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Abstract: We consider the summation equation, for t ∈ [µ − 2, µ + b]Nµ−2
,

y(t) = γ1(t)H1

(

n
∑

i=1

aiy (ξi)

)

+ γ2(t)H2

(

m
∑

i=1

biy (ζi)

)

+λ

b
∑

s=0

G(t, s)f(s + µ − 1, y(s + µ − 1))

in the case where the map (t, s) 7→ G(t, s) may change sign; here µ ∈ (1, 2] is a parameter,
which may be understood as the order of an associated discrete fractional boundary value
problem. In spite of the fact that G is allowed to change sign, by introducing a new cone
we are able to establish the existence of at least one positive solution to this problem by
imposing some growth conditions on the functions H1 and H2. Finally, as an application
of the abstract existence result, we demonstrate that by choosing the maps t 7→ γ1(t),
γ2(t) in particular ways, we can recover the existence of at least one positive solution to
various discrete fractional- or integer-order boundary value problems possessing Green’s
functions that change sign.
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