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Abstract: We recently proposed a role for the 2-pore-domain K+ (K2P) channel TREK-1 in the regulation of cytokine 
release from alveolar epithelial cells (AECs) by demonstrating decreased IL-6 secretion from TREK-1 deficient cells, 
but the effects of altered TREK-1 expression on other inflammatory mediators remain poorly understood. We now 
examined the role of TREK-1 in TNF-α-induced MCP-1 release from human A549 cells. We hypothesized that TREK-1 
regulates TNF-α-induced MCP-1 secretion via c-Jun N-terminal kinases (JNK)- and protein kinase-C (PKC)-dependent 
pathways. In contrast to IL-6 secretion, we found that TREK-1 deficiency resulted in increased MCP-1 production and 
secretion, although baseline MCP-1 gene expression was unchanged in TREK-1 deficient cells. In contrast to TREK-
1 deficient AECs, overexpression of MCP-1 had no effect on MCP-1 secretion. Phosphorylation of JNK1/2/3 was 
increased in TREK-1 deficient cells upon TNF-α stimulation, but pharmacological inhibition of JNK1/2/3 decreased 
MCP-1 release from both control and TREK-1 deficient cells. Similarly, pharmacological inhibition of PKC decreased 
MCP-1 secretion from control and TREK-1 deficient cells, suggesting that alterations in JNK and PKC signaling path-
ways were unlikely the cause for the increased MCP-1 secretion from TREK-1 deficient cells. Furthermore, MCP-1 
secretion from control and TREK-1 deficient cells was independent of extracellular Ca2+ but sensitive to inhibition of 
intracellular Ca2+ reuptake mechanisms. In summary, we report for the first time that TREK-1 deficiency in human 
AECs resulted in increased MCP-1 production and secretion, and this effect appeared unrelated to alterations in 
JNK-, PKC- or Ca2+-mediated signaling pathways in TREK-1 deficient cells.
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Introduction

In addition to immune cells, alveolar epithelial 
cells (AECs) play a central role in the regulation 
of lung inflammation induced by infectious as 
well as non-infectious agents including viruses, 
bacteria, allergens, inhaled toxins, mechanical 
stretch, and hyperoxia. The chemokine (C-C 
motif) ligand-2 (CCL2), also referred to as 
Monocyte Chemotactic Protein-1 (MCP-1), plays 
an important role in these processes by pro-
moting the recruitment of monocytes, and pos-
sibly neutrophils, to the lung [1]. An increase in 
MCP-1 concentrations in the lung tissue and in 
broncho-alveolar lavage (BAL) fluid has been 
documented in allergen- [2], virus- [3], exotoxin- 
[4, 5], and endotoxin [6]-induced lung inflam-
mation, and in cystic fibrosis [7]. Interestingly, 

dependent on the type of stimulus, MCP-1 may 
exert pro- [6] or anti-inflammatory [8] properties 
in the lung. MCP-1 is secreted by both immune 
cells and AECs [9, 10], but the molecular path-
ways regulating MCP-1 secretion from AECs 
remain poorly understood. The pathological 
findings observed in patients with acute lung 
injury (ALI) and Acute Respiratory Distress 
Syndrome (ARDS) include high levels of TNF-α 
in the BAL fluid [11] and correlate with patient 
mortality rates [12]. We recently provided evi-
dence that the 2-pore domain (K2P) potassium 
TREK-1 may play a regulatory role in TNF-α-
induced mediator secretion from AECs [13, 14]. 
We found that TREK-1 deficiency resulted in a 
decrease in IL-6 and an increase in MCP-1 
release. The decrease in IL-6 release from 
TREK-1 deficient AECs was associated with 
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alterations in protein kinase-C signaling, but 
the molecular mechanisms underlying the TNF-
α-induced increase in MCP-1 release from 
TREK-1 deficient AECs remains unknown. In 
this study we show for the first time that TREK-1 
deficiency in human AECs resulted in an 
increase in MCP-1 production and secretion. 
This increase in MCP-1 secretion from TREK-1 
deficient cells appeared unrelated to altera-
tions in JNK- and PKC-mediated signaling path-
ways.  Furthermore, the increased release of 
MCP-1 from AECs was independent of the 
extracellular calcium concentration, but sensi-
tive to changes in the intracellular calcium 
concentration.

Materials and methods

Cell culture

Human A549 alveolar epithelial cells were pur-
chased from the American Type Culture 
Collection (ATCC, Manassas, VA). Cells were 
cultured in DMEM (Gibco, Carlsbad, CA) supple-
mented with 10% FBS (Gibco), 1% Penicillin/
Streptomycin (Gibco), 20 mM HEPES (Sigma 
Aldrich, St. Louis, MO) and 2 mM L-Glutamine 
(Gibco). Once cells were 80-90% confluent they 
were treated with TNF-α (5 ng/ml; R&D 
Systems) at 37 °C. Cell viability was determined 
to be > 90% under all conditions by Trypan blue 
staining.

Development of a stable TREK-1 shRNA and a 
TREK-1 over-expressing A549 cell line

A stable TREK-1-deficient A549 cell line using a 
commercially available pRFP-C-RS vector 
(Origene, TREK-1 specific probe #FI348008; 
control scrambled peptide #TR30015) was 
developed as previously described [14]. 

A stable TREK-1 over-expressing A549 cell line 
was created using an Origene TrueORF Gold 
cDNA Clones and Precision Shuttle Vector sys-
tem (cat #RC210180) by following to the manu-
facturer’s instructions. Details of the pCMV6-
Entry vector containing a DDK-tag for detection 
are available on the Origene website (www.ori-
gene.com/cdna/trueorf/destinationvector.
mspx). Briefly, 3 x 105 cells were grown in 6 well 
plates prior to transfection until cells reached 
60-70% confluence in DMEM medium supple-
mented with 10% FBS, 20 mM HEPES and 2 
mM L-Glutamine. Cells were transfected with 
the DNA probe provided by the manufacturer 

using the Turbofectin 8.0 transfection system 
and incubated for 24 hours at 37 °C. To select 
for positively transfected cells, cells were cul-
tured in T75 flasks in DMEM medium (10% FBS, 
1% Penicillin/Streptomycin, 20 mM HEPES and 
2 mM L-Glutamine) supplemented with 0.5 mg/
mL G418. As a control, non-transfected A549 
cells were cultured in parallel under the same 
conditions. TREK-1 over-expression was con-
firmed by Western Blot using the anti-DDK anti-
body provided by the manufacturer, and by real 
time PCR using a TaqMan Gene Expression 
assay (Roche). Primer sets for human TREK-1 
were purchased from IDT, IA [14].

MCP-1 ELISA measurements

Initially, 1 x 105 A549 cells were seeded in 12 
well culture plates and grown to 80-90% conflu-
ence. Cells were then incubated in complete 
culture medium in the presence or absence of 
TNF-α (5 ng/ml) for 2, 6 or 24 hours at 37 °C. In 
experiments using the PKC inhibitor calphostin 
C (0.2 µM in the presence of a 8 W light source; 
Sigma), the JNK inhibitor SP600125 (10 μM, 
Sigma), the translation inhibitor cycloheximide 
(0.2 µg/ml, Sigma) and the Ca2+ reuptake inhib-
itor thapsigargin (0.5 µM; Sigma), cells were 
incubated with each inhibitor for 30 min prior to 
stimulation with TNF-α. When MCP-1 measure-
ments were performed in the absence of extra-
cellular Ca2+, cells were incubated in DMEM 
without Ca2+ (Gibco, cat #21068-028) supple-
mented with 10% FBS (Gibco), 1% Penicillin/
Streptomycin (Gibco), 20 mM HEPES (Sigma) 
and 2 mM L-Glutamine (Gibco) during TNF-α 
stimulation. Cell viability was assessed after 2, 
6 and 24 hours using Tryp an blue staining and 
was consistently > 90%. Furthermore, total 
intracellular protein concentrations were mea-
sured in each experiment using the Bradford 
assay and remained consistent under all exper-
imental conditions, suggesting that non-specif-
ic leakage of intracellular proteins did not occur. 
Supernatants were collected at 2, 6 and 24 
hours, and MCP-1 concentrations were deter-
mined using BD Bioscience OptEIA species-
specific MCP-1 ELISA kits.

Gene expression by real-time PCR

Total RNA was isolated from 2 x 106 A549 cells 
using a High Pure RNA Isolation Kit (Roche 
Applied Science, Mannheim, Germany) accord-
ing to the manufacturer’s instructions. Single-
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stranded DNA was synthesized from 1µg total 
RNA and Reverse Transcription PCR was per-
formed using a High Capacity cDNA Reverse 
Transcription kit (Applied Biosystems, CA) 
according to the manufacturer’s instructions. 
Real-Time PCR was performed using a TaqMan 
Gene Expression assay (Roche). Primer sets for 
human MCP-1 were purchased from IDT, IA 
(Forward: agtctctgccgcccttct, Reverse: gtgac-
tggggcattgattg). In preliminary experiments we 
confirmed that HGPRT levels were unchanged 
between control and TREK-1 deficient A549 
cells and, therefore, MCP-1 mRNA levels of con-
trol and TREK-1 deficient cells were normalized 
to HGPRT expression. Data were expressed as 
fold change in MCP-1 mRNA expression of 
TREK-1 deficient cells compared to control 

cells. A fold change greater than 2-fold was 
considered as significant. All experiments were 
repeated a minimum of 3 times and each sam-
ple was run in triplicate.

Western blot analysis

Antibodies for total JNK and phospho JNK were 
purchased from Cell Signaling and used in 1: 
1000 dilutions as recommended by the manu-
facturer. GAPDH (1: 2000, Cell Signaling) was 
used as an internal loading control. Western 
blots to confirm TREK-1 overexpression in 
transfected A549 cells were performed using 
the DDK-tag antibody (1: 1000) provided by the 
Origene TrueORF Gold cDNA Clones and 
Precision Shuttle Vector system (cat # 
RC210180). Initially, 8 x 104 cells were seeded 

Figure 1. MCP-1 secretion from TREK-1 deficient and TREK-1 over-expressing cells: A shows a positive DDK-tag sig-
nal confirming Trek-1 overexpression in A549 cells by Western blot. GAPDH was used as a loading control. B shows 
a 10.7-fold increase in TREK-1 mRNA expression in TREK-1 overexpressing A549 cells compared to control cells 
by real time PCR (*a fold change greater than 2-fold from control cells was considered significant). C shows a time 
course of MCP-1 secretion from control, TREK-1 deficient, and TREK-1 overexpressing A549 cells following TNF-α 
treatment. *compared to untreated control cells; #comparison between TNF-α-treated control and TREK-1 shRNA 
transfected cells; ^comparison between TNF-α-treated TREK-1 shRNA transfected cells and TREK-1 overexpressing 
cells; ʍcomparison between unstimulated control and unstimulated TREK-1 shRNA transfected cells; n = 4-12, p ≤  
0.05.
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into 12-well tissue culture plates (MidWest 
Science, St. Louis, MO). Once cells reached 
80-90% confluence, they were lysed on ice in 
RIPA buffer (50 mM Tris·HCl, pH 7.4, 150 mM 
NaCl, 2 mM EDTA, 1% Nonidet P-40, 0.1% SDS) 
with a protease inhibitor cocktail (Roche, 
Burlington, NC). Lysates were centrifuged at 4 
°C and 17,000 g for 15 min, and total protein 
concentrations were measured using the 
Bradford assay (BioRad, Hercules, CA). A total 
of 45-60 µg protein of each sample was sepa-
rated by sodium dodecyl sulfate (SDS)- poly-
acrylamide gel electrophoresis (PAGE) on 
4-12% NuPage Bis-Tris gradient gels (Invitrogen) 
and transferred onto nitrocellulose membranes 
at 35 mV for 2 hours. All membranes were 
blocked in 5% non-fat dry milk in Tris-buffered 
saline (Bio-Rad) containing 0.1% Tween-20 for 
1 h at 37 °C. The membranes were then incu-
bated overnight with the indicated primary anti-
bodies at 4 °C. The next day, membranes were 
incubated for 1 hour with the following second-
ary antibodies: for total JNK and phospho JNK 
immunoblots we used an anti-goat HRP-
conjugated IgG antibody (1: 5000, Santa Cruz), 
and for GAPDH we used an anti-rabbit HRP-
conjugated IgG (1: 5000, Cell Signaling). Bands 
were visualized by enhanced chemilumines-
cence with ECL SuperSignal West Dura 
Extended Duration Substrate (Thermo 
Scientific, Rockford IL). Band densitometry 
measurements to determine relative quantities 
of protein were performed using ImageJ 1.42 
software for Windows.

Statistical analysis

All values were expressed as means ± SEM. 
Student’s t-test was used to compare means of 
two different groups. Real time PCR data were 
analyzed using the ΔΔCt method, and a change 
in gene expression greater than 2-fold was con-
sidered significant. Additionally, in cytokine and 
phosphorylation studies, ANOVA analysis was 
used to compare means of different groups. All 
statistical analyses were performed using 
SigmaStat 3.5 software and a p-value of p ≤ 
0.05 was considered significant.

Results

TREK-1 deficient AECs secrete increased 
amounts of MCP-1

Efficiency of TREK-1 knockdown was previously 
documented in A549 cells by Western blot, real 

time PCR and confocal microscopy [14]. TREK-1 
overexpression was assessed by detection of a 
DDK-tag by Western blot (Figure 1A) and by 
real-time PCR (Figure 1B; 10.7-fold increase in 
TREK-1 mRNA expression compared to control 
cells; a change in mRNA expression greater 
than 2-fold was considered significant).

We previously reported that TREK-1 deficient 
mouse alveolar epithelial cells (AECs) showed 
an increase in MCP-1 secretion after 24 hours 
of TNF-α stimulation [13]. We now examined 
the time course of baseline and TNF-α-induced 
MCP-1 release from human A549 cells follow-
ing 2, 6 and 24 hours of TNF-α stimulation 
(Figure 1C). To determine the role of TREK-1 in 
MCP-1 secretion, we compared the amounts of 
MCP-1 released from control, TREK-1 deficient 
and TREK-1 overexpressing A549 cells. A TNF-α 
dose of 5 ng/ml was chosen as a stimulus 
based on the results obtained in our previous 
studies [13, 14]. Stimulation of control, TREK-1 
deficient, and TREK-1 overexpressing A549 
cells with TNF-α resulted in an increase in 
MCP-1 secretion in a time-dependent manner. 
Importantly, MCP-1 secretion from TREK-1 defi-
cient cells was more pronounced at all 3 time 
points compared to both control and TREK-1 
overexpressing cells. Furthermore, we observed 
no differences in MCP-1 release between con-
trol and TREK-1 overexpressing cells at base-
line or in TNF-α treated cells. Therefore, for the 
remainder of this study, we focused on the dif-
ferences in MCP-1 secretion between control 
and TREK-1 deficient cells.

MCP-1 release from TREK-1 deficient AECs is 
regulated at translational level

To study whether MCP-1 was predominantly 
pre-formed and stored, or newly synthesized, 
we compared intracellular and extracellular 
MCP-1 concentrations between untreated and 
TNF-α stimulated (6 hours) A549 cells (Figure 
2A). Even without stimulation, TREK-1 deficient 
cells secreted slightly more MCP-1 protein over 
6 hours in culture than control cells. After TNF-α 
stimulation, an increased MCP-1 concentration 
was detected in both the pellets and the super-
natants of TREK-1 deficient cells when com-
pared to controls.

To determine whether the increase in MCP-1 
secretion from TREK-1 deficient cells was due 
to increased MCP-1 gene transcription, we 
compared MCP-1 mRNA levels between control 
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and TREK-1 deficient cells at baseline and after 
TNF-α stimulation (Figure 2B) using real time 
PCR. We detected no difference in baseline 
MCP-1 gene expression between untreated 
control and TREK-1 deficient cells (-0.7 ± 0.5-
fold change in mRNA expression compared to 
untreated controls; a change in gene expres-
sion greater than 2-fold was considered signifi-
cant). However, after 2 and 6 hours of TNF-α 
stimulation, we found a 3.4 and 4.5-fold 
increase in MCP-1 gene expression, respective-
ly, in TREK-1 deficient cells when compared to 
equally treated controls.

In a next set of experiments we evaluated 
whether the increase in MCP-1 secretion from 
TREK-1 deficient cells was due to alterations in 

MCP-1 protein translation. We used cyclohexi-
mide, an inhibitor of protein translation, to 
study the contribution of protein translation to 
MCP-1 secretion from control and TREK-1 defi-
cient A549 cells after 2 and 6 hours of TNF-α 
stimulation (Figure 2C). Inhibition of protein 
translation with cycloheximide decreased 
MCP-1 secretion by > 95% in both control and 
TREK-1 deficient A549 cells after 2 and 6 hour 
of TNF-α stimulation.

Collectively, these data suggest that the major-
ity of secreted MCP-1 was newly synthesized 
after TNF-α stimulation rather than stored with-
in the cells, and these results point towards 
TREK-1 as an important regulator of MCP-1 pro-
tein synthesis and secretion from AECs.

Figure 2. TREK-1 production is regulated at transcriptional and translational level: A shows MCP-1 concentrations 
in cell pellets and culture supernatants (sup) in untreated cells and after 6 hours TNF-α treatment. *comparison of 
MCP-1 concentrations in the supernatants of unstimulated control and TREK-1 deficient A549 cells; #comparison 
of MCP-1 concentrations in the pellets of TNF-α stimulated control and TREK-1 deficient A549 cells; ^comparison 
of MCP-1 concentrations in the supernatants of TNF-α stimulated control and TREK-1 deficient A4549 cells; n = 4, 
p ≤ 0.05). B shows no significant change in baseline MCP-1 mRNA expression between unstimulated control and 
TREK-1 deficient A549 cells by real time PCR. However, stimulation of A549 cells with TNF-α (5ng/mL) resulted in 
an increase in MCP-1 mRNA expression in TREK-1 deficient cells after 2 and 6 hours when compared to control cells  
at each time point (n = 3, *a greater than 2-fold change was considered significant). C shows inhibition of MCP-1 se-
cretion by cycloheximide after 2 and 6 hours of TNF-α stimulation. *comparison of cycloheximide-exposed and un-
exposed control cells; #comparison of cycloheximide-exposed and unexposed TREK-1 deficient cells; n = 3, p ≤ 0.05.
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C-Jun N-terminal kinases (JNK) signaling was 
altered in TREK-1 deficient cells

TNF-α-induced activation of JNK kinases (JNK1, 
JNK2, JNK3) is an important step in epithelial 

cytokine secretion and in the development of 
ALI/ARDS [15-17]. To investigate whether alter-
ations in JNK signaling in TREK-1 deficient cells 
contributed to the increase in MCP-1 secretion 
from these cells, we used Western blot experi-

Figure 3. MCP-1 secretion is JNK-dependent: A shows a 6-hour time course of total and phosphorylated JNK1/2/3 
expression upon TNF-α stimulation. GAPDH was used as a loading control. B summarizes densitometry analysis of 
phosphorylated to total JNK (p-JNK/total JNK) ratios of 4 separate experiments. *compared to unstimulated control 
cells; #comparison of control and TREK-1 deficient cells within each time point; p ≤ 0.05. C shows inhibition of MCP-
1 secretion by the broad spectrum JNK inhibitor SP600125 in control and TREK-1 deficient A549 cells. *compared 
to untreated control cells at each time point; #comparison of SP600125-exposed and -unexposed TNF-α stimulated 
cells; n = 3, p ≤ 0.05.
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ments to study the time course of JNK1/2/3 
phosphorylation in control and TREK-1 deficient 
A549 cells (Figure 3A). Densitometry analysis 
summarizing normalized phospho JNK1/2/3 to 
total JNK1/2/3 ratios of 4 separate experi-
ments is shown in Figure 3B. TNF-α treatment 
resulted in increased JNK1/2/3 phosphoryla-
tion in both control and TREK-1 deficient cells 
after 10 min, 2 hours, and 6 hours when com-
pared to untreated control cells (Figure 3B). 
However, TREK-1 deficient cells showed stron-
ger JNK1/2/3 phosphorylation than equally 
treated control cells after 10 min and 2 hours 
of TNF-α stimulation.

To determine whether these alterations in JNK 
phosphorylation in TREK-1 deficient cells con-
tributed to the increased MCP-1 release from 
these cells, we studied the effect of the broad 
spectrum JNK1/2/3 inhibitor SP600125 [18, 
19] on MCP-1 release after 2, 6 and 24 hours of 
TNF-α stimulation(Figure 3C). Inhibition of 
JNK1/2/3 decreased TNF-α-induced MCP-1 
secretion from both control and TREK-1 defi-
cient cells after 2, 6 and 24 hours of TNF-α 
stimulation. Interestingly, although the percent-
age of inhibition of MCP-1 release was similar 
between control and TREK-1 deficient cells at 
each time point, the inhibitory effect of 

SP60012 on MCP-1 secretion was more pro-
nounced after 2 hours of TNF-α stimulation 
than after 6 and 24 hours (Figure 3C). 
SP600125 alone had no effect on baseline 
MCP-1 release from untreated control and 
TREK-1 deficient cells at any of the time points 
studied.

Collectively, these data suggest that TNF-α-
induced JNK1/2/3 phosphorylation was 
increased in TREK-1 deficient cells, and that 
MCP-1 release from both control and TREK-1 
deficient cells was JNK-dependent. However, 
since inhibition of JNK1/2/3 decreased MCP-1 
release from control and TREK-1 deficient cells 
to a similar degree, alterations in JNK signaling 
were unlikely the cause for the increased 
MCP-1 release from TREK-1 deficient cells.

Secretion of MCP-1 from A549 cells was pro-
tein kinase C (PKC)-dependent

In addition to JNK signaling, PKC is another key 
regulatory kinase mediating TNF-α-induced 
inflammatory effects [20-22], and we previous-
ly reported a role for PKCθ in regulation of IL-6 
secretion form TREK-1 deficient AECs [14]. To 
determine whether alterations in PKC signaling 
in TREK-1 deficient AECs could explain the 
increase in MCP-1 secretion from these cells, 

Figure 4. MCP-1 secretion is PKC-dependent: Figure 4 shows inhibition of MCP-1 secretion by the PKC inhibitor cal-
phostin C in control and TREK-1 deficient A549 cells. *comparison of calphostin C-exposed and unexposed TNF-α 
stimulated control cells within each time point; #comparison of calphostin C-exposed and unexposed TNF-α stimu-
lated TREK-1 deficient cells within each time point; ^comparison of calphostin C-exposed control cells to untreated 
control cells; ʍcomparison of calphostin C-exposed TREK-1 deficient cells to untreated TREK-1 deficient cells; n = 
3, p ≤ 0.05.
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we studied the effects of the PKC inhibitor cal-
phostin C on MCP-1 release after 2, 6 and 24 
hours of TNF-α stimulation (Figure 4). We found 
that calphostin C inhibited TNF-α-induced 
MCP-1 secretion from both control and TREK-1 
deficient cells in a time-dependent fashion. 
Within each time point, the degree of inhibition 
of MCP-1 release was similar between control 
and TREK-1 deficient cells, and was most pro-
nounced after 24 hours of TNF-α stimulation. 
Interestingly, calphostin C alone also inhibited 
baseline MCP-1 release from both unstimulat-
ed control and TREK-1 deficient cells after 6 
and 24 hours, but not after 2 hours. Collectively, 
these data suggest that MCP-1 release from 
A549 cells was PKC-dependent. However, since 
calphostin C had a similar inhibitory effect on 
control and TREK-1 deficient cells, alterations 
in PKC signaling were unlikely related to the 
increase in MCP-1 secretion from TREK-1 defi-
cient cells.

MCP-1 secretion from A549 cells was depen-
dent on the intracellular, but not the extracel-
lular Ca2+ concentration

To determine whether the increase in MCP-1 
secretion from TREK-1 deficient cells was relat-
ed to alterations in the extra- or intracellular 
Ca2+ concentration, we measured TNF-α-

from both control and TREK-1 deficient A549 
cells to a similar degree (Figure 5B). These data 
suggest that TNF-α-induced MCP-1 secretion 
occurred irrespective of the extracellular Ca2+ 
concentration, but was dependent on intracel-
lular Ca2+ signaling mechanisms. However, 
since the degree of inhibition by thapsigargin 
was similar in control and TREK-1 deficient 
cells, alterations in intracellular Ca2+ signaling 
were unlikely responsible for the increase in 
MCP-1 secretion from TREK-1 deficient cells.

Disussion

Despite our best clinical and research efforts, 
the mortality rates of patients with acute lung 
injury (ALI) and Acute Respiratory Distress 
Syndrome (ARDS) remain high [23, 24]. The two 
main treatment regimens for ALI/ARDS, 
mechanical ventilation and oxygen supplemen-
tation, are life-saving interventions but are also 
known to further propagate lung injury [25, 26], 
a finding supported by data recently published 
by our group [16, 27]. From both clinical [11, 
28] and animal [29] studies we learned that  an 
increase in inflammatory mediators, in particu-
lar TNF-α, MCP-1 and IL-6, contributes to the 
pathological changes observed in ALI/ARDS. 
However, the specific mechanisms leading to 
these findings remain unclear. The role of TNF-α 

Figure 5. MCP-1 secretion is sensitive to changes in the intracel-
lular but not extracellular Ca2+ concentration: Lowering of the ex-
tracellular Ca2+ concentration did not affect MCP-1 secretion from 
control or TREK-1 deficient A549 cells after 6 hours of TNF-α stimu-
lation (A). Inhibition of intracellular Ca2+ reuptake mechanisms by 
thapsigargin decreased MCP-1 secretion to a similar degree in con-
trol and TREK-1 deficient cells after 6 hours of TNF-α stimulation 
(B). *comparison of thapsigargin-exposed and unexposed TNF-α 
stimulated control cells; #comparison of thapsigargin-exposed and 
unexposed TNF-α stimulated TREK-1 deficient cells; n = 3, p ≤ 0.05.

induced MCP-1 release from control 
and TREK-1 deficient A549 cells in 
the presence and absence of extra-
cellular Ca2+ (Figure 5A), and after 
inhibition of intracellular Ca2+ reup-
take mechanisms by thapsigargin 
(Figure 5B).

First, to study the effect of extracel-
lular Ca2+ on MCP-1 release,  we 
measured MCP-1 secretion from 
cells cultured in a physiologic Ca2+ 

concentration (20 mg/dl) and from 
cells exposed to a low extracellular 
Ca2+ concentration (Ca2+-free DMEM 
with 10% FBS, final Ca2+ concentra-
tion 1 mg/dl). Lowering of the extra-
cellular Ca2+ concentration did not 
affect TNF-α-induced MCP-1 secre-
tion from either control or TREK-1 
deficient cells (Figure 5A). However, 
inhibition of Ca2+ reuptake mecha-
nisms by thapsigargin decreased 
TNF-α-induced MCP-1 secretion 
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as a pro-inflammatory cytokine in ALI/ARDS is 
widely accepted, and TNF-α levels in the BAL 
fluid correlate with patient mortality rates [28, 
30]. In contrast, the contribution of MCP-1 to 
lung injury is much more controversial. Its main 
role in inflammation appears to consist in 
mononuclear cell and neutrophil recruitment 
[1, 31], but MCP-1 has also been involved in 
regulation of mucin secretion from airway epi-
thelial cells [32] and in lung repair mechanisms 
[33]. In humans, lipopolysaccharide (LPS)- and 
lipotheicoic acid (LTA)-induced MCP-1 secretion 
promoted pulmonary inflammation [6], and 
MCP-1 levels in the BAL fluid of patients with 
ARDS correlated with mortality rates [34]. 
Furthermore, elevated levels of MCP-1 have 
been associated with the development of idio-
pathic pulmonary fibrosis [4]. On the other 
hand, MCP-1 protected against lethal endotox-
emia in mice [35], and in mouse and pig mod-
els of influenza pneumonitis, neutralization of 
MCP-1 enhanced lung damage and impeded 
alveolar repair mechanisms [36]. MCP-1 may 
also play a critical role in the resolution of lung 
inflammation since it enhanced apoptotic cell 
removal by macrophages in vitro and in vivo 
[37], promoted fibroblast survival [38], and 
facilitated clearance of pneumococcal bacteria 
from the lung [39].

In previous studies we identified the 2-pore 
domain potassium (K2P) channel TREK-1 as a 
new potential therapeutic target against ALI/
ARDS. Using the Luminex system, we found 
that mouse AECs responded to a deficiency in 
TREK-1 expression with a decrease in IL-6 
secretion and an increase in MCP-1 release 
[13], and in a follow-up study we investigated 
potential mechanisms related to the decrease 
in IL-6 secretion from TREK-1 deficient AECs 
[14]. However, the role of TREK-1 in the regula-
tion of MCP-1 secretion from human AECs 
remained unexplored. In this study, we show for 
the first time that TREK-1 deficiency in human 
A549 cells resulted in an increase in TNF-α-
induced MCP-1 production and secretion. We 
developed stable TREK-1 deficient and TREK-1 
overexpressing A549 cell lines to study poten-
tial differences in TNF-α-mediated signaling 
mechanisms (JNK-, PKC- and Ca2+-mediated 
pathways) between control and TREK-1 defi-
cient cells that could be responsible for the 
increase in MCP-1 secretion from these cells.

As shown in Figure 1C, stimulation of control, 
TREK-1 deficient and TREK-1 overexpressing 
cells with TNF-α resulted in an increase in 
MCP-1 secretion in a time-dependent fashion. 
However, the increase in MCP-1 release from 
TREK-1 deficient cells was more pronounced 
than from control and TREK-1 overexpressing 
cells. Interestingly, after 6 hours of culture, 
TREK-1 deficient cells secreted increased 
amounts of MCP-1 even in the absence of TNF-
α, suggesting that this effect may not be exclu-
sive to this particular stimulus (Figure 2A). 
Nevertheless, stimulation of cells with TNF-α 
significantly increased both production and 
secretion of MCP-1 as seen in the pellet to 
supernatant ratios depicted in Figure 2A. The 
differences in baseline MCP-1 release between 
control and TREK-1 deficient cells were unlikely 
related to alterations in baseline gene tran-
scription, since baseline MCP-1 mRNA levels 
were unchanged between untreated controls 
and TREK-1 deficient cells (Figure 2B). This is 
particularly interesting since in our previous 
study a decrease in IL-6 secretion from TREK-1 
deficient cells was accompanied by a decrease 
in baseline IL-6 mRNA expression [14]. However, 
after TNF-α stimulation we detected higher lev-
els of MCP-1 mRNA in TREK-1 deficient cells 
than in equally treated controls (Figure 2B). The 
fact that TNF-α stimulation can induce MCP-1 
gene transcription in A549 cells has previously 
been described [40]. However, whether the 
activation of specific transcription factors is 
altered in TREK-1 deficient cells thus resulting 
in increased MCP-1 mRNA and protein levels in 
these cells, needs to be addressed in future 
studies. Boekhoudt et al. reported that in cul-
tured fibroblasts TNF-α regulated MCP-1 gene 
expression via NFκB- and SP-1-dependent 
pathways [41], and similar regulatory mecha-
nisms were described in A549 cells [42]. In our 
study, MCP-1 release seemed mostly regulated 
at the translational level, since inhibition of 
translation by cycloheximide virtually abolished 
TNF-α-induced MCP-1 secretion from control 
and TREK-1 deficient cells.

TNF-α is known to exert its proinflammatory 
effects via several signaling pathways, includ-
ing JNK [43] and protein kinase C (PKC) [44]. 
Importantly, MCP-1 secretion from AECs has 
been reported to be JNK-dependent in different 
types of lung inflammation, including ALI  [45, 
46] and asthma [47]. Our data show increased 
phosphorylation of JNK1/2/3 isoforms in TREK-
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1 deficient cells after TNF-α stimulation, and a 
requirement of JNK activation for MCP-1 secre-
tion (Figure 3A-C). While it is intriguing to spec-
ulate that increased phosphorylation of JNK led 
to the observed increase in MCP-1 secretion 
form TREK-1 deficient cells, this appears unlike-
ly since pharmacological inhibition of JNK 
reduced MCP-1 secretion from control and 
TREK-1 deficient cells to similar degrees (Figure 
3C).

In addition to JNK, activation of PKC is one of 
the cornerstones of TNF-α signaling in the lung 
[36, 48]. We previously proposed that altera-
tions in PKC signaling in TREK-1 deficient cells 
may lead to a decrease in IL-6 secretion form 
these cells [14]. In this study, we investigated 
whether similar alterations in PKC signaling 
could be responsible for the increase in MCP-1 
secretion from TREK-1 deficient cells. 
Importantly, in a rat model of ALI TNF-α-induced 
MCP-1 secretion was reported to be PKC-
dependent [49]. Similarly, MCP-1 release from 
lung fibroblasts was also PKC- dependent [50], 
and inhibition of MCP-1 attenuated the proin-
flammatory effects of MCP-1 on macrophages 
[50] and on vascular smooth muscle cells [50]. 
Similar to JNK, our data show that PKC activa-
tion was required for MCP-1 secretion, but inhi-
bition of PKC with calphostin C deceased 
MCP-1 from control and TREK-1 deficient cells 
to similar degrees. These results suggest that 
alterations in PKC signaling in TREK-1 deficient 
cells were unlikely the cause for the increase in 
MCP-1 secretion form these cells. Of note, cur-
rently 3 families of PKC isoforms, including 12 
different isoenzymes, have been described in 
the literature [51]. Further studies will be nec-
essary to determine which specific isoforms 
are predominantly involved in MCP-1 secretion 
from AECs. Importantly, one way of classifying 
PKC isoforms is to divide them into Ca2+-
dependent (α, β, γ) and Ca2+-independent (δ, ε, 
η, θ) subtypes [52], and we previously reported 
that IL-6 secretion form TREK-1 deficient AECs 
occurred independently of the intra- and extra-
cellular Ca2+  concentration [14]. Similar to IL-6 
release, secretion of MCP-1 was not affected 
by lowering the extracellular Ca2+ concentration 
(Figure 5A). In contrast to the results obtained 
with IL-6 in our previous study [14], inhibition of 
intracellular Ca2+ reuptake mechanisms by 
thapsigargin decreased TNF-α-induced MCP-1 
secretion (Figure 5B). However, since thapsi-

gargin was equally effective in inhibiting MCP-1 
release from control and TREK-1 deficient cells, 
it is unlikely that alterations in intracellular Ca2+ 

signaling mechanisms in TREK-1 deficient cells 
were responsible for the increase in MCP-1 
secretion from these cells. Collectively, the dif-
ference in sensitivity to the extra- and intracel-
lular Ca2+ concentration between IL-6 and 
MCP-1 secretion is quite surprising since gener-
ally cytokine release is thought to be a Ca2+-
dependent process [53]. It is important to keep 
in mind, however, that most studies were per-
formed in secretory or inflammatory cells [54, 
55], and little is currently known about the 
mechanisms regulating cytokine secretion 
from AECs. In mast cells [56] and eosinophils 
[57], secretion of MCP-1 was described as 
Ca2+-dependent. In the ocular system, inhibi-
tion of Ca2+ influx by nilvadipine but not diltia-
zem, two structurally different L-type Ca2+ chan-
nel antagonists, inhibited MCP-1 release [58]. 
Therefore, the Ca2+ requirement for MCP-1 
secretion may be cell type- and tissue-specific. 
Of note, it is important to remember that even 
in a “low Ca2+” solution the addition of 10% FBS 
to the culture medium will result in a final Ca2+  
concentration of about 1 mg/dl of Ca2+ ions 
(assuming a normal serum Ca2+ concentration 
of 10 mg/dl), whereas our standard culture 
medium contained 20 mg/dl of Ca2+ (Gibco).

In conclusion, this is the first report demon-
strating a role for TREK-1 in MCP-1 secretion 
from human AECs. We are proposing a poten-
tial role for this K2P channel in the develop-
ment of alveolar inflammation by regulating 
MCP-1 secretion. In addition to limitations 
imposed by using a cultured cell line (A549), we 
recognize that the increase in MCP-1 release 
from TREK-1 deficient cells may not be TNF-α 
specific, and based on our previous data we 
now know that TREK-1 deficiency differentially 
regulates mediator secretion from AECs. It is, 
therefore, intriguing to speculate that TREK-1 
could be a key regulator in the development of 
alveolar inflammation during ALI/ARDS. 
Nevertheless, the specific mechanisms by 
which TREK-1 affects inflammatory mediator 
production and secretion, including MCP-1 and 
IL-6, remain to be determined. In the light of 
this current and our previous study [14], a 
model where TREK-1 regulates mediator secre-
tion simply by altering the resting membrane 
potential and thereby changing the driving 
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force for Ca2+  to enter a cell, appears quite 
unlikely. One must consider the possibility of 
TREK-1 acting more as a “regulatory molecule” 
rather than a simple potassium-permeable 
pore in the cell membrane, potentially similar to 
what is now widely accepted for the Cystic 
Fibrosis Transmembrane Conductance 
Regulator (CFTR) [59-61].
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