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Abstract
Background/Aims: Liver is a vital organ and retains its regeneration capability throughout 
adulthood, which requires contributions from different cell populations, including liver 
precursors and intrahepatic stem cells. To overcome the mortality of hepatic progenitors 
(iHPs) in vitro, we aim to establish reversibly immortalized hepatic progenitor cells from 
mouse embryonic liver. Methods and Results: Using retroviral system to stably express SV40 
T antigen flanked with Cre/LoxP sites, we establish a repertoire of iHP clones with varied 
differentiation potential. The iHP cells maintain long-term proliferative activity and express 
varied levels of progenitor markers (Pou5f1/Oct4 and Dlk) and hepatocyte markers (AFP, Alb 
and ApoB). Five representative iHP clones express hepatic/pancreatic transcription factors 
HNF3α/Foxa1, HNF3β/Foxa2, and HNF4α/MODY1. Dexamethasone is shown to promote the 
expression of hepatocyte markers AFP and TAT, along with ICG-uptake and glycogen storage 
functions in the iHP clones. Cre-mediated removal of SV40 T antigen reverses the proliferative 
activity of iHP cells. When iHP cells are subcutaneously implanted in athymic nude mice, 
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no tumor formation is observed for up to 8 weeks. Conclusions: We demonstrate that the 
established iHP cells are stable, reversible, and non-tumorigenic hepatic progenitor-like cells, 
which should be valuable for studying liver organogenesis, metabolic regulations, and hepatic 
lineage-specific differentiation. 

Introduction

As a major metabolic organ of the body, liver regulates diverse functions during growth, 
development and adulthood [1]. Liver serves as the first site of embryonic hematopoiesis, 
but turns into a vital detoxifying system in the postnatal period. Liver also serves as a 
major storage of glycogen and vitamin A, and remains as one of a few organs in the adult 
capable of regeneration [2]. While normal mature hepatocytes exhibit quiescent phenotype, 
stay in the G0 phase of the cell cycle, and show minimal turnover, upon hepatocyte loss, 
the mature hepatocytes undergo cell division. In response to acute injuries, hepatocytes 
and cholangiocytes can undergo cell proliferation to compensate the lost cells, a process 
called liver regeneration. However, severe chronic damage caused by liver diseases can 
significantly diminish the proliferative ability of these cells for liver regeneration and liver 
organ transplantation may be required [2-6]. While liver organ transplantation has been a 
life-saving measure for many end-stage liver disease patients, the scarcity of liver donors 
poses significant challenges to this practice [2, 6, 7]. 

Liver regeneration is a rapid and well-coordinated process that requires the contributions 
from different cell populations, including hepatocytes, liver precursor cells, and intrahepatic 
stem cells. While mature hepatocytes are capable of proliferating and give rise to new 
hepatocytes and cholangiocytes, liver stem cells (or so-called oval cells) are the important 
bipotential precursors in compensating the cellular loss and maintaining liver homeostasis 
[1]. The progenitor-like properties of differentiating hepatocytes provide opportunities for 
the hepatocyte transplantation which is an appealing alternative to auxiliary orthotropic 
liver transplantation [2, 6, 7]. In fact, hepatocyte transplantation has been attempted to treat 
genetic diseases, such as familial hypercholesterolemia, Crigler–Najjar syndrome type I, 
glycogen storage disease type 1a, urea cycle defects and congenital deficiency of coagulation 
factor VII [8, 9]. Thus, there is an urgent need to facilitate the potential use of liver progenitor 
cells in clinical settings [10].

Liver primarily comprises of two epithelial cell lineages, namely, hepatocytes and 
cholangiocytes which are originated from hepatoblasts during fetal developing stages [11]. 
While the true origin and nature of liver stem cells remains an area of intensive investigation, 
it is generally accepted that hepatoblasts are the major source of the liver progenitor cell in 
development [1, 2]. The onset of mouse liver development starts at embryonic day (E) 8.5 
from the foregut endoderm, which is derived from medial and lateral domains of developing 
ventral foregut [12]. While numerous studies reported that hepatocytes can be derived 
from embryonic stem cells, mesenchymal stem cells, and iPS cells [13-28], liver progenitor 
cells have been isolated from both fetal and adult liver tissues, which have the capacity for 
unlimited proliferation and multilineage differentiation [1, 21, 29-36]. Although it has been 
reported that relatively long-term culturing of liver progenitor cells can be achieved under 
special culture conditions [31, 37-39], the primary progenitor cells usually have limited 
life span in vitro [40, 41]. Thus, it is desirable to establish stable hepatic progenitor cells, 
which are non-tumorigenic and maintain the stem cell properties, as these cells may provide 
a unique system to study stem cell regulation and to optimize conditions for directing 
endogenous regenerative potential towards a lineage-specific differentiation.

To overcome the mortality issue of hepatic progenitor cells in vitro, here we establish the 
reversibly immortalized hepatic progenitor (iHP) cells from mouse fetal liver tissues by stably 
expressing SV40 T antigen, which is flanked with Cre/LoxP sites. Limiting-dilution cloning 
of the iHP cells creates a repertoire of hepatic progenitor clones with varied differentiation 
potential. The iHP cells maintain long-term proliferative activity and express progenitor 
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markers and hepatocyte-related markers. Upon dexamethasone (Dex) stimulation, the 
iHP cells are able to express mature hepatocyte markers and perform ICG uptake and 
glycogen storage functions. Cre recombinase-mediated removal of SV40 T antigen reverses 
the proliferative activity of the iHP cells. When the iHP cells are subcutaneously implanted 
in the athymic nude mice, no tumor formation is observed for up to 8 weeks. Therefore, 
our results demonstrate that the established iHP cells are stable, reversible, and non-
tumorigenic progenitor-like cells. The iHP cells should be a valuable resource for studying 
stem cell biology, liver organogenesis, and metabolic regulations, hepatic tumorigenesis, 
and identifying factors involved in directed lineage-specific differentiation for potential 
hepatocyte transplantation as a treatment of liver diseases.

Materials and Methods

Cell culture medium and chemicals
HEK-293 and mouse hepatoma Hepa1-6 cell lines were obtained from ATCC (Manassas, VA) and 

maintained in complete Dulbecco's modified Eagle's medium (DMEM) as described [42-45]. For hepatic 
differentiation induction, cells were treated with complete medium containing 0.1μmol/L dexamethasone 
(Dex) as described [46, 47]. Unless indicated otherwise, all chemicals were purchased from Sigma-Aldrich 
(St. Louis, MO, USA). 

Isolation of hepatic progenitor cells from mouse embryonic liver tissues
The animal welfare, use, and care were carried out according to the approved protocol by the 

Institutional Animal Care and Use Committee. Post coitus day 11.5 to 14.5 mouse embryos from the 
timed pregnant CD1 female mice were obtained from The University of Chicago Transgenic Core Facility 
for isolating primary fetal hepatic progenitor cells as described [46-48]. Briefly, the fetal liver tissues 
were dissected out, rinsed with cold sterile PBS, and minced into pieces smaller than 1.0 mm3, followed 
by incubation in 0.25% trypsin/1mM EDTA with gentle agitations at 37°C for 10~15min. Then, 10ml of 
complete DMEM were added to inactivate trypsin, and the digested cell/tissue mixture was filtered through 
100μm strainers to remove cell/tissue debris. Recovered cells were seeded on 100mm cell culture dishes 
pre-coated with type I collagen and incubated at 37°C and 5% CO2. After 24h, medium was changed and 
non-adherent cells were removed. When reaching approximately 90% confluence, the isolated primary cells 
were passaged for making stable cell lines.

Establishment of stable embryonic hepatic progenitor cell lines
The retroviral vector SSR#69 expressing SV40 large T antigen flanked with LoxP sites and pCLAmpho 

packaging vector were co-transfected into HEK-293 cells to produce packaged retrovirus as described [49-
54]. Subconfluent primary fetal liver cells isolated above were infected with retrovirus and selected with 
hygromycin B (0.3mg/mL, Invitrogen) for 7~10 days. The stable cells were collected by trypsinization, 
serially diluted, and plated in 96-well cell culture plates using limiting dilution cloning method. Clones 
derived from single cells were selected and scaled up for further characterization while clone stocks were 
kept in liquid nitrogen tanks. Clones were designated as immortalized hepatic progenitors (iHP) and 
distinguished by their embryonic stages. For example, iHP13 clones indicate those immortalized clones that 
were derived from the hepatic progenitors obtained from E13.5 liver tissues. 

As a control line for mature hepatocytes, the primary hepatocytes were isolated from 14-day-old CD1 
mouse liver tissues and immortalized in a similar fashion as described above. The resultant stable cells were 
designated as LC14d. Mouse hepatoma Hepa1-6 line was also used as a control. 

Recombinant adenoviruses expressing Cre recombinase (Ad-Cre), firefly luciferase (Ad-FLuc), and green 
fluorescent protein (Ad-GFP)
Recombinant adenoviruses were generated using the AdEasy technology [55, 56]. The coding regions 

of Cre recombinase and firefly luciferase (FLuc) were PCR amplified and subcloned into an adenoviral 
shuttle vector and subsequently used to generate recombinant adenoviruses in our recently engineered 
packaging line 293pTP [57], resulting in adenoviruses Ad-Cre and Ad-FLuc, which also express GFP as a 
marker for monitoring infection efficiency. Analogous adenovirus only expressing GFP (Ad-GFP) was used 
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as a control [44, 58-66]. For all adenovirus infections, polybrene (8µg/ml) was added to the culture medium 
in order to enhance transgene transduction efficiency [67]. 

RNA isolation, quantitative and semi-quantitative RT-PCR (qPCR and sqPCR) analyses
Freshly prepared mouse liver tissues at the indicated development stages were dissected out, 

rinsed with PBS, minced, and then homogenized in the TRIzol reagent (Invitrogen). For the cultured cells, 
subconfluent cells were seeded in 60mm dishes in a complete DMEM with different treatments. Total RNA 
was extracted using the TRIzol reagent according to the manufacturer’s instructions. The cDNA synthesis 
was carried out using hexamer and Superscript II Reverse Transcriptase RT (Invitrogen). The cDNA products 
were diluted 10- to 100-fold and used as PCR templates. 18~20 mers of primers were designed with the 
Primer3.0 program to amplify the genes of interest (Table 1). PCR products were approximately 100~150 
bps. SYBR Green-based qPCR analysis was carried out by using the thermocycler Opticon II DNA Engine 
(Bio-Rad, CA) with a standard pUC19 plasmid as described elsewhere [48, 54]. The qPCR reactions were 
done in triplicate. The sqPCR was also carried out as described [58, 63, 68, 69]. Briefly, sqPCR reactions 
were carried out by using a touchdown protocol: 94°C × 20’’, 68°C × 30’’, 70°C× 20’’ for 12 cycles, with 
1°C decrease per cycle, followed by 25-30 cycles at 94°C× 20’’, 56°C × 30’’, 70°C × 20’’. PCR products were 
resolved on 1.5% agarose gels. All samples were normalized by the expression level of GAPDH. 

Indocyanine Green (ICG) uptake and release assay
The ICG uptake and release assay was carried out as described [46, 47, 70]. Subconfluent iHP cells 

were plated in 24-well culture plates and treated with Dex (0.1 μM) or DMSO for 10 days. Cells were washed 
with PBS and incubated with ICG (1mg/mL in complete DMEM) at 37°C for 1h, followed by PBS washes. 
ICG uptake was observed and recorded under a bright field microscope. For ICG release detection, the ICG-
containing medium was changed with regular complete medium, and the cells were incubated for additional 
6h. Stained cells were again observed under a microscope. Each assay condition was done in triplicate.

Periodic Acid-Schiff (PAS) staining
PAS staining was carried out as described [46, 47, 70]. Briefly, subconfluent iHP cells were seeded 

in 24-well culture plates and treated with Dex (0.1 μM) or DMSO for 10 days. Cells were fixed with 4% 
paraformaldehyde for 10 min, followed by stained with 0.5% periodic acid solution for 5 min. After being 

Table 1. Primers used for qPCR and cloning
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rinsed in distilled water for 3 min, cells were incubated in the Schiff ’s reagent for 15 min, and counterstained 
with hematoxylin solution, followed by thorough rinses with tap water. Cell staining was recorded using a 
microscope. Each assay condition was done in triplicate. 

SV40 T antigen Western blotting analysis
Western blotting was carried out as described [71-73]. Briefly, the iHP lines and control Hepa1-6 

cells were seeded in 60mm cell culture dishes and infected with Ad-Cre or Ad-GFP. At 48h post infection, 
total cellular proteins were extracted with the RIPA Lysis Buffer (25mM Tris-HCl pH 7.6, 150mM NaCl, 
1% NP-40, 1% sodium deoxycholate, 0.1% SDS) and subjected to 8% SDS-PAGE. The resolved proteins 
were electrically transferred to Immobilon-P membranes (Millipore). The membranes were blocked with 
SuperBlock Blocking Buffer (Pierce, Rockford, IL) at room temperature for 1hr, followed by incubation with 
anti-SV40 T antigen or anti-β-actin antibody (Santa Cruz Biotechnology) at 4°C overnight, and probed with 
appropriate secondary antibodies conjugated with horseradish peroxidase (Santa Cruz Biotechnology) at 
room temperature for 1h. The presence of the proteins was visualized by using the SuperSignal West Pico 
Chemiluminescent Substrate kit (Pierce) with the Kodak 440CF Image Station.

Cell viability Trypan Blue staining assay
Cell viability was measured using the Trypan blue exclusion assay as described [8, 61, 74]. Briefly, 

subconflucent iHP lines and Hepa1-6 cells were seeded in 24-well culture plates and infected with Ad-
Cre or Ad-GFP. The infected cells were collected at the indicated time points and mixed with Trypan Blue 
buffer (final concentration at 0.1% Trypan blue). Viable cells of the stained cell mixtures were subjected to 
hemocytometer cell counting under a microscope. Each assay condition was done in triplicate. 

Albumin promoter-driven Gaussia luciferase (Alb-GLuc) reporter assay
The homemade pSEB-Alb-GLuc reporter contains the mouse 2.5-kb albumin promoter sequence that 

drives the expression of Gaussia luciferase [46-48]. Subconfluent iHP14-19 cells were seeded in 24-well 
culture plates, transfected with pSEB-Alb-GLuc plasmid using LipofectAmine reagent (Invitrogen), infected 
with Ad-Cre or Ad-GFP, and treated with Dex (0.1 μM) or DMSO for 10 days. At the indicated time points, 
culture medium was collected for Gaussia luciferase assays using the Gaussia Luciferase Assay Kit (New 
England Biolabs). All assays were performed in triplicate. 

In vivo cell implantation and Xenogen bioluminescence imaging
The use and care of animals was approved by the Institutional Animal Care and Use Committee. 

Subconfluent iHP lines and Hepa1-6 cells were co-infected with Ad-FLuc and Ad-Cre or Ad-GFP for 24h. 
The infected cells (5×106 cells/injection) were collected and injected subcutaneously into the flanks of 
athymic nude mice (male, 4-6 wk old, Harlem Research Laboratory; 5 animals/group). At 1 day, 1 week and 
2 weeks after implantation, the animals were subjected to bioluminescence imaging using Xenogen IVIS 200 
imaging system as described [50, 61, 63, 73, 75, 76]. Mice were injected (i.p.) with D-Luciferin sodium salt 
(Gold BioTechnology) at 100 mg/kg in 0.1ml PBS. The pseudo images were obtained by superimposing the 
emitted light over the gray-scale photographs of the mice. Quantitative analysis was done with Xenogen’s 
Living Image software.

Statistical analysis
All quantitative data were presented as mean ± SD. The two-tailed student’s t test was used for 

statistical analysis. In all assays, the probability value (p) of <0.05 was considered statistically significant. 
Error bars represent the SD of three independent experiments.

Results

Endogenous expression of hepatic progenitor and liver-related genes at different stages of 
mouse liver development
In order to isolate primary hepatic progenitor cells form liver tissue, we firstly sought 

to examine the expression profiles of hepatic progenitor and related markers in liver tissues 
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derived from different stages of liver development from post coitus day 12.5 to postnatal 
4 weeks. We carried out qPCR analysis of the expression of endothelial and progenitor 
markers CD34 and Pou5f1/Oct4, hepatic markers AFP, Dlk, and Alb, and mature hepatocyte 
markers CK18, TAT, and ApoB. We found that early hepatic stem cell marker CD34 [77] and 
somatic stemness-related marker POU domain, class 5, transcription factor 1 (Pou5f1/
Oct4) [78] highly expressed in prenatal liver tissues and decreased quickly after birth (Fig. 
1A and 1B). The expression of hepatic early marker genes delta-like protein-like protein 
(Dlk) and alpha-fetaprotein (AFP) [79, 80] was readily detected in early liver tissues and 
increased to top expression at post coitus day 16.5 and postnatal day 1, respectively, then 
significantly decreased in postnatal liver tissues and became undetectable in postnatal 28 

Fig. 1. Endogenous expression of hepatic progenitor and liver-related genes at different stages of mouse 
liver development. Total RNA was isolated from mouse liver tissues at the indicated 8 time points. The qPCR 
was carried out to detect the expression of endothelial progenitor cell markers CD34 (A) and Pou5f1/Oct4 
(B), hepatic markers AFP (C), Dlk (D), and Alb (E), and mature hepatocyte markers CK18 (F), TAT (G), and 
ApoB (H). All samples were normalized with GAPDH and done in triplicate. Relative expression was calcula-
ted by dividing the qPCR value of a given gene of interested with its respective GAPDH value.
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days (Fig. 1C and 1D). Alb and cytokeratin 
18 (CK18) are considered hepatic specific 
markers, while tyrosine amino transferase 
(TAT) and apoplipoprotein B (ApoB) are 
synthesized by functional hepatocytes [81, 
82]. These four markers had low- or non-
expression in embryonic liver tissues, but 
increased quickly after birth and maintained 
at a relatively high expression level (Fig. 1E 
to 1H). Thus, our results suggest that the 

Fig. 2. Endogenous expression of hepatic/pancrea-
tic transcription factors during mouse liver deve-
lopment. The qPCR analysis was carried out on the 
same set of samples prepared in Figure 1. The ex-
pression of HNF3α/Foxa1 (A), HNF3β/Foxa2 (B), 
and HNF4α/MODY1 (C) was assessed by qPCR in 
triplicate. Relative expression was calculated by di-
viding the qPCR value of a given gene of interested 
with its respective GAPDH value. 

most of hepatic progenitor cells may be present in the stage prior to post coitus day 14.5. 

Endogenous expression of hepatic/pancreatic transcription factors during mouse liver 
development
Hepatocyte nuclear factors (HNFs) are a group of phylogenetically unrelated 

transcription factors that regulate the transcription of a diverse group of genes, including 
certain genes that are important for hepatic functions, such as morphological and functional 
differentiation of hepatocytes, glucose transport and metabolism [83]. Among the HNFs, 
HNF3α/Foxa1, HNF3β/Foxa2, and HNF4α/MODY1 have been shown to play essential roles 
in hepatic/pancreatic/intestine development [84]. We sought to examine the expression 
patterns of HNF3α/Foxa1, HNF3β/Foxa2, and HNF4α/MODY1 during liver development. 
We found that although all three genes’ expression levels varied, HNF3α and HNF3β 
exhibited rather steady prenatal expression level with a postnatal spike at D7 to D14 (Fig. 2A 
and 2B) while HNF4α/MODY1 expressed progressively higher and peaked at D14 (Fig. 2C). 
Interestingly, HNF4α/MODY1 exhibited much higher expression than that of the HNF3α/
Foxa1 and HNF3β/Foxa2’s at each tested time (Fig. 2A and 2B vs. 2C), suggesting that HNF4α/
MODY1 may be more abundant and play important liver-specific roles. Taken together, these 
results indicate that embryonic liver tissues may serve as a good source of hepatic progenitor 
cells that are programmed for liver-specific gene expression and differentiation. 

Establishment of reversibly immortalized hepatic progenitor (iHP) cell clones from mouse 
fetal liver 
As mouse fetal liver can’t be easily identified until post coitus day 10.5, we prepared 

and isolated primary HP cells from mouse embryonic liver tissues of post coitus day 11.5 to 
14.5. The freshly isolated primary cells could be maintained in complete DMEM culture for 
up to two weeks (Fig. 3A). To generate reversibly immortalized progenitor cells, we used 
the immortalizing retroviral SSR#69 vector that expresses a hygromycin-resistance gene 
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and immortalizing SV40 T antigen (Fig. 3B) [49]. We have successfully used this system and 
immortalized primary progenitors from various sources [50-52, 54, 62]. Accordingly, we 
successfully generated immortalized hepatic progenitor (iHP) cells isolated from different 
stages of embryonic liver tissues (Fig. 3C). Unlike primary HP cells, the iHP cells can be 
passaged and stable in culture for numerous generations. Thus, we demonstrate that SV40 T 
antigen mediated-immortalization strategy is effective to establish long-term cell culture of 
hepatic progenitor cells. 

Characterization of individual iHP clones
As hepatic progenitor cells isolated from fetal liver tissues may contain various 

types of cells, such as hepatocytes, parenchymal cells, stellate cells, kupffer cells, and liver 
fibroblasts, we performed the limiting dilution cloning assays and identified more than 60 
clones that were derived from single iHP cells. Thirty-two clones were randomly selected 
from further characterization by focusing on their expression levels of progenitor markers 
and late hepatocyte makers. When the expression of Pou5f1/Oct4 and Dlk was analyzed, we 
found that most iHP clones expressed these two primitive endoderm and hepatic lineage 

Fig. 3. Establishment of rever-
sibly immortalized hepatic pro-
genitor (iHP) cell clones from 
mouse fetal liver. (A) Morphology 
of freshly isolated HP cells. Mouse 
hepatic progenitor cells were iso-
lated from the embryonic liver 
tissues of E11.5 to 14.5 mouse 
embryos. The freshly isolated pri-
mary cells could be maintained in 
complete DMEM culture for up to 
two weeks. Representative results 
are shown. (B) Schematic repre-
sentation of the retroviral vector 
SSR #69 for reversible immor-
talization of primary cells. The 
SSR #69 vector expresses SV40 
large T antigen and hygromycin-
resistance marker that are flanked 
with LoxP sites. (C) Establishment 
of immortalized HP clones. The 
freshly isolated primary HP cells 
were infected with the packaged 
SSR#69 retrovirus and selected in 
hygromycin B (0.3mg/mL, Invitro-
gen) for 7~10 day. The recovered 
stable pools were seeded into 
multiple 96-well plates using the 
limiting dilution cloning method. 
More than 60 clones derived from 
single cells were chosen and sca-
led up as immortalized HP (iHP) 
clones. Representative iHP clones 
that were maintained in complete 
DMEM culture are shown.
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progenitor markers, especially in iHP13-6, iHP13-19, iHP14-2, and iHP14-19, while the 
mature hepatocytes LC14d and hepatoma line Hepa1-6 expressed rather low levels of 
Pou5f1/Oct4 and Dlk (Fig. 4A and 4B). Hepatoblast marker AFP was highly expressed in 

Fig. 4. Basal expression levels of the progenitor and hepatocyte markers in the iHP clones. Total RNA was 
isolated from 32 iHP clones (passage 25), the mouse hepatoma line Hepa1-6, and the immortalized mouse 
hepatocytes (LC14d) from 14-day-old mouse liver tissues (passage 23), and subjected to reverse transcripti-
on reactions. The qPCR was performed to detect the basal expression of the progenitor cell marker Pou5f1/
Oct4 (A), hepatic related markers Dlk (B), AFP (C) and Alb (D), and the mature hepatocyte marker ApoB (E). 
All samples were normalized with GAPDH, and the qPCR reactions were done in triplicate. Relative expres-
sion was calculated by dividing the qPCR value of a given gene of interested with its respective GAPDH value. 
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the LC14d and Hepa1-6 cells, but was low in most iHP clones (except iHP13-6, iHP14-2, 
and iHP14-19) (Fig. 4C). Furthermore, mature hepatocyte markers Alb and ApoB exhibited 
very low expression levels in almost all iHP clones, but were highly expressed in LC14d and 
Hepa1-6 cell lines (Fig. 4D and 4E). Taken together, our results suggest that the clones iHP13-
6, iHP13-19, iHP14-2 and iHP14-19 may represent hepatic progenitor cells. 

Functional characterization of representative iHP clones
Based on the expression patterns of early progenitor markers and mature hepatocyte 

genes, five representative iHP clones (i.e., iHP13-6, iHP13-16, iHP13-19, iHP14-2, and 
iHP14-19) were selected for further functional characterizations. Morphologically, the five 
clones look similar although iHP14-2 adapted more fibroblast-like morphology (Fig. 5A). We 
further assessed the endogenous expression patterns of hepatic/pancreatic transcription 
factors in the selected iHP clones. The results indicated that HNF3α/Foxa1, HNF3β/Foxa2, 
and HNF4α/MODY1 genes were expressed at varied levels in the iHP clones, as well as in 
LC14d hepatocytes (Fig. 5B). 

We next examined how the iHP cells responded to dexamethasone (Dex)-induced 
differentiation. When the iHP cells were treated with Dex (0.1 μM) for up to 10 days, the 
expression levels of AFP was found increased to varied degrees in all five iHP clones with 
the iHP13-16 exhibited the largest increase (Fig. 5C, top panel). When the expression of late 
hepatocyte marker TAT was examined, all iHP clones except iHP14-2 exhibited significant 
increases (p<0.05) (Fig. 5C). Taken together, the AFP and TAT expression results indicate 
that four of the five iHP clones are responsive to Dex-induced differentiation. 

Since Indocyanine Green (ICG) uptake and glycogen storage are liver-specific functions 
associated with differentiated hepatocytes in vitro [85], we examined whether the iHP clones 
had these capabilities upon Dex-induced differentiation. In the ICG uptake assay, we found 
that, although all clones exhibited some background ICG uptake, a significant increase in ICG 
uptake was observed in all five iHP clones while hepatoma Hepa1-6 cells did not exhibit any 
significant increase in ICG uptake upon Dex treatment (Fig. 5D, and data now shown). The 
glycogen storage capabilities were assessed by using the Periodic Acid-Schiff (PAS) staining. 
Upon Dex stimulation, all iHP clones exhibited varied levels of increase in PAS staining while 
the iHP13-16 and iHP14-2 clones were significantly stained at lower levels (Fig. 5E, and data 
not shown). Taken together, the above results indicate the selected five iHP clones retain the 
potential to undergo liver-specific terminal differentiation although there are discernable 
clonal variations in the differentiation efficiencies.

Cre-mediated reversal of immortalization reduces cell proliferative activity and improves 
hepatic differentiation of the iHP cells
As indicated in the SSR #69 vector (Fig. 3B), the expression of SV40 T antigen in the iHP 

cells can be removed and thus may lead to the reversal of the immortalization process. We 
used a recombinant adenovirus expressing Cre recombinase (Ad-Cre) to transduce iHP cells, 
and the effective removal of SV40 T antigen was confirmed by Western blotting analysis 
using an SV40 T antibody (Fig. 6A). When the SV40 T antigen was removed from the iHP 
cells, the Cre-expressing iHP cells grew at a significantly slower rate than that of the GFP-
expressing iHP cells at all tested time points (p<0.05) (Fig. 6B). As expected, the growth rate 
of the control Hepa1-6 cells was not affected. Thus, these results indicate that the SV40 T 
antigen-mediated immortalization of hepatic progenitor cells is reversible. 

It has been reported a stable expression of SV40 T antigen may inhibit terminal 
differentiation of some cell types, such as skeletal muscle cells, myoblasts, and adipocytes 
[86]. We sought to test if the SV40 T antigen-mediated immortalization would inhibit the 
terminal differentiation of the iHP cells. Using the iHP14-19 cells transduced with Alb-GLuc 
reporter as an example, we found that the iHP14-19 cells were still able to differentiate 
(reflected by the increased Alb-GLuc activities) upon Dex stimulation in the presence of 
SV40 T antigen (p<0.05) (Fig. 6C). We further found that Cre-mediated removal of SV40 T 
antigen led to increased Alb-GLuc activities of the iHP14-19 cells, compared with that of the 
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Fig. 5. Functional cha-
racterization of five 
representative iHP clo-
nes. (A) Morphological 
presentation of the five 
iHP clones, which were 
selected on the basis 
of their expression of 
the progenitor markers 
and late-stage markers 
assessed in Figure 4. 
(B) Basal expression 
of hepatic/pancreatic 
transcription factors 
in the selected iHP clo-
nes. Total RNA was iso-
lated from the five iHP 
clones (passage 28) 
and the control LC14d 
cells (passage 27), and 
subjected to RT-PCR. 
The basal expression of 
HNF3α/Foxa1, HNF3β/
Foxa2, and HNF4α/
MODY1 genes was as-
sessed by semi-quanti-
tative RT-PCR. GAPDH 
was used an internal 
control. Representati-
ve results are shown. 
(C) Dexamethasone 
(Dex) induced differen-
tiation of the iHP cells. 
Subconfluent iHP cells 
were treated with Dex 
(0.1 μM) or DMSO. RNA 
was isolated at days 5 
and 10, and subjected 
to qPCR analysis to de-
tect the expression of 
AFP and TAT. All samp-
les were normalized by 
GAPDH expression level. Fold of changes was calculated by dividing the qPCR expression values from the 
Dex treatment group by that from the respective DMSO control group. (D) Dex-induced Indocyanine Green 
(ICG) uptake assay. Subconfluent iHP cells were treated with Dex (0.1 μM) or DMSO for 10 days. Cells were 
washed with PBS and incubated with ICG (1mg/mL in complete DMEM) at 37°C for 1h, followed by PBS 
washes. ICG uptake was observed and recorded under bright field. Significantly lower ICG uptake in the 
DMSO treatment groups was detected (data not shown). Each assay condition was done in triplicate. Repre-
sentative results are shown. (E) PAS staining for glycogen storage. Subconfluent iHP cells were treated with 
Dex (0.1 μM) or DMSO for 10 days. Cells were fixed with 4% paraformaldehyde, followed by stained with 
0.5% periodic acid solution and the Schiff ’s reagent, and counterstained with hematoxylin. PAS staining was 
observed and recorded under bright field. Positive stainings are indicated by arrows. Significantly lower PAS 
staining in the DMSO treatment groups was observed (data not shown). Each assay condition was done in 
triplicate. Representative results are shown.  
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GFP-infected iHP control groups’. However, the removal of SV40 T antigen also increased 
the spontaneous differentiation of the iHP cells (Fig. 6C). Nonetheless, the above results 
indicate that the immortalized phenotypes of the iHP cells can be effectively reversed by the 
introduction of Cre recombinase, and that SV40 T antigen-mediated immortalization exerts 
minimal inhibitory effect on terminal differentiation of the iHP cells. 

The iHP cells are not tumorigenic in athymic nude mice
SV40 T antigen can stimulate cell proliferation and may increase the risk of tumorigenesis 

in vivo [87]. We sought to test if the iHP cells had tendency to proliferate and form tumors in 
vivo, and if so whether the process can be reversed by Cre combinase. We first infected three 
iHP cells and control Hepa1-6 cells with Ad-Cre or Ad-GFP for 24h (Fig. 7A). The transduced 
cells were harvested and subcutaneously injected into athymic nude mice. The animals were 
subjected to whole body live bioluminescence imaging using Xenogen IVIS 200 at day 1, 
week 1, and week 2 post cell implantation. At day 1, bioluminescence signal was readily 

Fig. 6. Cre-mediated removal 
of SV40 T antigen leads to the 
decreased proliferative capabi-
lity of the iHP cells. (A) Effici-
ent removal of SV40 T antigen 
by Cre recombinase. Subcon-
fluent iHP cells (passage 31) 
or control Hepa1-6 cells were 
infected with Ad-GFP (- lane) 
or Ad-Cre (+ lane) for 48h. Cell 
lysate was collected and subjec-
ted to Western blotting analysis 
using SV40 T or β-actin antibody 
(Santa Cruz Biotechnology). (B) 
Removal of SV40 T antigen in-
hibits iHP cell proliferation. The 
iHP lines and control Hepa1-6 
cells were infected with Ad-GFP 
or Ad-Cre. Cells were collected 
and stained with trypan blue at 
the indicated time points. Viable 
cells were counted in triplicate. 
* p<0.05, ** p<0.01. (C) Remo-
val of SV40 T antigen improves 
hepatic differentiation of the 
iHP cells. Subconfluent iHP14-
19 cells were transfected with 
pAlb-GLuc reporter plasmid and 
infected with Ad-GFP or Ad-Cre, 
followed by addition of Dex (0.1 
μM) or DMSO. At the indicated 
time points, Gaussia luciferase 
activity (mean ± SD) was as-
sayed. Each assay condition was 
performed in triplicate. Except 
at day 1 data points, p<0.05, Dex 
treatment vs. DMSO treatment 
in Ad-GFP groups; p<0.001, Dex treatment vs. DMSO treatment in Ad-Cre groups; p<0.05, Ad-Cre vs. Ad-GFP 
in DMSO treatment groups; p<0.001, Ad-Cre vs. Ad-GFP in Dex treatment groups.
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Fig. 7. The SV40 T antigen-immortalized hepatic progenitors are not tumorigenic in vivo. (A) Adenovirus-
mediated efficient transduction of iHP cells. Subconfluent iHP cells (passage 35) were co-infected with the 
same titer (multiplicity of infection MOI = 20) of Ad-Fluc and Ad-GFP or Ad-Cre. The GFP signal was exami-
ned at 24h post infection. Representative results from the transduced iHP13-6 cells are shown. (B) Xenogen 
bioluminescence imaging of the subcutaneous growth of the transduced iHPs and Hepa1-6 cells in athymic 
nude mice. The above adenovirus-transduced cells (A) were collected at 24h post infection and subcutane-
ously injected into athymic nude mice as described in the Methods. The animals were subjected to Xenogen 
IVIS 200 imaging at the indicated time points. Representative results are shown. (C) Quantitative analysis of 
the luciferase signals was conducted by using the Living Image software. *p<0.05 when compared with the 
GFP group at the corresponding time points.
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detected in all injected animals, while the signal was found significantly decreased in the 
three iHP cell-injected animals at 1-week time point, and almost completely disappeared at 
2-week time point (Fig. 7B). On the contrary, the signal in the Hepa1-6 group progressively 
increased over the two week period (Fig. 7B). As expected, Cre-transduced iHP cells yielded 
significantly lower signal than that of the GFP-transduced controls at as early as day 1 
time point (p<0.05), while Hepa1-6 cells were not affected by Cre transduction (Fig. 7C). 
In addition to imaging, we continued to monitor the animals for up to 8 weeks and did not 
observe any tumor-like masses grown at the iHP cell injection sites. Taken together, these 
results demonstrate that the tested iHP cells are not tumorigenic, and that Cre-mediated 
removal of SV40 T antigen inhibits iHP cell proliferation in vivo. 

Discussion

Although the true identity and features of liver stem cells remains to be fully understood, 
it is commonly accepted that hepatic progenitor cells are common progenitors of mature 
hepatocytes and biliary epithelial cells and act as the major component of the hepatic 
parenchyma in early liver development [40, 41, 88-90]. Thus, it is desirable to establish stable 
hepatic progenitor cells, which are non-tumorigenic and maintain the stem cell properties, as 
these cells provide a unique system to study stem cell regulation and to optimize conditions 
for directing endogenous regenerative potential towards a lineage-specific differentiation.

To overcome the limited life span of culturing primary hepatic progenitors, we 
established the reversibly immortalized hepatic progenitor (iHP) cells from mouse 
fetal liver tissues by stably expressing SV40 T antigen. A collection of individual iHP 
clones represents a repertoire of hepatic progenitor clones with varied differentiation 
potential. The iHP cells maintain long-term proliferative activity and express 
progenitor markers (Pou5f1/Oct4 and Dlk) and hepatocyte-related markers (HNF3 
/Foxa1, HNF3β/Foxa2, and HNF4α/MODY1). Upon dexamethasone (Dex) stimulation, the 
iHP cells are able to express hepatocyte markers (AFP and TAT) and perform Indocyanine 
Green (ICG) -uptake and glycogen storage (PAS staining) functions. Cre recombinase-
mediated removal of SV40 T antigen reverses the proliferative activity of the iHP cells. When 
the iHP cells are subcutaneously implanted in the athymic nude mice, no tumor formation is 
observed for up to 8 weeks. Therefore, our results demonstrate that the established iHP cells 
are stable, reversible, and non-tumorigenic progenitor-like cells, which should be useful for 
studying liver stem cell biology, liver organogenesis and developing potential cell sources/
factors for hepatocyte transplantation therapy.

It has been widely reported that hepatocytes can be derived from embryonic stem 
cells, mesenchymal stem cells, and iPS cells [13-28]. While these progenitor/stem cells are 
potentially important sources for hepatocyte transplantation, the lineage-specificity and 
differentiation efficiency of these progenitor cells remain to be fully characterized in vivo. 
This matter is further complicated by our current lack of the knowledge and understanding 
of the detailed mechanism through which hepatic progenitors are regulated and directed to 
hepatocyte lineage-specific differentiation. Thus, liver progenitor cells isolated from both 
fetal and adult liver tissues should have the inherited advantages over those extrahepatic 
sources of stem cells [1, 21, 29-36]. 

Although it has been reported that relatively long-term culturing of liver progenitor 
cells can be achieved under special culture conditions [31, 37-39], the primary progenitor 
cells usually have limited life span when maintained in vitro [40, 41]. Several earlier studies 
reported the generation of progenitor lines from liver. Bipotential cell lines (so-called palmate 
cell lines) were established from the liver tissues of transgenic mice expressing constitutively 
active human Met [91, 92]. Bipotential clonal cell lines in hepatocyte-enriched suspension 
culture were established from healthy liver of 8-10-week-old C57BL/6 mice [93]. Bipotential 
mouse embryonic liver (BMEL) cell lines were established from E14 embryos using Matrigel 
aggregate culture approach [30]. Stem-like cell lines were established from adult rat liver 
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although the long-term culture nature of these lines were unclear[94]. Interestingly, long-
term cultivation of subpopulations of non-parenchymal cells derived from non-injured livers 
were obtained using fetal liver cell-derived conditioned medium in the presence of the Rho-
associated kinase (ROCK) inhibitor Y-27632 [95]. Using the approach similar to what we 
reported here, epithelial liver stem cell lines were obtained from primate fetal liver tissues 
[96, 97]. Furthermore, it was reported that progenitor cells can be isolated from human 
adult livers using Thy-1 as a sorting marker and may be a potential candidate cell source for 
cell treatment in liver diseases [98]. 

Immortalization of primary cells has long been a practice for obtaining stable cell lines. 
The classical BALB/3T3 protocol proved the principle of cell immortalization [99] although 
this approach is not efficient and thus often replaced by the overexpression of oncogenes 
and/or the inactivation of tumor suppressor genes [100]. Many genes have been used to 
immortalize primary cells. The commonly-used oncogenes include telomerase (TERT), Kras, 
c-Myc, CDK4, cyclin D1, Bmi-1, and HPV 16 E6/E7, while the frequently inactivated tumor 
suppressor genes are p53, Rb, and p16INK. Here, we employed SV40 T antigen, one of the most 
commonly used immortalization genes [101], which plays essential roles in the infection of 
permissive cells, leading to production of progeny SV40 virions, and in the infection of non-
permissive cells, leading to malignant transformation [102, 103]. The ability of SV40 large 
T antigen to immortalize primary cells may be largely dependent on its ability to complex 
with p53 [104]. Using the reversible immortalization system expressing SV40 T antigen [49], 
we have immortalized several types of progenitors and adult cells, including MEFs, mouse 
cardiomyogenic progenitor cells, mouse articular chondrocytes, stem cells of dental apical 
papilla, and mouse melanoblastic progenitor cells [50-54]. More recently, we demonstrate 
that piggyBac transposon-mediated stable expression of SV40 T antigen is a more efficient 
approach to the immortalizing primary cells [60]. The most noteworthy features shared by 
all of the SV40 T antigen-immortalized cells include that 1) they are reversible and become 
mortal upon the removal of SV40 T antigen from the immortalized cells; 2) stable expression 
of SV40 T antigen does not completely inhibit the differentiation potential although the 
removal of SV40 T antigen has been shown to improve the terminal differentiation; and 3) 
the immortalized cells are non-tumorigenic in immune compromised mice, even after an 
extended observation period [50-52, 54]. 

In summary, we sought to overcome the mortality of primary hepatic progenitor cells 
in vitro, and established the reversibly immortalized hepatic progenitor (iHP) cells from 
mouse fetal liver tissues by stably expressing SV40 T antigen. More than 60 iHP clones 
were obtained. Among 32 clones were analyzed. We found the iHP cells maintain long-term 
proliferative activity and express progenitor markers and hepatocyte-related markers. Upon 
the induction of differentiation, the iHP cells are able to express mature hepatocyte markers 
and perform ICG uptake and glycogen storage functions. Removal of SV40 T antigen can 
reverse iHP cell proliferative activity. When the iHP cells were subcutaneously implanted 
in the athymic nude mice, no tumor formation is observed for up to 8 weeks. Therefore, 
our results demonstrate that the established iHP cells are stable, reversible, and non-
tumorigenic progenitor-like cells. The iHP cells should be a valuable resource for studying 
stem cell biology, liver organogenesis, hepatic tumorigenesis, and metabolic regulations, 
and identifying factors involved in directed lineage-specific differentiation for potential 
hepatocyte transplantation as a treatment of liver diseases.
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