
Advances in Electrical and Computer Engineering Volume 16, Number 2, 2016

Secure Multi-Keyword Search with
User/Owner-side Efficiency in the Cloud

Younho LEE1, Pyung KIM2, Yongsu PARK3
1Department of Industrial and Systems Engineering, Seoul National University of Science and

Technology, Seoul, 139743, Republic of Korea
2Department of Computer Science, Korea Advanced Institute of Science and Technology, Daejeon,

305338, Republic of Korea
3Division of Computer Science and Engineering, Hanyang University, Seoul, 133791, Republic of

Korea
*Corresponding author Yongsu PARK: yongsu@hanyang.ac.kr

1Abstract—As the amount of data in the cloud grows, ranked

search system, the similarity of a query to data is ranked, are
of significant importance. on the other hand, to protect privacy,
searchable encryption system are being actively studied. In this
paper, we present a new similarity-based multi-keyword search
scheme for encrypted data. This scheme provides high
flexibility in the pre- and post-processing of encrypted data,
including splitting stem/suffix and computing from the
encrypted index-term matrix, demonstrated to support Latent
Semantic Indexing(LSI). On the client side, the computation
and communication costs are one to two orders of magnitude
lower than those of previous methods, as demonstrated in the
experimental results. we also provide a security analysis of the
proposed scheme.

Index Terms—keyword search, encryption, data security,
information security, security.

I. INTRODUCTION

Cloud computing is a computing model in which
programs or applications are run on Internet-connected
servers rather than on local computing devices, i.e., a user
does not need to have vast computing resources, but can
outsource (some part of) the computing tasks. In cloud
computing, the user rents IT resources (e.g., software,
storage, or computing resources) as required. Service
capacity can be flexibly extended for heavy loads, but the
user can pays for the exact amount they have used [1–3].

In this paper we focus on the Data as a Service (DAS)
model [4]. In DAS, there are three entities: data owner,
cloud server, and data client. The data owner has authority
to the cloud server. The cloud server receives service
queries (e.g., keyword searching, deleting, or updating) from
the data client/owner and responds with the results.

The data owner may be reluctant to upload his/her private
data such as e-mail, medical records, or photos. Hence,
privacy protection is one of the most crucial requirements to
make the DAS model more popular.

To provide privacy protection, data confidentiality, where
only permitted users can access the data, can be used. To
provide data confidentiality in DAS, in the naïve approach,
the data owner first encrypts all his/her data and uploads it.
If conventional encryption methods are used, the cloud
server cannot perform diverse service transactions, including

searches or modifications, since the server does not know
the secret key. In this regards, to provide data confidentiality
together with flexible transaction-service is considered to be
difficult.

This study was supported by the Research Program Funded by the Seoul
National University of Science and Technology

As in our previous work [4], we assume that the cloud
server is a passive adversary/curious intruder, i.e., it collects
and analyzes the service requests and results but cannot
conduct active attacks, e.g., modify data/queries/results,
insert additional queries, etc. In addition, we assume the
known ciphertext model [5] where the server (adversary)
can read the encrypted data and the encrypted keywords but
does not know statistical information about the related
plaintext data/keywords (note that the statistical distribution
of plaintext data/keywords is different from that of
conventional data/keywords). Our paper does not consider
the known background model [5] where the adversary
compares queries/results with the statistical information of
text data.

In this environment, there are two approaches to
providing data confidentiality together with flexible
transaction-services: enabling keyword searching over
encrypted data or enabling query processing over the
encrypted database [4]. The latter provides high flexibility
because it supports various SQL commands, but it relies on
non-conventional cryptography, e.g., order preserving
encryption [18], which is considered as experimental and
less secure [10].

The former approach includes single keyword searching
[6–10], multi-keyword searching [5,11–13], and the scheme
[14] based on Latent Semantic Indexing (LSI) [15–16].
Because data should be encrypted by the data owner, he/she
should conduct pre-processing before encryption, e.g.,
splitting stems and suffixes to extract keywords or statistical
processing for LSI. When the data is updated, he/she must
repeat this job. To support the known background model,
the communication overhead is very high and additional
work must be processed on the data client.

This paper takes the former approach, where we do not
use a known background model, but assume a known
ciphertext model. At the expense of slightly increasing the
adversaries’ power, the cloud server can support flexible
services including splitting stems and suffixes, constructing
index-term matrice, statistical processing (for LSI), and data
updates. To demonstrate this, we present a new scheme to
support LSI for encrypted data. Unlike previous methods, it

 11
1582-7445 © 2016 AECE

Digital Object Identifier 10.4316/AECE.2016.02002

[Downloaded from www.aece.ro on Saturday, October 13, 2018 at 08:42:51 (UTC) by 159.226.100.198. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 16, Number 2, 2016

supports data updates (and the corresponding post-
processing) on the cloud server. We implemented our
scheme as well as the method in [14] that supports LSI, and
experimental results show that our scheme has much lower
communication and computation overheads on the data
client side.

This paper is organized as follows. Section 2 briefly
describes related work. Section 3 presents the proposed
model, called “encrypted DAS.” As an example, we also
present a lightweight LSI-based privacy-aware search
scheme that supports data updates and LSI processing on the
cloud server. Section 4 describes a performance analysis of
the proposed scheme and an experimental comparison with
previous schemes. In Section 5, security analysis is provided,
and Section 6 concludes the paper.

II. RELATED WORK

The first subsection deals with background and
definitions. The next subsection describes related work with
respect to (searchable encryption based) privacy-preserving
Boolean keyword matching. In the final subsection, we
explain related work with respect to similarity based
privacy-preserving retrieval.

A. Background and definitions

As described in Section I, this paper focuses on the DAS
in cloud computing. DAS consists of three components: data
owner, cloud server, and data client. The data owner has
authority to access the data. Initially, the owner sends
his/her data to the cloud server. The cloud server takes
service queries (e.g., keyword searches, deletion requests,
and updates) from the data client/owner and returns the
results.

To support privacy protection, one major challenging
problem in DAS is how to provide data confidentiality
together with flexible transaction-services. The naïve
approach, where the data owner first encrypts all his/her
data and uploads it to the cloud server, cannot provide
diverse service transactions (e.g., searches or updates) on the
cloud server if the conventional encryption methods are
used because the server does not know the secret key.

As in our previous work [4], we assume that the cloud
server is a passive adversary/curious intruder, i.e., it collects
and analyzes the service requests and results but cannot
conduct active attacks, e.g., modify data/queries/results,
insert additional queries, etc. This model can be divided into
two types: the known ciphertext model and known
background model [12]. The known ciphertext model [12] is
where the server(adversary) can read the encrypted data and
encrypted keywords but does not know statistical
information about the related plaintext data/keywords. The
known background model [12] implies stronger adversaries
who can compare queries/results with statistical information
about the text data.

To defend against adversaries under the known ciphertext
model, keywords in the query and data are encrypted using
(searchable) encryption to thwart analysis. In the known
background model, the query is modified or screened to
increase false positive rates and thwart analysis that
compares queries/results with the statistical information of
text data.

In plaintext retrieval, three classical approaches, boolean,
vector space, and probabilistic methods, are suggested.
Boolean methods return the Boolean vectors that represent
matching results for keywords in the queries. In these
methods, searchable encryption can be used to protect
privacy. Vector space methods find and return the most
similar data to the keywords in the query. For probabilistic
methods, to the best of our knowledge, there is not yet a
means to preserve privacy. Sections 2.B and 2.C describe
Boolean keyword matching methods and similarity methods,
respectively.

B. Privacy-preserving boolean keyword matching

Searchable encryption can be grouped into two
approaches: symmetric key based [6–7] and public key
based [8–9]. The former methods assume that the data
owner and data client share the same secret key information.
The data owner encrypts his/her data using the key and
builds information for searching encrypted data, which is
called the trapdoor. Specifically, each trapdoor corresponds
to each keyword in the data. The data client use trapdoors in
the queries to hide access patterns. The method in [7] builds
a pre-computed index to reduce search time. The method in
[8] builds index information using a public key while
trapdoors are generated by the data owner. In this scheme,
the data owner should always be online, and the search
overhead is large because of public key algorithms and
redundancy in the keyword set needed to build index
information. The proposal in [9] can be considered less
secure than other schemes because its trapdoors are
deterministically generated.

Figure 1. Overview of searchable encryption

As described in Section I, this paper focuses on the DAS in
cloud computing. DAS consists of three components: data
owner, cloud server, and data client. The data owner has
authority to access the data. Initially, the owner sends
his/her data to the cloud server. The cloud server takes
service queries (e.g., keyword searches, deletion requests,
and updates) from the data client/owner and returns the
results.

We now briefly describe the proposed approach in [6].
Assume that the data owner and data user share the block
ciphering algorithm key eK and the hashing key hK. The
data owner encrypts his/her data, where encryption is done
for each word Wi. First, the data owner computes EeK(Wi) =
Xi, where Xi is a concatenation of two strings Li and Ri.
Using Li, a pseudo random function f, and hK, ki can be
computed. A pseudo random number Si is then generated.
From Si, another pseudorandom function F, and <ki, Vi> is

 12

[Downloaded from www.aece.ro on Saturday, October 13, 2018 at 08:42:51 (UTC) by 159.226.100.198. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 16, Number 2, 2016

computed. The ciphertext for Wi is Ci = <Li, Ri>  <Si, Vi>,
which is stored in the cloud server. The trapdoor for Wi is
<Xi, ki>.

If the data client wants to search Wi, he/she sends the
trapdoor <Xi, ki> to the cloud server. The server computes
Xi  Ci = <Si, Vi>. Then, it computes ki (the procedure of
which is similar to that of encryption) and by using Si and ki,
Vi’ is made. If Vi = Vi’, the server regards Ci contains the
keyword for Wi.

Because the approaches in [6–9] return a Boolean vector
containing the matching results, they do not support ranked
searching. The approach in [10] increases search efficiency
using fuzzy techniques as follows. In the query, additional
search keywords are added using fuzzy techniques that
increase the possibility of a successful match. However, this
method does not support ranked searching.

C. Similarity-based privacy-preserving retrieval

The methods described in Section 2.1 do not support
ranked searching, which measures the similarity between
keywords in the query and data entries. In this section we
describe three similarity-based schemes: single keywords,
multiple keywords, and semantic schemes.

The method in [11] encrypts each keyword in a document
using searchable encryption and the frequency of each
keyword using order preserving encryption. To process the
query, first it searches all the documents containing the
keyword, sorts them with respect to the encrypted frequency
value, and then returns the k documents with the highest
frequency. The order preserving encryption enables the
method to compare encrypted frequency values.

The method in [12] is the first proposal, to the best of our
knowledge that addresses Multi-keyword Ranked Search
over Encrypted cloud data (MRSE). MRSE uses a pre-
defined similarity function that measures similarity between
two data (i.e., keyword and document). A similarity function
measures the similarity as follows.

- Frequently used keywords in the documents have low
values when computing similarity.

- If a specific keyword is frequently used in a single
document but is not frequently used in others, it has a high
similarity value for that document.

- A document that has a greater number of different
keywords has a lower similarity value.

The term-document matrix (TDM) is a widely used
similarity function that is constructed as follows. Assume
that fd,t is the frequency of appearance of keyword d in
document t, ft is the frequency of appearance of the keyword
t in the all documents, and N is the number of documents.
We can then calculate two weight values:

t
td,td, f

N
logfw  (1)


t

2
td,d wW (2)

Let P={p1, p2, …, pm} denote the set of all keywords. for
each document d, weight vector vd is defined as follows;

)W/w,...,W/w,W/w(v dpd,dpd,dpd,d m21
 (3)

The TDM is a matrix where the row vectors are the
weight vectors for all documents.

Figure 2 presents an overview of a similarity-based

retrieval system that uses TDM. First, the cloud server
extracts keywords from the documents to construct set P. It
then builds the TDM such that each row represents the
(frequency) weights of keywords for each document. The
cloud server is then ready for service.

If the data client enters a query containing keywords for
searching, the client software builds a Query Matrix (QM)
using the keyword. QM is a vector of size |P| and each each
entry represents the frequency of the keyword in the query.
After the QM is sent to the cloud server, the server
computes matrix operations to calculate the similarity value
of each document. Finally, the server returns the most or k
most similar document(s) to the client.

Figure 2. Overview of a similarity-based retrieval system

Here, we briefly explain similarity-based privacy-
preserving retrieval schemes. In [12], the data owner builds
a binary vector that represents the appearance of keywords
in the query and then encrypts it. This system uses a special
encryption called asymmetric scalar product preserving
encryption, denoted by EASPP(). If vectors A, B, C have the
following property A·B = C (here, · denotes the inner
product), then EASPP(A)·EASPP(B) = EASPP(C). This is a
probabilistic encryption scheme because it adds random
values to the encryption process to make the statistical
analysis of encrypted queries difficult. However, the size of
the ciphertext is quite large, which incurs high
communication overhead, and the data client must perform
additional computation for decryption. The system in [13]
uses a binary vector that is obtained from statistical
processing using term frequency and inverse document
frequency. This scheme could be considered more correct
than the previous schemes, but it does not support semantic
similarity, e.g., LSI. To defend against a known background
model, [12] adds additional keywords in the query, but this
incurs additional communication and computation costs as
well as false positives.

LSI: In similarity based schemes, similarities of
keywords are compared or the frequency distribution of
keywords is analyzed in documents. In comparison, we
should consider semantic similarity to improve search
accuracy, e.g., fruit, apple, and car are different keywords,
but fruit and apple are semantically closer than fruit and car.
Semantic similarity is an important technique for measuring
similarity in text documents, and one widely used method is
LSI [15–16]. LSI uses TDM for data structure and the
technique is called Singular Value Decomposition (SVD) to
analyze the relevance of keywords, as follows.

 13

[Downloaded from www.aece.ro on Saturday, October 13, 2018 at 08:42:51 (UTC) by 159.226.100.198. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 16, Number 2, 2016

When the TDM X consists of m keywords and n

documents, the SVD for X is X = U∑VT, where U = [uil] is

an orthogonal left singular matrix, ∑ is a diagonal matrix,

diag(∂1, ∂2, …, ∂n), and V = [vjl] is an orthogonal right

singular matrix. In the matrix TDMTTDM = V∑2VT = [zij],

zij is the inner product of the i-th document and j-th

document. Because ∑ is a diagonal matrix, it affects

scalability only, and V contains the key information for
document relevance, i.e., V is the vector space for semantic

similarity-based search. Because ∑= diag(∂1, ∂2, …, ∂n),

where ∂1 > ∂2 > …> ∂r > …, > ∂n = 0, we can truncate

some entries in ∑ for efficient computation if ∂r is negligible.

LSI-based privacy-preserving retrieval: To the best of
our knowledge, the only privacy-preserving retrieval scheme
so far to support LSI is the system proposed in [14]. To
protect privacy, some part of VT is encrypted using the
encryption algorithm and then sent to the server. When the
query is constructed in the data client, this part is masked to
defend against adversaries in the known background model,
which results in false positives in the results and incurs high
communication overheads. To obtain the correct result, the
data client should do the post-processing, which requires a
considerable amount of computational cost. Moreover,
masking queries does not safely prevent information leakage.

III. PROPOSED SCHEME

A. Objectives

To provide data confidentiality and flexible transaction-
services together, we have four objectives, which are
described as follows.

1) To provide provable security to protect privacy: We
design the proposed scheme to be mathematically proven to
be secure under the known ciphertext model [12]. Our
scheme is not secure under the known background model
[12]. To defend against the known background model,
additional techniques, e.g., query masking, should be used,
which is outside the scope of this paper.

2) To support diverse post-processing of data on the
cloud server: To use semantic searching, e.g., LSI, the
scheme should support diverse post-processing on data,
including matrix operations. As shown in Section 4, in some
cases this processing takes a considerable amount of time
and is better done on the cloud server, not on the
owner/client side. Our scheme supports diverse post-
processing (statistical analysis on keywords in the encrypted
documents), and we demonstrate this by showing that our
scheme supports LSI.

Moreover, in our scheme, the data owner does not need to
split stems and suffixes from the documents to build the
index-term matrix. He/she simply encrypts the documents
and the stemming work is done on the cloud server.

3) To add/delete/update documents and related
keyword information efficiently: In previous work, index
generation work (building index-term matrices) is done by
the data owner to protect privacy. If the size of the data is
large, the processing time is long, which is less efficient in

cloud computing environments. If this work is done on the
cloud server, data owners can freely generate/update/delete
documents without any burden.

4) To minimize communication and computation
overheads on the data client: In similarity-based privacy-
preserving retrieval, the cloud server returns the k most
relevant documents with respect to the query. Some privacy
protection methods, including [14], add a large amount of
false-positive results to defend against adversaries in the
known background model, which incurs high
communication overheads. Moreover, to filter out the false-
positive results, the data client must do post-processing that
incurs high computational overheads. In this section, we
present a scheme that does not include false-positive results
and as a result, minimizes communication and computation
overheads.

B. Overview of the proposed scheme

Figure 3. Overview of the proposed scheme

Figure 3 shows an overview of the proposed scheme,
which works as follows.

1) The data owner extracts keywords from the documents,
encrypts the documents, and computes trapdoors for the
keywords. Trapdoors are sent to the cloud sever.

2) The data owner shares the secret key that is used for
encryption with the data client.

3) The cloud server receives the trapdoors and the
encrypted documents. From these, it generates the TDM and
performs LSI.

4) The data client encrypts the query and sends it to the
cloud server.

5) The cloud server processes the transaction and returns
the k-most relevant documents.

C. Base algorithm

Before describing the proposed scheme, we first describe
two algorithms that our scheme is based on: prefix
searchable encryption [17] and searchable encryption [6], as
follows.

Prefix searchable encryption: Unlike the previous
approach, where the data owner splits stems and suffixes in
the documents before encryption, in this method, the cloud
server does this work using encrypted documents. To do this,
we use a prefix searchable encryption [17], called Hash-
CBC (HCBC).

HCBC consists of three procedures, as follows:
1) KeyGen(1e): this procedure takes security parameter 1e

and returns secret key KE.
2) EncH(m, KE): given plaintext message m and KE, this

procedure returns ciphertext c.
3) DecH(c, KE): given ciphertext c and KE, if c = EncH(m,

KE), this procedure returns m. Otherwise, it returns ,

 14

[Downloaded from www.aece.ro on Saturday, October 13, 2018 at 08:42:51 (UTC) by 159.226.100.198. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 16, Number 2, 2016

implying failure.
4) Trapdoor(m, KS): given plaintext m and KS, this

procedure returns trapdoor T.
5) Search(c, T): given ciphertext c and trapdoor T. If T =

Trapdoor(Dec(c, KS), KS), this procedure returns true, else
it returns false.

D. Proposed scheme

In the proposed scheme, the encryption procedure E is as
follows: EH denotes the encryption algorithm in HCBC. For
each word in the documents, the data owner finds the root of
m and split the root and the suffix such that m = <root, tail>.
The root is regarded as the prefix, and HCBC is applied as
EH(m) = <c1, c2>. (If the tail is empty, HCBC works just like
a conventional block ciphering algorithm that produces c1
only.) Next, [1] is applied to c1 only, and the final ciphertext
message for m is <ES(c1), c2>.

The overall protocol is described as follows. We assume
that the communication is secured and authenticated to
simplify the explanation.

1) Setup: Three participants (data owner, cloud server,
and data client) encrypt documents and initialize data, as
follows.

a. Three entities share the algorithms in [6] and [17]. The
data owner and the data client share the keys KS and KE for
the encryption algorithms in [6] and [17], respectively.

b. The data owner extracts all keywords W = {w1, w2, …
wN} from documents F = {d1, d2, …, dN}. Assume that there
is no suffix in the extracted keywords, only a prefix (root).
He/she encrypts W using [17], re-encrypts them using [6],
and builds trapdoors for W. The set of all generated
trapdoors is denoted by T.

c. The data owner encrypts the documents in set F = {d1,
d2, … dN}. Encryption is done on units of words. For each
word, a pair (prefix, suffix) is encrypted using [17], and then
the encrypted prefix is re-encrypted using [6].

d. The data owner constructs the encrypted document
using encrypted words. The set of encrypted documents is
denoted by C = {c1, c2, … cN}.

e. The data owner sends C and T to the cloud server.
2) BuildIndex: The cloud server receives C and T. It then

performs post-processing on the encrypted documents. In
this paper, we describe how to compute the TDM and VT
used in LSI.

a. In T, each trapdoor corresponds to each keyword in
documents in C. Hence, the cloud server can compute all
statistical information using the Search() algorithm in [6]. In
this way, the server computes the TDM.

b. The server uses the LSI algorithm to compute U, ∑, and

V. The i-th column of VT corresponds to the i-th document,
and the j-th row VT corresponds to the j-th keyword.
Therefore, each column vector of VT holds the semantic
distribution of keywords in the corresponding document.

3) Query: the data client sends the query, and the cloud
server returns the result, as follows.

a. The data client uses KS and KE to construct query Q
and encrypts Q. Encryption is done in units of words. For
each word, a pair (prefix, suffix) is encrypted using [17],
and then the encrypted prefix is re-encrypted using [6].
He/she sends the encrypted query to the cloud server.

b. The cloud server receives the encrypted query and

computes vq using T. It then computes Σ-1·UT·vq to measure
similarities in the vector space VT, the semantic distribution
of keywords in the query.

c. The cloud server returns k-ranked results. The measure
of similarity is the inner product between each column
vector of VT and Σ-1·UT·vq. Higher similarity value indicates
more semantic correlation between the query and
corresponding document.

4) Update: After building the index on the cloud server,
the data owner can later modify/update some documents. To
do this, he/she first analyzes added or deleted keywords in
the modified documents, computes trapdoors for them, and
encrypts the modified documents, all of which is described
in Step 1. The data owner sends C′ and T′, where C′ and T′
contain only added/deleted keywords and documents,
respectively. After receiving these, the cloud server
computes BuildIndex to compute the index information and
VT.

IV. EXPERIMENTAL RESULTS

A. Comparison of overheads in terms of computation and
communication

To evaluate the proposed scheme, we chose the system in
[14] for comparison, since [14] is the only work to support
LSI to the best of our knowledge. We implemented both
schemes using the Java language in Windows XP, where the
hardware specifications are as follows: Intel® Core™ i3
CPU with 2.93 GHz and 3 GB main memory. For the data
set, we randomly chose 5,000, 10,000, 15,000, and 20,000
documents from the Reuters Corpus Volume No. 1 (RCV1).

1) Computational overhead for BuildIndex: Figures 4
and 5 show the overall computation overhead and the
computation overhead for the data owner, respectively. The
y-axis of both graphs is log-scaled. Recall that BuildIndex
encrypts documents, extracts keywords, and builds TDM
and LSI. Figure 4 shows that the overall computational cost
of the proposed scheme is slightly larger than that of [14]
because we use double encryption and an additional
encryption for extracted keywords. However, unlike [14],
building TDM and processing LSI, which require a
significant computational overhead, are performed on the
cloud server. Hence, if we compare the computational
overhead for the data owner, the proposed scheme is up to
hundreds of times faster, as shown in Figure 5. We believe
that this is a strong point of our scheme, because in cloud
computing environments, the server’s computational power
is sufficient with respect to the clients.

2) Communication overhead: Figure 6 compares the
results for communication overheads between the proposed
scheme and [14]. Experimental results show that, compared
with [14], the communication overhead of our scheme is up
to hundreds of times lower. This is because [14] uses
masking in the query to defend against adversaries in the
known background model. This masking incurs a large
number of false-positives in the results. As k becomes
smaller and the degree of masking becomes higher, the
false-positive rate increases. This leads to larger
communication overheads. Furthermore, in [14], after
receiving the results, the data client must perform post-
processing to filter out the false-positive results, incurring

 15

[Downloaded from www.aece.ro on Saturday, October 13, 2018 at 08:42:51 (UTC) by 159.226.100.198. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 16, Number 2, 2016

additional computational overheads for the client

Figure 4. Overall computational overhead

Figure 5. Computational overhead for the data owner

3) Precision: The scheme precision measures whether the
data client obtains the most k relevant documents with
respect to the query. In this regard, the proposed scheme has
exactly the same precision as [14]. This is because our
scheme uses a stemming algorithm to split roots and suffixes
to extract the keyword that is identical to the one in [14].
Hence, the proposed scheme and the scheme in [14] have
the exactly same keywords (and corresponding trapdoors)
for the same document set. This implies that both schemes
have the same TDM and return the most k similar
documents for the query. The difference is that our scheme
returns exactly k documents, whereas [14] returns a
considerable number of documents that are false-positives.

B. Functionality comparison

Table 1 shows the functionality comparison results
between our scheme and the previous schemes [12–14]. For
semantic searching, [14] and our scheme are the only ones
to support it. For most criteria, our scheme can be
considered better than the previous schemes, except with
respect to security under the known background model. We

intentionally designed it like this because we believe that
our approach has high flexibility, no false-positives, and
efficiency at the expense of sacrificing security in this case.

Figure 6. Comparison results for communication overhead

TABLE I. FUNCTIONALITY COMPARISON
(O:SUPPORTED, :PARTIALLY SUPPORTED, X:NOT SUPPORTED)

Functionality [14] [12] [13] Proposed
scheme

MRSE O O O O
LSI O X X O

Statistical
processing on

encrypted
documents on the

server

X X X O

Security for the
known ciphertext

model [11]

   O

Security for the
known

background
model [11]

   X

No additional
work for the data

client

X X X O

Efficient
communication

overhead

X O O O

Efficient
update/deletion of

documents

X X X O

V. SECURITY ANALYSIS

In this section, we analyze the security of our scheme.
Section 5.1 describes the standard definition of provable
security for secret key cryptography, which is used in
Section 5.2 to analyze the security of the proposed scheme.

A. Security definition

Generally, security of secret key encryption algorithms
relies on the indistinguishing probability of cryptographic
primitive output to random numbers. Assume that random

 16

[Downloaded from www.aece.ro on Saturday, October 13, 2018 at 08:42:51 (UTC) by 159.226.100.198. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 16, Number 2, 2016

variables X and Y denote the uniformly distributed values
that were drawn from {0,1}n. The distinguishing probability
of an algorithm A:{0,1}n {0,1}, called the advantage over
X and Y, is as follows:

|]1)Y(Pr[]1)X(Pr[|)( AAAAdv (4)

 We can define the advantages of A over various
cryptographic objects as follows:

- A pseudorandom generator G (G:KG→S)
|]1Pr[]1Pr[|)(SKG U)G(U

GG  GAAAAdv (5)

where UKG, US are random variables distributed uniformly
on KG, S, where KG is the key space of the pseudorandom
generator and S is the output space of the pseudorandom
generator.

- A pseudorandom function F (F∶KF×X→Y)

|]1Pr[]1Pr[|)(RF

FF
FK  FAAAAdv (6)

where R represents a random function selected uniformly
from the set of all maps from X to Y, KF refers to the key
space of the pseudorandom function.

- A pseudorandom permutation function E (E∶KE×Z→Z)

| (7)]1Pr[]1Pr[|)(
-11

EK ,
E

,E

EE 
 AAAAdv EKE

where π represents a random permutation selected

uniformly from the set of all bijections on Z, which is the
output space of the pseudorandom permutation.

B. Security analysis

To summarize the security of the proposed scheme: 1) as
in [6], it is secure against the known plaintext model and 2)
the trapdoor distinguishes the encrypted documents
containing the corresponding keyword from those that do
not. For additional information, it is infeasible to compute.
We explain this in detail, as follows.

First, note that [6] proved that the security of the scheme
in [6] is that of secure pseudo-random generator. That is, if
the employed pseudo random number generator is secure, no
adversaries can practically distinguish the ciphertext from
the output of a pseudo random number generator with a
random seed. Moreover, [6] showed that even if the
adversary has a single trapdoor, for other keywords, he/she
can extract negligible information at best.

We assume that the adversary is the cloud server and it is
“Honest-but-Curious” [12], meaning that it does not conduct
active attacks but may conduct passive attacks, i.e.,
following protocol, collecting traffic information, and
performing analysis. Under this assumption, the information
that the server can collect comprises encrypted documents,
encrypted queries, trapdoors, and TDM.
We analyze the security of attacks on encrypted documents,

queries, and trapdoors as follows.
The reference [14] defines the degree of risk as fidelity, or

the degree of inference information in TDM. More
specifically, the Frobenius normal form:

F

F

x

x-x
1 (8)

where x is the masked TDM matrix and X is the original
TDM matrix. The fidelity of our scheme is 0 since all the
entries in the TDM are encrypted using secure encryption
algorithms.

We define the security of our scheme as advantage, in
other words, the distinguishing probability of l ciphertexts
and l random numbers. When the advantages of
pseudorandom function F, pseudorandom function f,
pseudorandom generator G, and pseudorandom permutation
E are Adv(AF), Adv(Af), Adv(AG), and Adv(AE), respectively,
[6] shows that the advantage of the proposed scheme is

||2

)1(

)()()()(GF

X

ll

AAdvAAdvAAdvlAAdv f





 (9)

The reference [14] defines additional notation to represent
the degree of the exposed queries and documents. In [14],
query results include false-positives as to protect correlation
between exposed queries and documents. It defines the
number of false-positives as anonymity or compromised
fidelity. In the proposed scheme, the security for
compromised queries and documents is supported by [1]. If
a keyword is exposed, [6] shows that the advantage is

||
)()()'(

X

l
AAdvAAdvlAAdv E  (10)

Unlike [14], the proposed scheme has additional strong
points for security: 1) When building the TDM, the
information of every keyword is not leaked. In the proposed
scheme, to acquire this information, the attack would have
to do a large amount of computation that is a non-
polynomial time process. 2) Because every keyword is
encrypted in the query, in query processing, the adversary
does not know the keyword information in the query.

Even though false keywords can be injected into the
exposed query result to increase the false positive rate when
guessing the queried keywords, because of the restriction of
the number of the false keywords that can be inserted for
performance reasons, the adversary is able to extract query
keywords with a very high probability in [14]. In the
proposed scheme, however, it is difficult to determine the
queried keywords because they are encrypted.

VI. CONCLUSION

In this paper, we presented a new similarity-based
multiple keyword search scheme over encrypted data. This
scheme provides high flexibility in pre-/post-processing
encrypted data including splitting stems/suffixes and
computing from an encrypted index-term matrix, which is
demonstrated by its support for LSI. To the best of our
knowledge, this is the first scheme to do so. On the client’s
side, the computational and communication costs are one or
two orders of magnitude lower than those of previous
methods, as shown in the experimental results. In addition, a
security analysis of the proposed scheme is provided. Based
on the security of the underlying cryptographic algorithms,
the proposed system’s security is guaranteed.

As future work, we are considering using fully

 17

[Downloaded from www.aece.ro on Saturday, October 13, 2018 at 08:42:51 (UTC) by 159.226.100.198. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 16, Number 2, 2016

 18

homomorphic encryption (FHE) or order preserving
encryption (OPE) [18] to implement secure keyword search.
Because any type of computation is possible on encrypted
data in FHE, complex document matching operations are
possible without the decryption of both keywords and
documents, which would greatly enhance the security of the
system. However, it is difficult to make FHE practical in
terms of the size of the ciphertext and public key. The
required computational time to perform even simple
operation search such as bit-wise matching or simple
exponentiation is also impractical. Therefore, we need to
determine a solution to handle this problem, using not only
theoretical methods but also systemic or technical methods.
With OPE, we can very efficiently compare two ciphertexts
without decrypting them, so it is possible that a range query
could be performed without decryption when using OPE.
This approach would greatly enhance the performance for
similarity computation and finding the best-matching
document. We hope they will replace the encryption
algorithms that were shown to not be provably secure [19],
such as [20].

REFERENCES
[1] L. M. Vaquero, L. Rodero-Merino, J. Caceres, and M. Lindner, "A

Break in the Clouds: towards a Cloud Definition", ACM SIGCOMM
Comput. Commun. Rev., vol. 39, no.1, pp. 50-55, 2009.
doi:10.1145/1496091.1496100

[2] S. Yu, C. Wang, K. Ren, and W. Lou, "Achieving Secure, Scalable,
and Fine-grained Data Access Control in Cloud Computing", Proc.
IEEE INFOCOM, pp. 1-9, 2010. doi:10.1145/1496091.1496100

[3] C. Wang, Q. Wang, K. Ren, and W. Lou, "Privacy-preserving Public
auditing for Data Storage Security in Cloud Computing", Proc. IEEE
INFOCOM, pp. 1-9, 2010. doi:10.1109/INFCOM.2010.5462173

[4] T. Yu, S. Jajodia, "Secure Data Management in Decentralized
Systems." Advances in Information Security, vol. 33, pp. 355-380,
Springer Press, 2007.

[5] H. Pang, X. Ding, and X. Xiao. "Embellishing Text Search Queries to
Protect User Privacy." Proc. VLDB Endowment vol. 3.1/2, pp. 598-
607, 2007. doi:10.14778/1920841.1920918

[6] D. Song, D. Wagner, and A. Perrig, "Practical Techniques for
Searches on Encrypted Data", Proc. IEEE Security and Privacy, pp.
44-55, 2000. doi:10.1109/SECPRI.2000.848445

[7] R. Curtmola, J. A. Garay, S. Kamara, and R. Ostrovsky, "Searchable
Symmetric Encryption: Improved Definitions and Efficient
Constructions", Proc. ACM Computer and Communication Security,
pp. 79-88, 2006. doi:10.1145/1180405.1180417

[8] M. Bellare, A. Boldyreva, and A. O’Neill, "Deterministic and
Efficiently Searchable Encryption", Proc. Advances in Cryptology –
CRYPTO, pp. 535-552, 2007. doi:10.1007/978-3-540-74143-5_30

[9] M. Abdalla, M. Bellare, D. Catalano, E. Kiltz, T. Kohno, T. Lange, J.
Malone-Lee, G. Neven, P. Paillier, and H. Shi, "Searchable
Encryption Revisited: Consistency properties, relation to Anonymous
IBE, and Extensions", Journal of Cryptology, vol. 21, no. 3, pp. 350–
391, 2008. doi:10.1007/s00145-007-9006-6

[10] J. Li, Q. Wang, C. Wang, N. Cao, K. Ren, and W. Lou, "Fuzzy
Keyword Search over Encrypted Data in Cloud Computing", Proc.
IEEE INFOCOM'10 Mini-Conference, pp. 1-5, San Diego, CA, USA,
March 2010. doi:10.1109/INFCOM.2010.5462196

[11] C. Wang, N. Cao, J. Li, K. Ren and W. Lou, "Secure Ranked
Keyword Search over Encrypted Cloud Data", in Proc. ICDCS'10,
pp.253-362, 2010. doi:10.1109/ICDCS.2010.34

[12] N. Cao, C. Wang, M. Li, K. Ren, and W. Lou. "Privacy-preserving
Multi-keyword Ranked Search over Encrypted Cloud Data", in Proc
IEEE INFOCOM'11, pp.222-233, 2011.
doi:10.1109/INFCOM.2011.5935306

[13] Sun, W. et al. "Verifiable Privacy-Preserving Multi-keyword Text
Search in the Cloud Supporting Similarity-based Ranking." IEEE
Trans. on Parallel and Distributed Systems, in Press, 2013.
doi:10.1109/TPDS.2013.282

[14] H. Pang, J. Shen, and R. Krishnan, "Privacy-Preserving Similarity-
Based Text Retrieval", ACM Transactions on Internet Technology,
vol. 10, no. 1, article #4, Feb. 2010. doi:10.1145/1667067.1667071

[15] S. T. Dumais, "Latent Semantic Indexing (LSI) and TREC-2", In
Second Text REtrieval Conference (TREC2), D. Harman, ed., pp.
105-115, March 1994.

[16] T. K. Landauer, D. S. McNamara, S. Dennis, and W. Kintsch,
"Handbook of Latent Semantic Analysis," 1st edition, ISBN-13: 978-
0805854183, pp. 293-322, Psychology Press, 2007.

[17] M. Bellare, A. Boldyreva, L. Knudsen, and C. Namprempre, "Online
ciphers and the hash-CBC construction", Proc. Advances in
Cryptology – CRYPTO, 2001, pp.292-309, 2001. doi:10.1007/3-540-
44647-8_18

[18] A. Boldyreva, N. Chenette, Y. Lee, and A. O’Neill, “Order Preserving
Symmetric Encryption”, Proc. Advances in Cryptology –
EUROCRYPT’09, pp. 224-241, 2009. doi:10.1007/978-3-642-01001-
9_13

[19] M. Bellare, "Practice-oriented provable-security", in Proc.
Information Security. Springer Berlin Heidelberg, pp. 221-231, 1998.
doi:10.1007/BFb0030423

[20] W. Wong, D. W. Cheung, B. Kai, and N. Mamouolis, “Secure kNN
computation on encrypted databases”, Proc. ACM SIGMOD’09, pp.
139-152, 2009. doi:10.1145/1559845.1559862

[Downloaded from www.aece.ro on Saturday, October 13, 2018 at 08:42:51 (UTC) by 159.226.100.198. Redistribution subject to AECE license or copyright.]

