 facilitates the 
proteasome-dependent degradation of key sar-
comeric proteins, such as α-actinin and filamin 
C, thereby playing an essential role in the main-
tenance of normal cardiac contractile function 
[94]. 

It is clear that CRLs play an indispensable role 
in cardiac development and functioning but the 
landscape of cardiac CRLs and their regula-
tions on specific cellular processes in cardio-
myocytes under physiological and pathological 
conditions remain largely an unchartered area. 
Notably, studies have also shown that CRLs 
and the CSN also play an important role in regu-
lating vascular function; please refer to a com-
panion review by Martin and Wang in this Issue 
of Am J Cardiovasc Dis for a comprehensive 
review on this topic [95].

Summary and future perspective 

It has been two decades since the first discov-
ery of the CSN and over a decade has passed 
since the CSN deneddylase activity was eluci-
dated; only recently has the complexity of its 
roles in CRL homeostasis emerged. We now 
know that CSN8, the smallest and a non-cata-
lytic subunit of the CSN, is indispensable for 
cardiomyocyte survival and functioning in neo-
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natal and adult hearts and that CSN8/CSN is 
pivotal to not only UPS-mediated proteolysis 
but also the removal of autophagosomes in 
heart muscle cells. However, the molecular 
links between CSN8/CSN and autophagosome 
maturation and between CSN8/CSN and mo- 
lecular programs controlling cardiomyocyte 
necrosis remain to be elucidated. It will also be 
critical to determine whether the phenotype 
induced by CSN8KO can be recapitulated by 
targeted ablation of other CSN subunits in the 
heart. The phenotype shared by deletion of 
each of the 8 subunits would likely be derived 
from loss of the CSN holocomplex and its cullin 
deneddylation activity while phenotype unique 
to deletion of individual subunits would indicate 
a function specific to the subunit or subunits. 
Hence, phenotypic comparison among animal 
models deficient of different CSN subunits will 
be essential to improving our understanding of 
CSN biological function in the heart.

Thanks to advances in functional genomics and 
quantitative proteomics, a global picture of the 
landscape of CRLs has emerged from studying 
cultured cells or non-cardiac tissues. However, 
only a few substrate receptor proteins, primari-
ly F-box proteins, and only one cullin (Cul7) have 
been studied in cardiomyocytes or hearts and 
very few substrates of these substrate receptor 
proteins of CRLs are identified conclusively. 
The specific E3s for the vast majority of cardiac 
proteins are yet to be identified and studied for 
their (patho)physiological significance. Thus, 
there is a long way to go before we have an in-
depth understanding on the role of CRLs in car-
diac function and captivate the new knowledge 
to develop new therapeutics for treating cardi-
ac disease. Nevertheless, a specific CRL can 
conceivably become a drug target for treating 
cardiac remodeling and failure. This proposi-
tion is based on the following two obser- 
vations. 

First, UPS-mediated targeted protein degrada-
tion is at the forefront to remove terminally mis-
folded proteins. This capacity in cardiomyo-
cytes appears to be inadequate in the large 
subset of heart disease [5], resulting in inade-
quate protein quality control and aberrant pro-
tein aggregation in a majority of failing human 
hearts [96]. A better understanding of CRLs in 
the heart will yield new insight into cardiac pro-
tein quality control mechanisms, which may 

potentially devise new strategies to enhance 
UPS-dependent removal of misfolded proteins 
in heart muscle cells. 

Second, cardiac hypertrophy, loss of cardiomy-
ocytes, and interstitial fibrosis represent the 
most common pathological processes in mal-
adaptive cardiac remodeling and heart failure. 
Pathways that control these pathological pro-
cesses are increasingly suggested to involve 
both UPS-mediated regulatory degradation of 
signaling proteins and the non-proteolytic sig-
naling property of protein ubiquitination [74, 
75, 79, 80]. Hence, maladaptive cardiac remod-
eling and even heart failure can potentially be 
prevented or attenuated by targeting the CSN 
and/or specific CRL components. 

To ultimately achieve these stated goals, a 
large number of questions urgently need to be 
addressed. The following are some of the exam-
ples: are all cullins or CRLs equally expressed 
and play a role in cardiomyocytes at baseline or 
under pathological stress, what are the main 
substrate receptors expressed in and used by 
cardiomyocytes to target their proteins, which 
substrate receptors and CRLs are primarily 
responsible for individual sarcomeric proteins 
or key signaling proteins in the heart, how is the 
activity of cardiac CRLs regulated under physi-
ological and pathophysiological conditions, and 
what are the substrates for each substrate 
receptor expressed in cardiomyocytes? 
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