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Abstract

The maintenance of cell volume homeostasis is critical
for preventing pathological cell swelling that may lead
to severe cellular dysfunction or cell death. Our earlier
studies have shown that volume-regulated anion
channels that play a major role in the regulation of
cell volume are facilitated by a decrease in cellular
cholesterol suggesting that cholesterol depletion
should also facilitate regulatory volume decrease
(RVD), the ability of cells to recover from hypotonic
swelling. In this study, we test this hypothesis using a
novel methodology developed to measure changes
in cell volume using a microfluidics chamber. Our data
show that cholesterol depletion of Chinese Hamster
Ovary (CHO) significantly facilitates the recovery
process, as is apparent from a faster onset of the
RVD (162110 s. vs. 11445 s. in control and cholesterol
depleted cells respectively) and a higher degree of
volume recovery after 10 min of the hypotonic
challenge (41%+6% vs. 65%%6% in control and

cholesterol depleted cells respectively). In contrast,
enriching cells with cholesterol had no effect on the
RVD process. We also show here that similarly to our
previous observations in endothelial cells, cholesterol
depletion significantly increases the stiffness of CHO
cells suggesting that facilitation of RVD may be
associated with cell stiffening. Furthermore, we also
show that increasing cell stiffness by stabilizing F-
actin with jasplakinolide also facilitates RVD
development. We propose that cell stiffening
enhances cell mechano-sensitivity, which in turn
facilitates the RVD process.

Copyright © 2011 S. Karger AG, Basel

Introduction

The maintenance of cell volume homeostasis is
critical for preventing pathological cell swelling that may
lead to severe cellular dysfunction or cell death. In
mammalian tissues, the osmotic environment is normally
maintained within a narrow range but several pathological
conditions, such as hypoxia, ischemia, hyponatremia and
diabetic acidosis may create significant osmotic stresses
[1-3]. Most cell types, therefore, developed mechanisms
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that prevent excessive swelling and maintain cell volume
within a normal range. A recovery from cell swelling
termed Regulatory Volume Decrease (RVD) is typically
mediated by swelling-activated ion channels, that allow
the osmolytes to flow out of the cell reducing the osmotic
gradient across the cell membrane and allowing the cell
volume to return to normal (reviewed by [4-6]). Our
studies focus on understanding how cell volume regulation
is affected by changes in the level of membrane
cholesterol.

Cholesterol is one of the major lipid components of
the plasma membrane in all mammalian cells and is
essential for cell function and growth [7, 8]. It is also well
known that changes in the levels of cellular cholesterol
are associated with multiple diseases, most notably with
the development of cardiovascular disease and diabetes.
The basis for both cholesterol requirement and its
cytotoxicity is its ability to alter the function of integral
membrane proteins. Our earlier studies have shown that
membrane cholesterol regulates the activity of volume-
regulated anion channels (VRAC) [9-11], one of the main
mechanisms of cell volume recovery after a hypotonic
shock [4, 6]. Specifically, we have shown that cholesterol
depletion significantly enhances the activity of VRAC in
aortic endothelial cells whereas cholesterol enrichment
has the opposite effect [9, 10]. Cholesterol depletion was
also shown to facilitate VRAC in Ehrlich-Lettre ascites
[12]. Furthermore, we have also shown that cholesterol
depletion increases cellular stiffness and facilitates
membrane-cytoskeleton adhesion in endothelial cells [13,
14] with a corresponding increase in VRAC activity [11].
These observations suggested that cholesterol depletion
and an associated increase in cell stiffness should also
facilitate the RVD process.

The main constraint in testing this prediction earlier,
however, was a lack of available techniques to accurately
measure real-time cell volume changes in substrate-
attached cells. Indeed, until recently the two main
experimental approaches to estimate dynamic changes
in cell volume were based either on flow cytometry or
fluorescent/confocal microscopy. The main constraint of
the first approach, however, is that while it provides an
excellent tool to measure cell volumes of cells in
suspension, it cannot be used for substrate-attached cells
without detaching them from the substrate, which clearly
may have a major impact on the mechanisms of cell
volume regulation. Optical methods to estimate cell
volumes are based either on 3D reconstruction of
confocal images, a method that is not very sensitive to
small changes in cell height, or on changes of fluorescence

intensity of fluorescent dyes as they get diluted during
cell swelling, a method also of limited sensitivity. In this
study, we use a novel methodology developed recently
by Hua and colleagues to measure changes in cell volume
of substrate-attached cells using a microfluidics chamber
[15-17]. The main principle of this method is that when
cells swell within a microchannel filled with an electrolyte
solution, there is a matching reduction in the volume of
electrolyte solution available for current flow which can
be measured as a resistance increase under constant
current conditions. The device has been characterized in
previous studies demonstrating that it is sensitive to
relatively small changes in cell volume in a precise and
reproducible way [15, 16] and that the development of
the RVD response can be suppressed by blocking
mechanosensitive ion channels in several cell types [17].
In this study, we show that cholesterol depletion strongly
facilitates the RVD process of Chinese Hamster Ovary
(CHO) cells and that this effect is associated with an
increase in cell stiffness. Furthermore, we also show that
increasing cell stiffness by stabilizing F-actin also facilitates
RVD. These studies support the hypothesis that cell
stiffness plays an important role in cell volume regulation.

Materials and Methods

Cells and solutions

Chinese hamster ovary (CHO) K1 cell line was maintained
at 37°C in a humidified 5% CO, atmosphere in HAM’s F-12
media (Gibco Invitrogen) supplemented with heat-inactivated
10% fetal bovine serum (Gemini BioProducts, Woodland, CA).
Cells were fed or split every 2-3 days. Hypotonic solutions
were prepared by diluting no serum F12 medium by 5%, 10% or
30% with distilled water. Isotonic solutions were prepared by
supplementing the appropriate hypotonic solutions with
sucrose to generate a solution of 300 mOsm while maintaining
similar ionic strengths in hypotonic and isotonic solutions.
Osmolarities of all the solutions were measured routinely by a
VaPro Vapor Pressure Osmometer 5520 WESCOR device. To
modulate cellular cholesterol, cells were incubated with 5 mM
of MBCD or MBCD saturated with cholesterol for 1 hour. MBCD
and cholesterol were purchased from Sigma Chemical (St. Louis,
MO).

Volume measurements and analysis

Cells were seeded on 22x22 mm 1.5 thickness glass
coverslips coated with Poly-L-lysine and grown to 70-90%
confluency. Then, a coverslip with attached cells was placed
and locked on CVC7000 stage to form a ceiling of a sealed
microfluidic channel of 15 um height. After mounting on the
stage, cells were first equilibrated with isotonic solution for 5-
10 minutes to achieve a stable baseline of the channel resistance
and then the solution was switched to hypotonic for 10 min
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Fig. 1. Sensitivity of CHO cells to osmotic challenge.
A: Typical recordings of cell swelling and recovery
in CHO cells challenged with 5%, 10% or 30%
osmotic gradients. The inset shows a trace recorded
when cells were maintained under isosmotic
conditions for the duration of the experiment and a
trace showing changes in the resistance during
isotonic/hypotonic solution exchange in the
absence of cells. The initial drop in the resistance
corresponds to the change of the solutions from
isotonic to hypotonic, the subsequent increase in
resistance reflects cell swelling and a gradual
decrease of resistance, volume recovery. In all the
experiments, we used the same perfusion protocol
(in case of cells maintained under isotonic
conditions, solutions were switched without altering
the osmolarity of the solutions and resistance peaks
indicate the switching of the solutions). Please note
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and then returned to isotonic. The principles and the technical
properties of the CVC device are described in detail by [15].
CVC7000 is controlled by Cell Volume Analyzer 3.0.0.135/
NanoVol 3.0.194 software packages, running under Ubuntu
Linux 8.04 (Canonical Ltd, Germany/England). All the
experiments were carried out at room temperature. Changes in
cell volume were quantified as following: Cell swelling was
quantified as AR _=MaxR_ - MinR,, where AR__ is the change
of resistance during the swelling phase, calculated as the
difference between maximum value during swelling (MaxR ),
and minimum value during the Isotonic to Hypotonic solutions’
switch (MinRI-H); Volume recovery was calculated as AR =
MaxR - MinR_ where AR is change of resistance during the
recovery phase, calculated as a difference between maximum
value during swelling (MaxR ), and minimum value during the
recovery phase (MinR ); The recovery to swelling ratio was
calculated as: Recovery Ratio = AR /AR _ . All measurements
are in kOhms. Recovery value is calculated for the 10 minutes
hypotonic challenge.

Microaspiration

Microaspiration of CHO was performed as described in
our earlier study [11, 13]. Briefly, cells were detached from the
substrate by washing them with 80 uM EDTA and exposed to
5SmM MBCD solution in serum-free media or to serum-free media
only for 1 hour, then the membranes were visualized with a 50
uM fluorescent membrane dye carbocyanide DilC , (DI,

Molecular probes) and then aspirated using micropipettes with
3-5 um outer diameter pulled from borosilicate glass capillaries
(SG10 glass; Richland Glass, Richland, NJ). Negative pressure
was applied to a pipette by a pneumatic transducer tester
(BioTek Instruments, Winooski, VT, USA). The experiments
were carried out at room temperature. F-actin was visualized
with Rhodamine Phalloidin.

Results

Quantitative assessment

microfluidic chamber

First, we tested the sensitivity of CHO cells to
increased hypotonic challenge. Cells were challenged with
osmotic gradients of 5%, 10% or 30% by decreasing the
osmolarity of the extracellular medium while maintaining
the ionic strength of the extracellular solutions. To achieve
this goal, hypotonic solutions were prepared by diluting
serum-free media (300 mOsm) by 5, 10 or 30% to make
285 mOsm, 270 mOsm and 210 mOsm solutions
respectively and then each of these solutions was adjusted
back to normal osmolarity (300 mOsm) by adding sucrose
to create “ionic-strength matched” isotonic solutions for

of RVD using
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each of the hypotonic media. The rationale of this
approach was to challenge the cells osmotically without
dramatic changes of the ionic strength of the extracellular
solution excluding the possibility that changes in ionic
strength by itself might alter cell biomechanics and volume
regulation. Thus, cells were first equilibrated with a
“matched” isotonic solution and then challenged with a
hypotonic solution of the same ionic strength.

Figure 1A shows the typical recordings of the RVD
process in cells challenged with 5, 10 or 30% osmotic
gradients. In all experiments, the recording starts at
isosmotic conditions and then switched to hypotonic which
is accompanied with a drop of the resistance that reflects
the mobility of the ions, which increases when sucrose is
removed from the solution. An increase in ion mobility
corresponds to higher conductivity/lower resistance of
the solution, as demonstrated by a trace recorded in the
absence of cells (inset, lower trace). As expected, no
changes in resistance are observed when cells are
maintained under the isoosmotic conditions for the duration
of the experiment (inset, upper trace). After the initial
drop we see gradual increase in resistance that reflects
cell swelling and decrease in the conductivity of the
chamber and then gradual recovery that reflects the RVD
process. When the solutions are switched back to isotonic
conditions, typically we see an initial decrease in resistance
relative to the baseline level which most likely reflects
cell shrinkage due to the loss of osmolytes during cell
swelling and which gradually recovers toward the baseline.
As expected, challenging the cells with increased osmotic
gradient results is stronger and faster swelling, as is
apparent from larger increases in the measured resistance.
Interestingly, the recovery is enhanced when cells are
challenged with stronger osmotic gradient: while after
10% osmotic challenge cells recover by 31%+5%, after
30% challenge recovery increases to 42%+5% suggesting
that the magnitude of the RVD is dependent on the
magnitude of the hypotonic challenge (1C).

Cholesterol depletion facilitates RVD: association

between RVD and cell stiffness

As described in our earlier studies, cholesterol levels
in CHO cells were modulated by exposing the cells to 5
mM methyl-B-cyclodextrin (MBCD) or to MBCD
saturated with cholesterol for 1 hour, resulting in ~50%
decrease or increase in the level of membrane cholesterol,
respectively [9, 18]. Figure 2 shows the impact of
cholesterol on the time-courses of cell swelling and
recovery in cells challenged with 30% osmotic gradient.
Cells that were cholesterol depleted swell less (lower
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Fig. 2. Facilitation of cell volume-recovery by cholesterol
depletion. A: Average time courses of cell swelling and recovery
in response to 30% osmotic gradient in control cells, cells
depleted of cholesterol and cells enriched with cholesterol. B:
Average recovery ratios for the same populations of cells. Both
in the time-course and for the bar graph, the data are presented
as means=SEM (n=6-10).

resistance peaks) and recover sooner (the peak of cell
volume occurs at 162 s 10 s in control cells at 114 s £5
s in cholesterol-depleted cells, p<0.05) with a clearly
higher rate of recovery (2A). As a result, recovery ratio
increases from 41%=+5% in control cells to 65%+6% in
cholesterol depleted cells (p<0.05) (2B). A similar but
less pronounced trend was observed when cells were
challenged with 10% osmotic gradient: the recovery ratio
increased from 31%+5% to 48%+6%. In contrast,
cholesterol enrichment had no effect on the kinetics of
cell swelling nor on the extent of RVD.

Next, we tested whether cholesterol depletion affects
the structure and the abundance of F-actin in CHO cells.
This question arose from previous observations in our lab
and in labs of other investigators that cell swelling is
accompanied with a decrease in cellular F-actin content
and that disruption of F-actin facilitates VRAC activity
[3, 19]. These observations led to a hypothesis that
disruption of F-actin may play the role of a triggering
mechanism to initiate cell volume recovery. In this study
we show that while hypotonic challenge indeed results in
a decrease in F-actin specific fluorescence, cholesterol
depletion had no effect on this response (Fig. 3).

We suggested previously, however, that cholesterol
depletion may facilitate cellular responses to mechanical
stimuli by an increase in cell stiffness [11, 20] and our
earlier studies have shown that cholesterol depletion
increases the stiffness of endothelial cells [13]. To test
the hypothesis that the cholesterol depletion-induced
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Fig. 3. Cholesterol depletion has no effect on F-actin. A:
Typical images of F-actin specific fluorescence visualized with
rhodamine-phalloidin in control and cholesterol-depleted cells
under isotonic and hypotonic conditions. B: Quantification of
F-actin specific fluorescence. Data presented as means=SEM
(n= 5 independent experiments with 20-30 cells measured in
each experiment).

increase in RVD may be associated with an increase in
cell stiffness, we estimated cell stiffness of CHO cells
using microaspiration. The general principle of this
technique is that the more stiff the cells, the more difficult
it is to deform them with negative pressure that is applied
through a micropipette pressed into the cell surface and
typically maintained for 3 min. Images are acquired before
the application of the pressure and then every 30 sec.
The length of membrane protusion (L) is measured at
each time point and normalized for the diameter of the
pipette (D) to account for the variability between
individual pipettes, as described earlier [13]. Figure 4
shows the representative images and the average time-
courses of progressive membrane deformation induced
by negative pressure of 15 mmHg in control and
cholesterol-depleted cells. Here we show that, similarly
to the effect we observed earlier in endothelial cells,
cholesterol depletion significantly increased the stiffness
of CHO cells; there was less membrane deformation in
cholesterol-depleted cells. Furthermore, we also tested
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Fig. 4. Cholesterol depletion results in cell stiffening. A:
Representative images of a control and a cholesterol depleted
cells as the membrane is being pulled into the pipette using
15mm Hg of negative force. The membrane is visualized with a
membrane fluorescent dye Dil ,. The bar is 10 um. B: The
average time courses of aspirated lengths of control, cholesterol
depleted cells and cells exposed to Jasplakinolide. Time
measurements are in seconds (x-axis) and stiffness, (y-axis) is a
measurement of length pulled into the pipette divided by the
diameter of the pipette. Data presented as means+SEM (n=6-9
cells in 3 independent experiments).
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Fig. 5. Stabilization of F-actin facilitates cell volume recovery.
A: Average time courses of cell swelling and recovery in
response to 30% osmotic gradient in control cells, cells treated
with Jasplakinolide or first cholesterol depleted and then treated
with Jasplakinolide. B: Average recovery ratios for the same
populations of cells. Data presented as means=SEM (n=20-
30).

whether an increase in cell stiffness may also be induced
independently of cholesterol depletion by exposing the
cells to Jasplakinolide (JASP), an agent that stabilizes F-
actin. Cells were exposed to JASP for 2 hours and the
uptake was verified by staining F-actin with rhodamine-
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phalloidin: since JASP competes with phalloidin for binding
to F-actin, its uptake and binding decreases rhodamine-
phalloidin specific fluorescence (not shown). Our
observations show that exposure to JASP also results in
significant increase in cell stiffness, comparable to the
effect of cholesterol depletion.

Stabilization of F-actin also facilitates RVD

It is well known that cell stiffness is primarily
dependent on the submembrane cytoskeleton and that
disruption of F-actin results in a significant decrease in
cell stiftness (e.g. [14, 21-24]). In this study, we tested
whether stabilization of F-actin with Jasplakinolide
(JASP) has an effect on the RVD development. Our
observations show that exposing the cells to JASP can
also facilitate RVD even though the effect was less
pronounced that that of cholesterol depletion (Fig. 5).
Interestingly, pre-exposure to JASP did not abrogate the
effect of cholesterol depletion: cells that were both pre-
exposed to JASP and then cholesterol depleted generated
significantly stronger and faster RVD response than cells
exposed either to JASP alone or to MBCD alone. We
propose, therefore, that both stabilization of F-actin and
cholesterol depletion facilitate RVD by increasing cell
stiffness.

Discussion

While numerous studies have explored the
mechanisms of cell volume regulation and the impact of
different pathophysiological conditions [3, 6], surprisingly
little is known about the role of membrane cholesterol in
RVD. This study shows that cholesterol depletion
significantly facilitates RVD in CHO cells and that this
effect is correlated with an increase in cell stiffness.

During the last decade, cholesterol emerged as a
major regulator of a variety of ion channels [25-27]. The
predominant effect of cholesterol is suppression of the
channel function, an effect that has been described for
multiple types of K* channels [28-31], voltage-gated Ca*"
and Na*" channels [32-34] and CI" channels [9]. More
specifically, in terms of the transport mechanisms that
contribute to RVD, membrane cholesterol has a negative
effect on VRAC, shown by an increase in amplitude and/
or rate of swelling-induced current development in
depleted cells [9-12]. Likewise, swelling-induced efflux
of anionic osmolytes in several cell types is enhanced by
cholesterol depletion and suppressed by cholesterol
enrichment [35-38]. Cholesterol also inhibits the large-

conductance Ca*"-sensitive K* channel [31, 39] known
to be osmotically sensitive in several cell types [3]. In
contrast, however, Ca?" entry channels belonging to the
superfamily of Transient Receptor Potential Channels
(TRP) that were also shown to be sensitive to cell swelling
and contribute to the RVD process [3, 40] are suppressed
rather than enhanced by cholesterol depletion [41, 42].
Thus, clearly, cholesterol has complex effects on different
swelling-activated ion channels. Specific mechanisms,
however, that underlie cholesterol sensitivity of ion
channels are poorly understood. It is also possible that
changes in membrane cholesterol may affect the
hydraulic water permeability of the cell membrane but
the impact of this effect on the relationship between
swelling and recovery is not clear. This study shows that
cholesterol depletion significantly facilitates RVD in CHO
cells whereas cholesterol enrichment has no significant
effect. These observations suggest that cholesterol
sensitivity of VRAC alone cannot explain the impact of
cholesterol on the RVD process.

An alternative possibility to consider is that depletion-
induced facilitation of RVD may be associated with an
increase in cell stiffness. The finding that cholesterol
depletion resulted in an increase rather than decrease of
cell stiffness was surprising [13], but accumulating
evidence shows that this effect is consistent across an
array of biomechanical measurements, including [13],
stiffening of “deep” cytoskeleton, as estimated by particle
tracking [43], an increase in membrane-cytoskeleton
adhesion [44] and an increase in cell force generation
[45]. All previous studies, however, were performed in
vascular endothelial cells leading to a suggestion that
cholesterol depletion-induced cell stiffening may be a
peculiar feature of endothelial cells. Here we show that
cholesterol depletion also increases the stiffness of CHO
cells suggesting that it may be a general phenomenon
extending to other cell types.

Furthermore, we have also shown earlier that an increase
in cell stiffness in endothelial cells is associated with an
increased sensitivity of endothelial cells to shear stress,
as manifested by enhanced realignment of the cells in
the direction of the flow [20]. We proposed, therefore,
that an increase in stiffness may sensitize the cells to
mechanical forces generated by shear stress. Here we
show that there is a clear correlation between the effects
of membrane cholesterol on cell stiffening and on the
RVD. More specifically, we show that cholesterol
depletion increases cell stiffness and facilitates the RVD
response whereas cholesterol enrichment had no effect
on either of these parameters. Furthermore, we also show
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that an increase in cell stiffness by an independent
approach, stabilization of F-actin fibers, also facilitates
RVD. Taken together these observations suggest that cell
stiffness may play an important role in the regulation of
RVD. It is not possible, however, to completely exclude
the possibility that changes in stiffness and RVD are
associative rather than causative and further studies
elucidating molecular mechanisms underlying changes in
cell stiffness are needed to address this question.

In terms of the mechanism, an increase in cell stiffness
critically depends on the integrity of F-actin [13, 44]. We
investigated further, therefore, the impact of cholesterol
depletion and osmotic challenge on F-actin organization
in CHO cells and, more importantly, the impact of F-actin
stabilization on the RVD. Previous studies have shown
that osmotic challenge typically disrupts the integrity of
F-actin in different cell types [3, 19, 46]. A small but
significant decrease in F-actin specific fluorescence in
osmotically challenged CHO cells is fully consistent with
these studies. It is also consistent with our previous studies
[13, 20] that cholesterol depletion does not have an
apparent effect on F-actin structure suggesting that an
increase in cell stiffness should be attributed to the
stabilization of F-actin rather than an increase in F-actin
content. We therefore, tested how stabilization of F-actin
affects the RVD process in CHO cells under both control
and cholesterol depletion conditions. Previous studies
addressing the role of F-actin in RVD have been
controversial. In most cases, disrupting F-actin with
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