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1Abstract—As the amount of data in the cloud grows, ranked 

search system, the similarity of a query to data is ranked, are 
of significant importance. on the other hand, to protect privacy, 
searchable encryption system are being actively studied. In this 
paper, we present a new similarity-based multi-keyword search 
scheme for encrypted data. This scheme provides high 
flexibility in the pre- and post-processing of encrypted data, 
including splitting stem/suffix and computing from the 
encrypted index-term matrix, demonstrated to support Latent 
Semantic Indexing(LSI). On the client side, the computation 
and communication costs are one to two orders of magnitude 
lower than those of previous methods, as demonstrated in the 
experimental results. we also provide a security analysis of the 
proposed scheme. 
 

Index Terms—keyword search, encryption, data security, 
information security, security. 

I. INTRODUCTION 

Cloud computing is a computing model in which 
programs or applications are run on Internet-connected 
servers rather than on local computing devices, i.e., a user 
does not need to have vast computing resources, but can 
outsource (some part of) the computing tasks. In cloud 
computing, the user rents IT resources (e.g., software, 
storage, or computing resources) as required. Service 
capacity can be flexibly extended for heavy loads, but the 
user can pays for the exact amount they have used [1–3]. 

In this paper we focus on the Data as a Service (DAS) 
model [4]. In DAS, there are three entities: data owner, 
cloud server, and data client. The data owner has authority 
to the cloud server. The cloud server receives service 
queries (e.g., keyword searching, deleting, or updating) from 
the data client/owner and responds with the results.  

The data owner may be reluctant to upload his/her private 
data such as e-mail, medical records, or photos. Hence, 
privacy protection is one of the most crucial requirements to 
make the DAS model more popular. 

To provide privacy protection, data confidentiality, where 
only permitted users can access the data, can be used. To 
provide data confidentiality in DAS, in the naïve approach, 
the data owner first encrypts all his/her data and uploads it. 
If conventional encryption methods are used, the cloud 
server cannot perform diverse service transactions, including 

searches or modifications, since the server does not know 
the secret key. In this regards, to provide data confidentiality 
together with flexible transaction-service is considered to be 
difficult. 
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As in our previous work [4], we assume that the cloud 
server is a passive adversary/curious intruder, i.e., it collects 
and analyzes the service requests and results but cannot 
conduct active attacks, e.g., modify data/queries/results, 
insert additional queries, etc. In addition, we assume the 
known ciphertext model [5] where the server (adversary) 
can read the encrypted data and the encrypted keywords but 
does not know statistical information about the related 
plaintext data/keywords (note that the statistical distribution 
of plaintext data/keywords is different from that of 
conventional data/keywords). Our paper does not consider 
the known background model [5] where the adversary 
compares queries/results with the statistical information of 
text data. 

In this environment, there are two approaches to 
providing data confidentiality together with flexible 
transaction-services: enabling keyword searching over 
encrypted data or enabling query processing over the 
encrypted database [4]. The latter provides high flexibility 
because it supports various SQL commands, but it relies on 
non-conventional cryptography, e.g., order preserving 
encryption [18], which is considered as experimental and 
less secure [10]. 

The former approach includes single keyword searching 
[6–10], multi-keyword searching [5,11–13], and the scheme 
[14] based on Latent Semantic Indexing (LSI) [15–16]. 
Because data should be encrypted by the data owner, he/she 
should conduct pre-processing before encryption, e.g., 
splitting stems and suffixes to extract keywords or statistical 
processing for LSI. When the data is updated, he/she must 
repeat this job. To support the known background model, 
the communication overhead is very high and additional 
work must be processed on the data client. 

This paper takes the former approach, where we do not 
use a known background model, but assume a known 
ciphertext model. At the expense of slightly increasing the 
adversaries’ power, the cloud server can support flexible 
services including splitting stems and suffixes, constructing 
index-term matrice, statistical processing (for LSI), and data 
updates. To demonstrate this, we present a new scheme to 
support LSI for encrypted data. Unlike previous methods, it 
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supports data updates (and the corresponding post-
processing) on the cloud server. We implemented our 
scheme as well as the method in [14] that supports LSI, and 
experimental results show that our scheme has much lower 
communication and computation overheads on the data 
client side. 

This paper is organized as follows. Section 2 briefly 
describes related work. Section 3 presents the proposed 
model, called “encrypted DAS.” As an example, we also 
present a lightweight LSI-based privacy-aware search 
scheme that supports data updates and LSI processing on the 
cloud server. Section 4 describes a performance analysis of 
the proposed scheme and an experimental comparison with 
previous schemes. In Section 5, security analysis is provided, 
and Section 6 concludes the paper. 

II. RELATED WORK 

The first subsection deals with background and 
definitions. The next subsection describes related work with 
respect to (searchable encryption based) privacy-preserving 
Boolean keyword matching. In the final subsection, we 
explain related work with respect to similarity based 
privacy-preserving retrieval.  

A. Background and definitions 

As described in Section I, this paper focuses on the DAS 
in cloud computing. DAS consists of three components: data 
owner, cloud server, and data client. The data owner has 
authority to access the data. Initially, the owner sends 
his/her data to the cloud server. The cloud server takes 
service queries (e.g., keyword searches, deletion requests, 
and updates) from the data client/owner and returns the 
results.  

To support privacy protection, one major challenging 
problem in DAS is how to provide data confidentiality 
together with flexible transaction-services. The naïve 
approach, where the data owner first encrypts all his/her 
data and uploads it to the cloud server, cannot provide 
diverse service transactions (e.g., searches or updates) on the 
cloud server if the conventional encryption methods are 
used because the server does not know the secret key. 

As in our previous work [4], we assume that the cloud 
server is a passive adversary/curious intruder, i.e., it collects 
and analyzes the service requests and results but cannot 
conduct active attacks, e.g., modify data/queries/results, 
insert additional queries, etc. This model can be divided into 
two types: the known ciphertext model and known 
background model [12]. The known ciphertext model [12] is 
where the server(adversary) can read the encrypted data and 
encrypted keywords but  does not know statistical 
information about the related plaintext data/keywords. The 
known background model [12] implies stronger adversaries 
who can compare queries/results with statistical information 
about the text data. 

To defend against adversaries under the known ciphertext 
model, keywords in the query and data are encrypted using 
(searchable) encryption to thwart analysis. In the known 
background model, the query is modified or screened to 
increase false positive rates and thwart analysis that 
compares queries/results with the statistical information of 
text data. 

In plaintext retrieval, three classical approaches, boolean, 
vector space, and probabilistic methods, are suggested. 
Boolean methods return the Boolean vectors that represent 
matching results for keywords in the queries. In these 
methods, searchable encryption can be used to protect 
privacy. Vector space methods find and return the most 
similar data to the keywords in the query. For probabilistic 
methods, to the best of our knowledge, there is not yet a 
means to preserve privacy. Sections 2.B and 2.C describe 
Boolean keyword matching methods and similarity methods, 
respectively. 

B. Privacy-preserving boolean keyword matching 

Searchable encryption can be grouped into two 
approaches: symmetric key based [6–7] and public key 
based [8–9]. The former methods assume that the data 
owner and data client share the same secret key information. 
The data owner encrypts his/her data using the key and 
builds information for searching encrypted data, which is 
called the trapdoor. Specifically, each trapdoor corresponds 
to each keyword in the data. The data client use trapdoors in 
the queries to hide access patterns. The method in [7] builds 
a pre-computed index to reduce search time. The method in 
[8] builds index information using a public key while 
trapdoors are generated by the data owner. In this scheme, 
the data owner should always be online, and the search 
overhead is large because of public key algorithms and 
redundancy in the keyword set needed to build index 
information. The proposal in [9] can be considered less 
secure than other schemes because its trapdoors are 
deterministically generated. 

  
Figure 1. Overview of searchable encryption 

As described in Section I, this paper focuses on the DAS in 
cloud computing. DAS consists of three components: data 
owner, cloud server, and data client. The data owner has 
authority to access the data. Initially, the owner sends 
his/her data to the cloud server. The cloud server takes 
service queries (e.g., keyword searches, deletion requests, 
and updates) from the data client/owner and returns the 
results.  

We now briefly describe the proposed approach in [6]. 
Assume that the data owner and data user share the block 
ciphering algorithm key eK and the hashing key hK. The 
data owner encrypts his/her data, where encryption is done 
for each word Wi. First, the data owner computes EeK(Wi) = 
Xi, where Xi is a concatenation of two strings Li and Ri. 
Using Li, a pseudo random function f, and hK, ki can be 
computed. A pseudo random number Si is then generated. 
From Si, another pseudorandom function F, and <ki, Vi> is 
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computed. The ciphertext for Wi is Ci = <Li, Ri>  <Si, Vi>, 
which is stored in the cloud server. The trapdoor for Wi is 
<Xi, ki>. 

If the data client wants to search Wi, he/she sends the 
trapdoor <Xi, ki> to the cloud server. The server computes 
Xi  Ci = <Si, Vi>. Then, it computes ki (the procedure of 
which is similar to that of encryption) and by using Si and ki, 
Vi’ is made. If Vi = Vi’, the server regards Ci contains the 
keyword for Wi. 

Because the approaches in [6–9] return a Boolean vector 
containing the matching results, they do not support ranked 
searching. The approach in [10] increases search efficiency 
using fuzzy techniques as follows. In the query, additional 
search keywords are added using fuzzy techniques that 
increase the possibility of a successful match. However, this 
method does not support ranked searching. 

C.  Similarity-based privacy-preserving retrieval 

The methods described in Section 2.1 do not support 
ranked searching, which measures the similarity between 
keywords in the query and data entries. In this section we 
describe three similarity-based schemes: single keywords, 
multiple keywords, and semantic schemes. 

The method in [11] encrypts each keyword in a document 
using searchable encryption and the frequency of each 
keyword using order preserving encryption. To process the 
query, first it searches all the documents containing the 
keyword, sorts them with respect to the encrypted frequency 
value, and then returns the k documents with the highest 
frequency. The order preserving encryption enables the 
method to compare encrypted frequency values. 

The method in [12] is the first proposal, to the best of our 
knowledge that addresses Multi-keyword Ranked Search 
over Encrypted cloud data (MRSE). MRSE uses a pre-
defined similarity function that measures similarity between 
two data (i.e., keyword and document). A similarity function 
measures the similarity as follows. 

- Frequently used keywords in the documents have low 
values when computing similarity. 

- If a specific keyword is frequently used in a single 
document but is not frequently used in others, it has a high 
similarity value for that document. 

- A document that has a greater number of different 
keywords has a lower similarity value. 

The term-document matrix (TDM) is a widely used 
similarity function that is constructed as follows. Assume 
that fd,t is the frequency of appearance of keyword d in 
document t, ft is the frequency of appearance of the keyword 
t in the all documents, and N is the number of documents. 
We can then calculate two weight values: 

t
td,td, f

N
logfw    (1) 


t

2
td,d wW   (2) 

Let P={p1, p2, …, pm} denote the set of all keywords. for 
each document d, weight vector vd is defined as follows; 

)W/w,...,W/w,W/w(v dpd,dpd,dpd,d m21
  (3) 

The TDM is a matrix where the row vectors are the 
weight vectors for all documents. 

Figure 2 presents an overview of a similarity-based 

retrieval system that uses TDM. First, the cloud server 
extracts keywords from the documents to construct set P. It 
then builds the TDM such that each row represents the 
(frequency) weights of keywords for each document. The 
cloud server is then ready for service. 

If the data client enters a query containing keywords for 
searching, the client software builds a Query Matrix (QM) 
using the keyword. QM is a vector of size |P| and each each 
entry represents the frequency of the keyword in the query. 
After the QM is sent to the cloud server, the server 
computes matrix operations to calculate the similarity value 
of each document. Finally, the server returns the most or k 
most similar document(s) to the client. 

 
Figure 2. Overview of a similarity-based retrieval system 

Here, we briefly explain similarity-based privacy-
preserving retrieval schemes. In [12], the data owner builds 
a binary vector that represents the appearance of keywords 
in the query and then encrypts it. This system uses a special 
encryption called asymmetric scalar product preserving 
encryption, denoted by EASPP(). If vectors A, B, C have the 
following property A·B = C (here, · denotes the inner 
product), then EASPP(A)·EASPP(B) = EASPP(C). This is a 
probabilistic encryption scheme because it adds random 
values to the encryption process to make the statistical 
analysis of encrypted queries difficult. However, the size of 
the ciphertext is quite large, which incurs high 
communication overhead, and the data client must perform 
additional computation for decryption. The system in [13] 
uses a binary vector that is obtained from statistical 
processing using term frequency and inverse document 
frequency. This scheme could be considered more correct 
than the previous schemes, but it does not support semantic 
similarity, e.g., LSI. To defend against a known background 
model, [12] adds additional keywords in the query, but this 
incurs additional communication and computation costs as 
well as false positives. 

LSI: In similarity based schemes, similarities of 
keywords are compared or the frequency distribution of 
keywords is analyzed in documents. In comparison, we 
should consider semantic similarity to improve search 
accuracy, e.g., fruit, apple, and car are different keywords, 
but fruit and apple are semantically closer than fruit and car. 
Semantic similarity is an important technique for measuring 
similarity in text documents, and one widely used method is 
LSI [15–16]. LSI uses TDM for data structure and the 
technique is called Singular Value Decomposition (SVD) to 
analyze the relevance of keywords, as follows. 
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When the TDM X consists of m keywords and n 

documents, the SVD for X is X = U∑VT, where U = [uil] is 

an orthogonal left singular matrix, ∑ is a diagonal matrix, 

diag(∂1, ∂2, …, ∂n), and V = [vjl] is an orthogonal right 

singular matrix. In the matrix TDMTTDM = V∑2VT = [zij], 

zij is the inner product of the i-th document and j-th 

document. Because ∑ is a diagonal matrix, it affects 

scalability only, and V contains the key information for 
document relevance, i.e., V is the vector space for semantic 

similarity-based search. Because ∑= diag(∂1, ∂2, …, ∂n), 

where ∂1 > ∂2 > …> ∂r >  …, > ∂n = 0, we can truncate 

some entries in ∑ for efficient computation if ∂r is negligible. 

LSI-based privacy-preserving retrieval: To the best of 
our knowledge, the only privacy-preserving retrieval scheme 
so far to support LSI is the system proposed in [14]. To 
protect privacy, some part of VT is encrypted using the 
encryption algorithm and then sent to the server. When the 
query is constructed in the data client, this part is masked to 
defend against adversaries in the known background model, 
which results in false positives in the results and incurs high 
communication overheads. To obtain the correct result, the 
data client should do the post-processing, which requires a 
considerable amount of computational cost. Moreover, 
masking queries does not safely prevent information leakage. 

III. PROPOSED SCHEME 

A.  Objectives 

To provide data confidentiality and flexible transaction-
services together, we have four objectives, which are 
described as follows. 

1) To provide provable security to protect privacy: We 
design the proposed scheme to be mathematically proven to 
be secure under the known ciphertext model [12]. Our 
scheme is not secure under the known background model 
[12]. To defend against the known background model, 
additional techniques, e.g., query masking, should be used, 
which is outside the scope of this paper. 

2) To support diverse post-processing of data on the 
cloud server: To use semantic searching, e.g., LSI, the 
scheme should support diverse post-processing on data, 
including matrix operations. As shown in Section 4, in some 
cases this processing takes a considerable amount of time 
and is better done on the cloud server, not on the 
owner/client side. Our scheme supports diverse post-
processing (statistical analysis on keywords in the encrypted 
documents), and we demonstrate this by showing that our 
scheme supports LSI. 

Moreover, in our scheme, the data owner does not need to 
split stems and suffixes from the documents to build the 
index-term matrix. He/she simply encrypts the documents 
and the stemming work is done on the cloud server. 

3) To add/delete/update documents and related 
keyword information efficiently: In previous work, index 
generation work (building index-term matrices) is done by 
the data owner to protect privacy. If the size of the data is 
large, the processing time is long, which is less efficient in 

cloud computing environments. If this work is done on the 
cloud server, data owners can freely generate/update/delete 
documents without any burden. 

4) To minimize communication and computation 
overheads on the data client: In similarity-based privacy-
preserving retrieval, the cloud server returns the k most 
relevant documents with respect to the query. Some privacy 
protection methods, including [14], add a large amount of 
false-positive results to defend against adversaries in the 
known background model, which incurs high 
communication overheads. Moreover, to filter out the false-
positive results, the data client must do post-processing that 
incurs high computational overheads. In this section, we 
present a scheme that does not include false-positive results 
and as a result, minimizes communication and computation 
overheads. 

B.  Overview of the proposed scheme 

 
Figure 3. Overview of the proposed scheme 

Figure 3 shows an overview of the proposed scheme, 
which works as follows. 

1) The data owner extracts keywords from the documents, 
encrypts the documents, and computes trapdoors for the 
keywords. Trapdoors are sent to the cloud sever. 

2) The data owner shares the secret key that is used for 
encryption with the data client. 

3) The cloud server receives the trapdoors and the 
encrypted documents. From these, it generates the TDM and 
performs LSI. 

4) The data client encrypts the query and sends it to the 
cloud server. 

5) The cloud server processes the transaction and returns 
the k-most relevant documents. 

C. Base algorithm 

Before describing the proposed scheme, we first describe 
two algorithms that our scheme is based on: prefix 
searchable encryption [17] and searchable encryption [6], as 
follows. 

Prefix searchable encryption: Unlike the previous 
approach, where the data owner splits stems and suffixes in 
the documents before encryption, in this method, the cloud 
server does this work using encrypted documents. To do this, 
we use a prefix searchable encryption [17], called Hash-
CBC (HCBC). 

HCBC consists of three procedures, as follows: 
1) KeyGen(1e): this procedure takes security parameter 1e 

and returns secret key KE. 
2) EncH(m, KE): given plaintext message m and KE, this 

procedure returns ciphertext c. 
3) DecH(c, KE): given ciphertext c and KE, if c = EncH(m, 

KE), this procedure returns m. Otherwise, it returns , 
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implying failure. 
4) Trapdoor(m, KS): given plaintext m and KS, this 

procedure returns trapdoor T. 
5) Search(c, T): given ciphertext c and trapdoor T. If T = 

Trapdoor(Dec(c, KS), KS), this procedure returns true,  else 
it returns false. 

D. Proposed scheme 

In the proposed scheme, the encryption procedure E is as 
follows: EH denotes the encryption algorithm in HCBC. For 
each word in the documents, the data owner finds the root of 
m and split the root and the suffix such that m = <root, tail>. 
The root is regarded as the prefix, and HCBC is applied as 
EH(m) = <c1, c2>. (If the tail is empty, HCBC works just like 
a conventional block ciphering algorithm that produces c1 
only.) Next, [1] is applied to c1 only, and the final ciphertext 
message for m is <ES(c1), c2>. 

The overall protocol is described as follows. We assume 
that the communication is secured and authenticated to 
simplify the explanation. 

1) Setup: Three participants (data owner, cloud server, 
and data client) encrypt documents and initialize data, as 
follows. 

a. Three entities share the algorithms in [6] and [17]. The 
data owner and the data client share the keys KS and KE for 
the encryption algorithms in [6] and [17], respectively. 

b. The data owner extracts all keywords W = {w1, w2, … 
wN} from documents F = {d1, d2, …, dN}. Assume that there 
is no suffix in the extracted keywords, only a prefix (root). 
He/she encrypts W using [17], re-encrypts them using [6], 
and builds trapdoors for W. The set of all generated 
trapdoors is denoted by T. 

c. The data owner encrypts the documents in set F = {d1, 
d2, … dN}. Encryption is done on units of words. For each 
word, a pair (prefix, suffix) is encrypted using [17], and then 
the encrypted prefix is re-encrypted using [6]. 

d. The data owner constructs the encrypted document 
using encrypted words. The set of encrypted documents is 
denoted by C = {c1, c2, … cN}. 

e. The data owner sends C and T to the cloud server. 
2) BuildIndex: The cloud server receives C and T. It then 

performs post-processing on the encrypted documents. In 
this paper, we describe how to compute the TDM and VT 
used in LSI. 

a. In T, each trapdoor corresponds to each keyword in 
documents in C. Hence, the cloud server can compute all 
statistical information using the Search() algorithm in [6]. In 
this way, the server computes the TDM. 

b. The server uses the LSI algorithm to compute U, ∑, and 

V. The i-th column of VT corresponds to the i-th document, 
and the j-th row VT corresponds to the j-th keyword. 
Therefore, each column vector of VT holds the semantic 
distribution of keywords in the corresponding document. 

3) Query: the data client sends the query, and the cloud 
server returns the result, as follows. 

a. The data client uses KS and KE to construct query Q 
and encrypts Q. Encryption is done in units of words. For 
each word, a pair (prefix, suffix) is encrypted using [17], 
and then the encrypted prefix is re-encrypted using [6]. 
He/she sends the encrypted query to the cloud server. 

b. The cloud server receives the encrypted query and 

computes vq using T. It then computes Σ-1·UT·vq to measure 
similarities in the vector space VT, the semantic distribution 
of keywords in the query. 

c. The cloud server returns k-ranked results. The measure 
of similarity is the inner product between each column 
vector of VT and Σ-1·UT·vq. Higher similarity value indicates 
more semantic correlation between the query and 
corresponding document. 

4) Update: After building the index on the cloud server, 
the data owner can later modify/update some documents. To 
do this, he/she first analyzes added or deleted keywords in 
the modified documents, computes trapdoors for them, and 
encrypts the modified documents, all of which is described 
in Step 1. The data owner sends C′ and T′, where C′ and T′ 
contain only added/deleted keywords and documents, 
respectively. After receiving these, the cloud server 
computes BuildIndex to compute the index information and 
VT. 

IV. EXPERIMENTAL RESULTS 

A. Comparison of overheads in terms of computation and 
communication 

To evaluate the proposed scheme, we chose the system in 
[14] for comparison, since [14] is the only work to support 
LSI to the best of our knowledge. We implemented both 
schemes using the Java language in Windows XP, where the 
hardware specifications are as follows: Intel® Core™ i3 
CPU with 2.93 GHz and 3 GB main memory. For the data 
set, we randomly chose 5,000, 10,000, 15,000, and 20,000 
documents from the Reuters Corpus Volume No. 1 (RCV1). 

1) Computational overhead for BuildIndex: Figures 4 
and 5 show the overall computation overhead and the 
computation overhead for the data owner, respectively. The 
y-axis of both graphs is log-scaled. Recall that BuildIndex 
encrypts documents, extracts keywords, and builds TDM 
and LSI. Figure 4 shows that the overall computational cost 
of the proposed scheme is slightly larger than that of [14] 
because we use double encryption and an additional 
encryption for extracted keywords.  However, unlike [14], 
building TDM and processing LSI, which require a 
significant computational overhead, are performed on the 
cloud server. Hence, if we compare the computational 
overhead for the data owner, the proposed scheme is up to 
hundreds of times faster, as shown in Figure 5. We believe 
that this is a strong point of our scheme, because in cloud 
computing environments, the server’s computational power 
is sufficient with respect to the clients. 

2) Communication overhead: Figure 6 compares the 
results for communication overheads between the proposed 
scheme and [14]. Experimental results show that, compared 
with [14], the communication overhead of our scheme is up 
to hundreds of times lower. This is because [14] uses 
masking in the query to defend against adversaries in the 
known background model. This masking incurs a large 
number of false-positives in the results. As k becomes 
smaller and the degree of masking becomes higher, the 
false-positive rate increases. This leads to larger 
communication overheads. Furthermore, in [14], after 
receiving the results, the data client must perform post-
processing to filter out the false-positive results, incurring 

       15

[Downloaded from www.aece.ro on Saturday, October 13, 2018 at 08:42:51 (UTC) by 159.226.100.198. Redistribution subject to AECE license or copyright.]



Advances in Electrical and Computer Engineering                                                                      Volume 16, Number 2, 2016 

additional computational overheads for the client 
 

 
Figure 4. Overall computational overhead 

 
Figure 5. Computational overhead for the data owner 

3) Precision: The scheme precision measures whether the 
data client obtains the most k relevant documents with 
respect to the query. In this regard, the proposed scheme has 
exactly the same precision as [14]. This is because our 
scheme uses a stemming algorithm to split roots and suffixes 
to extract the keyword that is identical to the one in [14]. 
Hence, the proposed scheme and the scheme in [14] have 
the exactly same keywords (and corresponding trapdoors) 
for the same document set. This implies that both schemes 
have the same TDM and return the most k similar 
documents for the query. The difference is that our scheme 
returns exactly k documents, whereas [14] returns a 
considerable number of documents that are false-positives. 

B. Functionality comparison 

Table 1 shows the functionality comparison results 
between our scheme and the previous schemes [12–14]. For 
semantic searching, [14] and our scheme are the only ones 
to support it. For most criteria, our scheme can be 
considered better than the previous schemes, except with 
respect to security under the known background model. We 

intentionally designed it like this because we believe that 
our approach has high flexibility, no false-positives, and 
efficiency at the expense of sacrificing security in this case. 

 

 
Figure 6. Comparison results for communication overhead 

TABLE I. FUNCTIONALITY COMPARISON 
(O:SUPPORTED, :PARTIALLY SUPPORTED, X:NOT SUPPORTED) 

Functionality [14] [12] [13] Proposed 
scheme 

MRSE  O O O O 
LSI  O X X O 

Statistical 
processing on 

encrypted 
documents on the 

server 

X X X O 

Security for the 
known ciphertext 

model [11] 

   O 

Security for the 
known 

background 
model [11] 

   X 

No additional 
work for the data 

client 

X X X O 

Efficient 
communication 

overhead 

X O O O 

Efficient 
update/deletion of 

documents 

X X X O 

V. SECURITY ANALYSIS 

In this section, we analyze the security of our scheme. 
Section 5.1 describes the standard definition of provable 
security for secret key cryptography, which is used in 
Section 5.2 to analyze the security of the proposed scheme. 

A.  Security definition 

Generally, security of secret key encryption algorithms 
relies on the indistinguishing probability of cryptographic 
primitive output to random numbers. Assume that random 
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variables X and Y denote the uniformly distributed values 
that were drawn from {0,1}n. The distinguishing probability 
of an algorithm A:{0,1}n {0,1}, called the advantage over 
X and Y, is as follows: 

|]1)Y(Pr[]1)X(Pr[|)(  AAAAdv         (4) 

 We can define the advantages of A over various 
cryptographic objects as follows: 

 

- A pseudorandom generator G (G:KG→S) 
|]1Pr[]1Pr[|)( SKG U)G(U

GG  GAAAAdv         (5) 

where UKG, US are random variables distributed uniformly 
on KG, S, where KG is the key space of the pseudorandom 
generator and S is the output space of the pseudorandom 
generator. 

- A pseudorandom function F (F∶KF×X→Y) 

|]1Pr[]1Pr[|)( RF

FF
FK  FAAAAdv         (6) 

where R represents a random function selected uniformly 
from the set of all maps from X to Y, KF refers to the key 
space of the pseudorandom function.  

- A pseudorandom permutation function E (E∶KE×Z→Z) 

|         (7) ]1Pr[]1Pr[|)(
-11

EK ,
E

,E

EE 
 AAAAdv EKE

where π represents a random permutation selected 

uniformly from the set of all bijections on Z, which is the 
output space of the pseudorandom permutation. 

B.  Security analysis 

To summarize the security of the proposed scheme: 1) as 
in [6], it is secure against the known plaintext model and 2) 
the trapdoor distinguishes the encrypted documents 
containing the corresponding keyword from those that do 
not. For additional information, it is infeasible to compute. 
We explain this in detail, as follows. 

First, note that [6] proved that the security of the scheme 
in [6] is that of secure pseudo-random generator. That is, if 
the employed pseudo random number generator is secure, no 
adversaries can practically distinguish the ciphertext from 
the output of a pseudo random number generator with a 
random seed. Moreover, [6] showed that even if the 
adversary has a single trapdoor, for other keywords, he/she 
can extract negligible information at best. 

We assume that the adversary is the cloud server and it is 
“Honest-but-Curious” [12], meaning that it does not conduct 
active attacks but may conduct passive attacks, i.e., 
following protocol, collecting traffic information, and 
performing analysis. Under this assumption, the information 
that the server can collect comprises encrypted documents, 
encrypted queries, trapdoors, and TDM. 
We analyze the security of attacks on encrypted documents, 

queries, and trapdoors as follows.   
The reference [14] defines the degree of risk as fidelity, or 

the degree of inference information in TDM. More 
specifically, the Frobenius normal form: 

F

F

x

x-x
1                                  (8) 

where x  is the masked TDM matrix and X is the original 
TDM matrix. The fidelity of our scheme is 0 since all the 
entries in the TDM are encrypted using secure encryption 
algorithms. 

We define the security of our scheme as advantage, in 
other words, the distinguishing probability of l ciphertexts 
and l random numbers. When the advantages of 
pseudorandom function F, pseudorandom function f, 
pseudorandom generator G, and pseudorandom permutation 
E are Adv(AF), Adv(Af), Adv(AG), and Adv(AE), respectively, 
[6] shows that the advantage of the proposed scheme is 

||2

)1(
                  

)( )()()( GF

X

ll

AAdvAAdvAAdvlAAdv f





         (9) 

The reference [14] defines additional notation to represent 
the degree of the exposed queries and documents. In [14], 
query results include false-positives as to protect correlation 
between exposed queries and documents. It defines the 
number of false-positives as anonymity or compromised 
fidelity. In the proposed scheme, the security for 
compromised queries and documents is supported by [1]. If 
a keyword is exposed, [6] shows that the advantage is 

||
 )()()'(

X

l
AAdvAAdvlAAdv E          (10) 

Unlike [14], the proposed scheme has additional strong 
points for security: 1) When building the TDM, the 
information of every keyword is not leaked. In the proposed 
scheme, to acquire this information, the attack would have 
to do a large amount of computation that is a non-
polynomial time process. 2) Because every keyword is 
encrypted in the query, in query processing, the adversary 
does not know the keyword information in the query. 

Even though false keywords can be injected into the 
exposed query result to increase the false positive rate when 
guessing the queried keywords, because of the restriction of 
the number of the false keywords that can be inserted for 
performance reasons, the adversary is able to extract query 
keywords with a very high probability in [14]. In the 
proposed scheme, however, it is difficult to determine the 
queried keywords because they are encrypted. 

VI. CONCLUSION 

In this paper, we presented a new similarity-based 
multiple keyword search scheme over encrypted data. This 
scheme provides high flexibility in pre-/post-processing 
encrypted data including splitting stems/suffixes and 
computing from an encrypted index-term matrix, which is 
demonstrated by its support for LSI. To the best of our 
knowledge, this is the first scheme to do so. On the client’s 
side, the computational and communication costs are one or 
two orders of magnitude lower than those of previous 
methods, as shown in the experimental results. In addition, a 
security analysis of the proposed scheme is provided. Based 
on the security of the underlying cryptographic algorithms, 
the proposed system’s security is guaranteed. 

As future work, we are considering using fully 
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homomorphic encryption (FHE) or order preserving 
encryption (OPE) [18] to implement secure keyword search. 
Because any type of computation is possible on encrypted 
data in FHE, complex document matching operations are 
possible without the decryption of both keywords and 
documents, which would greatly enhance the security of the 
system. However, it is difficult to make FHE practical in 
terms of the size of the ciphertext and public key. The 
required computational time to perform even simple 
operation search such as bit-wise matching or simple 
exponentiation is also impractical. Therefore, we need to 
determine a solution to handle this problem, using not only 
theoretical methods but also systemic or technical methods. 
With OPE, we can very efficiently compare two ciphertexts 
without decrypting them, so it is possible that a range query 
could be performed without decryption when using OPE. 
This approach would greatly enhance the performance for 
similarity computation and finding the best-matching 
document. We hope they will replace the encryption 
algorithms that were shown to not be provably secure [19], 
such as [20]. 

REFERENCES 
[1] L. M. Vaquero, L. Rodero-Merino, J. Caceres, and M. Lindner, "A 

Break in the Clouds: towards a Cloud Definition", ACM SIGCOMM 
Comput. Commun. Rev., vol. 39, no.1, pp. 50-55, 2009. 
doi:10.1145/1496091.1496100 

[2] S. Yu, C. Wang, K. Ren, and W. Lou, "Achieving Secure, Scalable, 
and Fine-grained Data Access Control in Cloud Computing", Proc. 
IEEE INFOCOM, pp. 1-9, 2010. doi:10.1145/1496091.1496100 

[3] C. Wang, Q. Wang, K. Ren, and W. Lou, "Privacy-preserving Public 
auditing for Data Storage Security in Cloud Computing", Proc.  IEEE 
INFOCOM, pp. 1-9, 2010. doi:10.1109/INFCOM.2010.5462173 

[4] T. Yu, S. Jajodia, "Secure Data Management in Decentralized 
Systems." Advances in Information Security, vol. 33, pp. 355-380, 
Springer Press, 2007. 

[5] H. Pang, X. Ding, and X. Xiao. "Embellishing Text Search Queries to 
Protect User Privacy." Proc. VLDB Endowment vol. 3.1/2, pp. 598-
607, 2007. doi:10.14778/1920841.1920918 

[6] D. Song, D. Wagner, and A. Perrig, "Practical Techniques for 
Searches on Encrypted Data", Proc. IEEE Security and Privacy, pp. 
44-55, 2000. doi:10.1109/SECPRI.2000.848445 

[7] R. Curtmola, J. A. Garay, S. Kamara, and R. Ostrovsky, "Searchable 
Symmetric Encryption: Improved Definitions and Efficient 
Constructions", Proc. ACM Computer and Communication Security, 
pp. 79-88, 2006. doi:10.1145/1180405.1180417 

[8] M. Bellare, A. Boldyreva, and A. O’Neill, "Deterministic and 
Efficiently Searchable Encryption", Proc. Advances in Cryptology – 
CRYPTO, pp. 535-552, 2007. doi:10.1007/978-3-540-74143-5_30 

[9] M. Abdalla, M. Bellare, D. Catalano, E. Kiltz, T. Kohno, T. Lange, J. 
Malone-Lee, G. Neven, P. Paillier, and H. Shi, "Searchable 
Encryption Revisited: Consistency properties, relation to Anonymous 
IBE, and Extensions", Journal of Cryptology, vol. 21, no. 3, pp. 350–
391, 2008. doi:10.1007/s00145-007-9006-6 

[10] J. Li, Q. Wang, C. Wang, N. Cao, K. Ren, and W. Lou, "Fuzzy 
Keyword Search over Encrypted Data in Cloud Computing", Proc. 
IEEE INFOCOM'10 Mini-Conference, pp. 1-5, San Diego, CA, USA, 
March 2010. doi:10.1109/INFCOM.2010.5462196 

[11] C. Wang, N. Cao, J. Li, K. Ren and W. Lou, "Secure Ranked 
Keyword Search over Encrypted Cloud Data", in Proc. ICDCS'10, 
pp.253-362, 2010. doi:10.1109/ICDCS.2010.34 

[12] N. Cao, C. Wang, M. Li, K. Ren, and W. Lou. "Privacy-preserving 
Multi-keyword Ranked Search over Encrypted Cloud Data", in Proc 
IEEE INFOCOM'11, pp.222-233, 2011. 
doi:10.1109/INFCOM.2011.5935306 

[13] Sun, W. et al. "Verifiable Privacy-Preserving Multi-keyword Text 
Search in the Cloud Supporting Similarity-based Ranking." IEEE 
Trans. on Parallel and Distributed Systems, in Press, 2013. 
doi:10.1109/TPDS.2013.282 

[14] H. Pang, J. Shen, and R. Krishnan, "Privacy-Preserving Similarity-
Based Text Retrieval", ACM Transactions on Internet Technology, 
vol. 10, no. 1, article #4, Feb.  2010. doi:10.1145/1667067.1667071 

[15] S. T. Dumais, "Latent Semantic Indexing (LSI) and TREC-2", In 
Second Text REtrieval Conference (TREC2), D. Harman, ed., pp. 
105-115, March 1994. 

[16] T. K. Landauer, D. S. McNamara, S. Dennis, and W. Kintsch, 
"Handbook of Latent Semantic Analysis," 1st edition, ISBN-13: 978-
0805854183, pp. 293-322, Psychology Press, 2007. 

[17] M. Bellare, A. Boldyreva, L. Knudsen, and C. Namprempre, "Online 
ciphers and the hash-CBC construction", Proc. Advances in 
Cryptology – CRYPTO, 2001, pp.292-309, 2001. doi:10.1007/3-540-
44647-8_18 

[18] A. Boldyreva, N. Chenette, Y. Lee, and A. O’Neill, “Order Preserving 
Symmetric Encryption”, Proc. Advances in Cryptology – 
EUROCRYPT’09, pp. 224-241, 2009. doi:10.1007/978-3-642-01001-
9_13 

[19] M. Bellare, "Practice-oriented provable-security", in Proc. 
Information Security. Springer Berlin Heidelberg, pp. 221-231, 1998. 
doi:10.1007/BFb0030423 

[20] W. Wong, D. W. Cheung, B. Kai, and N. Mamouolis, “Secure kNN 
computation on encrypted databases”, Proc. ACM SIGMOD’09, pp. 
139-152, 2009. doi:10.1145/1559845.1559862 

 

[Downloaded from www.aece.ro on Saturday, October 13, 2018 at 08:42:51 (UTC) by 159.226.100.198. Redistribution subject to AECE license or copyright.]


