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Abstract The closed-loop nature of the Gough-Stewart 
platform generates complex singular configurations 
inside the workspace and makes its workspace smaller 
compared to the serial mechanism. It is desirable to 
obtain a non-singular workspace based on describing the 
constraint workspace and representing the singularities 
inside the constraint workspace. Some algorithms have 
been proposed by researchers to find the workspace 
boundary, but cannot locate the voids inside the 
workspace and are not applicable to the generation of a 
workspace with more than one zone. In this paper, the 
position-singularity expression in ℜ3 and the 
orientation-singularity expression in SO(3) are obtained, 
respectively. The new algorithms of the two types of 
constraint workspace in ℜ3 and in SO(3) are developed 
considering the limitations of the kinematic pairs. It can 
be shown that the singularities may exist inside the 
constraint workspace. Based on the singularity 
representation and the abovementioned constraint 
workspace determination, the two types of procedures of 
the non-singular workspace in ℜ3 and in SO(3) are 

further addressed, respectively. When the moving 
platform translates inside the non-singular 
position-workspace in ℜ3 for a constant-orientation or 
rotates inside the non-singular orientation-workspace in 
SO(3) for a given position, the mechanism is not singular. 
The two types of non-singular workspace representations 
in ℜ3 and SO(3) can help the designers to explore the 
singularity-free path planning, on which our next work 
will be focused. The novel method of workspace 
determination of the mechanism can also be used for the 
workspace analysis of the other types of parallel 
mechanisms. 
 
Keywords Parallel Mechanism, Singularity, Constraint 
Workspace, Non-Singular Workspace 

 
1. Introduction 
 
Parallel mechanisms (PMs) have become a large field of 
investigation during the past several decades because of 
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their many attributes, including large load capacities, high 
stiffness and stability, and good dynamic performance. 
However, PMs are only one type of closed-loop spatial 
mechanisms and their architectural nature limits their 
application. One of the main limitations is that the singular 
configuration, also called singularity, may exist inside the 
workspace. Generally speaking, when a PM is singular, 
one or more degree of freedom (DOF) of the moving 
platform is not restricted, which results in the end-effector 
gaining at least one unwanted instantaneous DOF even if 
all the actuators are locked. Therefore, when the PM is 
singular, it becomes uncontrollable. Here the unwanted 
DOF is instantaneous but not continuous. 
 
Because the singularity seriously affects the performance 
of the PMs, it is very important to avoid the singularities 
within the workspace. Merlet[1] advanced an efficient 
algorithm to verify a trajectory for a six-DOF parallel 
mechanism with respect to its workspace. Dasgupta et al. 
[2], proposed an algorithm for finding a well-conditioned 
safe path inside the workspace connecting the initial pose 
and the end pose. Dash et al. [3], presented a 
singularity-free path-planning algorithm consisting of 
nominal path planning and local routing to avoid the 
singularities. Based on the screw theory, Glazunov [4],   
developed an approach to determine twists, which 
displace the PM in singularity and find out the 
twist-gradient, which leads the PM from singularity to 
general configuration “most rapidly”. Arakelian et al. [5], 
addressed a new procedure to increase the singularity- 
free zone of the PM using controlling the pressure angles 
in the joints of the manipulator and changing the 
structural parameters of the legs. Saglia et al. [6], proposed 
that the singularity of the parallel mechanism can be 
eliminated using the redundant actuators. After 
investigating the bifurcation characteristics of the 
Gough-Stewart platform (GSP), Wang et al. [7], proposed a 
method for avoiding the turning point singularity using a 
disturbance function. 
 
The GSP, which was proposed as a flight simulator in 
1965 [8], is one of the most well known PMs and now is 
widely used in many other practices [9]. As is known to all, 
PMs generally have a smaller workspace than serial 
mechanisms, so the workspace representation, especially 
the non-singular workspace representation, is another 
important issue in the design of PMs. In addition, in 
order to guarantee that the PM remains far away from 
the singularities, maximizing the singularity-free zone is 
a useful method, which was addressed by Li [10] and Jiang 
[11]. This work will obtain the singularity expression of a 
special class of GSPs with two dissimilar 
semi-symmetrical hexagons and develop new algorithms 
for determining the constraint workspace in ℜ3 and in 
SO(3) and the non-singular workspace in ℜ3 and SO(3), 
respectively. 

2. Geometry of the GSP with two dissimilar  
semi- symmetrical hexagons 
 
A sketch of this special class of GSPs with two dissimilar 
semi-symmetrical hexagonal platforms is shown in 
Figure 1. The mechanism consists of a moving platform 
and a base platform connected via six identical SPS or 
SPU legs BiCi(i=1, 2, …, 6). Here S denotes a passive 
spherical joint and U denotes a passive Hooke joint, 
while P denotes an actuated prismatic joint. The moving 
platform and the base one, whose vertices are Bi and 
Ci(i=1, 2, …, 6), respectively, are both semi-symmetrical 
hexagons. Aj(j=1, 3, 5) are the intersection points of the 
three sides of the base platform. The meanings of the 
symbols P, O, βm, βb, Rm, Rb are as follows: 

P——Geometry centre of the moving platform 
O——Geometry centre of the base platform 
βm——Central angle of side B4B5 of the moving 

platform, 0°≤βm≤120° 
βb——Central angle of side C1C2 of the base platform, 

where 0°≤βb≤120° 
Rm——Circumradius of the moving platform 
Rb——Circumradius of the base platform. 
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Figure 1. Sketch of the special class of the GSPs 
 
3. Orientation representation and force Jacobian matrix 
 
The moving reference frame P-x′y′z′ and the fixed reference 
O-xyz are attached to the moving platform and the base 
platform, respectively. The coordinates of six vertices, Bi(i =1, 
2, …, 6), of the moving platform are denoted by 
Bi′( 

iZiYiX BBB ′′′ ,, ) (i=1, 2, …, 6) with respect to the moving 

reference frame and Bi(BiX, BiY, BiZ) (i=1, 2, …, 6) with respect 
to the fixed reference frame, respectively. Similarly, Ci(CiX, 
CiY, CiZ) (i=1, 2, …, 6) represents the coordinates of vertices Ci 

(i=1, 2, …, 6) with respect to the fixed reference frame. The 
coordinates Bi′, Ci (i=1, 2, …, 6) can be obtained easily 
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according to the geometry of the mechanism and are not 
given here because of the limited space. 
 
Here we use the unit quaternion, which is defined as 

Q=q0+q1i+q2j+q3k ( 2 2 2 2

0 1 2 3
1q q q q+ + + = ), to describe the 

orientation of the moving platform of the GSP. This 
means that the moving platform is rotated by an angle 
θ=2arccosq0 around the line which passes the point P and 
whose direction is q1i+q2j+q3k with respect to the fixed 
reference frame. Furthermore, we set q0≥0, thus the unit 
quaternion (q0, q1, q2, q3) gives the global parameterization 
of SO(3) and does not suffer from singularities in 
parameterization [12]. The rotation matrix based on the 
unit quaternion representation is as follows: 
 

.

2
2

2
1

2
3

2
010322031

1032
2
3

2
1

2
2

2
03021

20313021
2
3

2
2

2
1

2
0

)(2)(2
)(2)(2
)(2)(2

















−−++−
−−−++
+−−−+

=
qqqqqqqqqqqq

qqqqqqqqqqqq
qqqqqqqqqqqq

R   (1) 

 
Moreover, the relation between Bi and Bi′ (i=1,2,…,6) satisfies 
 

PBRB +′= ii .               (2) 

 
where matrix R is the rotation matrix of the moving 
reference frame to the fixed platform using the unit 
quaternion to represent the orientation of the moving 
platform, as Equation (1) shows. The force Jacobian 
matrix of the mechanism can be constructed according to 
the principle of the static equilibrium and the screw 
theory, which are derived by Huang (see [13]) and not 
detailed here because of the limited space. 
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Based on determinants of the mechanism’s Jacobian 
matrices, Gosselin et al. [14], showed that singularities of 
PMs could be classified into three different types, inverse 
kinematic singularity, direct kinematic singularity and 
architecture singularity. The first type of singularity 
occurs when one length of the links is zero, i.e., |Bi−Ci|=0 
(i=1, 2, …, 6), then the determinant of the Jacobian matrix 
J of the GSP is equal to infinity, i.e., det(J)=∞, where ∞ 
denotes infinity. It is easy to deal with since it leads to a 
very simple expression. Please refer to the explanations 
given by St-onge et al. [15]. This type of singularity should 
be avoided in the context of the design of parallel 
manipulators. Generally, this type of singularity mainly 
occurs in serial manipulators. The third type of 
singularity is caused by a particular architecture and can 
be avoided in design. For this class of the GSPs(see [16]), 

when βm+βb=120°, indicating that the moving platform 
and the base one are two similar hexagons and the 
corresponding vertices are connected, the mechanism is 
an architecture singularity. In this case, whatever the pose 
(position and orientation) of the GSP is, the mechanism is 
singular. The second type of singularity occurs when 
different branches of the direct kinematics problem 
converge and is difficult to analyse and has received 
much attention from many researchers. This type of 
singularity mainly occurs in parallel manipulators, i.e., 
the singularity introduced in the Introduction, that is the 
when a PM is singular, one or more DOF of the moving 
platform is not restricted, which results in the 
end-effector gaining at least one unwanted instantaneous 
DOF even if all the actuators are locked. This paper will 
only deal with the direct kinematic singularity analysis of 
the GSP, which occurs with the determinant of the 
Jacobian matrix J being equal to zero, i.e., det(J)=0. 
 
4. Singularity representation 
 
Substitute Equations (1)-(2) into Equation (3) noting that

2
3

2
2

2
10 1 qqqq −−−= , expand and rearrange the 

determinant of matrix JT, which equals zero when the 
mechanism is singular, then a general symbolic 
expression representing the singularity locus embedded 
in six-dimensional configuration space is derived 
 

              F(A, B)=0,                  (4) 
 
where A =(X, Y, Z) represents the position parameters 
and B =(q1, q2, q3) indicates the orientation parameters. 
For example, when Rb=2, Rm=1, βb=105°, βm=75°, X=0.82, 
Y=1.10834264786325, Z=2.558, q1=0, q2=0.1 and q3=0.7 we 
can obtain det(JT)=1.91331247739506×10−13. This singular 
configuration can be represented graphically as follows. 

 

 

Figure 2. One singular configuration of the GSPs 
 

The singularity locus of the GSP with six-DOF is a 
hypersurface embedded in six-dimensional space and is 
impossible to visualize. According to [12], the task space of 
the moving platform of the parallel mechanism with 
six-DOF is a configuration space, which also corresponds 
to SE(3). Here SE(3) represents the group operation of the 
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pose (position and orientation) of a rigid body, which 
corresponds to the semi-direct product of the 
three-dimensional rotation group and the three-dimensional 
Euclid space, i.e., SE(3)=SO(3) ⊗ ℜ3. Therefore, we can 
classify the singularity of the mechanism into two types in 
the configuration space in SE(3) considering the 
representation form of the parameters: the 
position-singularity in ℜ3 for a constant- orientation and the 
orientation-singularity in SO(3) for a given position. Then 
the singularity locus of the GSP in the configuration space 
can be represented easily in ℜ3 and in SO(3), respectively. 
4.1 Position-singularity representation 
 
According to Equation (4), a cubic symbolic expression in 
terms of variables (X, Y, Z) representing the position- 
singularity locus in ℜ3 for a constant-orientation (q1, q2, q3) 
can be written as 
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(5) 
 

where fi (i =1, 2, …, 16) are all functions in terms of the 
geometry parameters Rm, Rb, βm , βb and the orientation 
parameters (q1, q2, q3). 
 
The graphical representation of the position-singularity 
locus in ℜ3 for a constant-orientation is shown in Figure 3 
Here the geometry parameters are given as Rm = 1, Rb = 2, 
βm = 75° and βb = 105°, and the orientation parameters are 
(0, 0.1, 0.7). 
 
Equation (5) shows that the position-singularity equation 
of the mechanism for a constant-orientation is a 
polynomial expression of three degrees in terms of the 
position parameters (X, Y, Z) and the maximum degree of 
X, Y is two and Z is three. Figure 3 shows that the 
position-singularity surface of the mechanism for a 
constant-orientation is rather complicated and quite variable. 
Some researchers obtained a quadratic polynomial of 
Equation (5) and gave the geometric characteristics of the 
position-singularity locus for a constant-orientation in 
some special sections. By using the standard ZYZ-Euler 
angles to describe the orientation of the moving platform 
of the mechanism, Huang et al. [17], transformed the cubic 
position-singularity equation into the characteristic 
coordinate system in the platform plane into a quadratic 
equation, which indicated the geometric characteristics of 
the position-singularity locus in the oblique platform plane. 
Then Li et al. [18], further advanced two theorems about the 
geometric characteristics of the position- singularity locus 
in the oblique platform plane, which was called the 
“characteristic plane”. Bandyopadhyay et al. [19] obtained a 
quadratic polynomial of the position-singularity 
expression when the parameter Z is given, which shows 
the position-singularity locus of the moving platform in 
the plane parallel to the base platform with height Z. 

 

Figure 3. Position-singularity locus for the constant-orientation 
(0, 0.1, 0.7) 

 
4.2 Orientation-singularity representation 
 
Supposing that the position variables are given, Equation 
(4) yields the orientation-singularity expression 
indicating the orientation-singularity locus of the 
mechanism for a given position, which is shown as 
follows 
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where, coefficients fi(i=1, 2, …, 73) are all functions in 
terms of the geometry parameters Rm, Rb, βm , βb and the 
position parameters (X, Y, Z). Further inspection shows 
that Equation (6) has many terms including 

2
3

2
2

2
11 qqq −−−  and the highest degree of the 

orientation parameters (q1, q2, q3) is six. Therefore the 
orientation-singularity expression is very complex. It can 
also be shown that the orientation-singularity expression 
is more complicated than the position-singularity 
expression. 
 
When the geometry parameters are given as Rm=1, Rb=2, 
βm=75° and βb=105°, the graphical representation of the 
orientation-singularity locus in SO(3) with respect to (q1, 
q2, q3) in the Cartesian coordinates for the given position 
(0, 0, 3.5) is given as an example to illustrate the result, as 
shown in Figure 4. 
 

Figure 4. Orientation-singularity locus for the given position  
(0, 0, 3.5) 
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5. Workspace determination 
 
When the initial installation of the mechanism is just 
finished, the pose of the moving platform is called the 
“initial pose”, where the position parameters (X, Y, Z) are 
always (0, 0, Z0) and the orientation parameters (q1, q2, q3) 
are always (0, 0, 0), and where Z0 can be obtained 
according to Subsection 5.2.2. After substituting q1=0, q2=0 
and q3=0 into Equation (4), the singularity expression for 
the constant-orientation (0, 0, 0), which does not include 
the items X and Y, can be obtained as 
 

gZ3 = 0,                   (7) 
 
where g is the function in terms of the geometry 
parameters Rb, Rm, βb, βm and is not equal to zero when 
βb+βm≠120°. The orientation (0, 0, 0) will be defined as the 
“central orientation” in Section 5.4. Equation (7) is true 
only if Z=0. That is to say, if the position parameter Z is 
not zero and whatever the position parameters X, Y are, 
the mechanism is non-singular for the orientation (0, 0, 0). 
Moreover, the left side of Equation (4), the determinant of 
the matrix JT, is a continuous function in terms of the 
position parameters (X, Y, Z) and the orientation 
parameters (q1, q2, q3). Therefore, when the moving 
platform moves in the workspace, the sign on the left side 
of Equation (4) for any pose (position and orientation) 
parameters must be the same as the sign on the left side 
of Equation (7) for Z=Z0, so as to guarantee the 
mechanism is non-singular with the configuration of the 
mechanism changing. 
 
In practice, the movement of the moving platform from 
the current pose (position and orientation) to the desired 
pose can usually be divided into two steps: translating 
from the current position to the desired position first and 
then rotating to the desired posture. Similarly to the 
singularity representation of the mechanism, we can 
describe the position-workspace (constant-orientation 
workspace) in three-dimensions and the orientation 
workspace (constant-position workspace) in three- 
dimensions instead of giving a complete representation 
of the workspace in six-dimensions. Furthermore, the 
“constraint position-workspace” and the “constraint 
orientation-workspace” are proposed here considering 
the kinematic constraints of the mechanism. The 
“constraint position-workspace” is the three- dimensional 
position zone where the moving platform can reach for a 
constant orientation posture taking the restrictions of the 
kinematic pairs and the singularities into consideration. 
The “constraint orientation- workspace” is the 
three-dimensional orientation void where the moving 
platform can rotate for a given position posture taking 
the kinematic constraints and the singularities into 
consideration. As has been stated, the PM’s closed loop 
nature may create complex singularities inside the 

constraint workspace. Therefore, we also propose a 
“non-singular position-workspace” and a “non-singular 
orientation-workspace”. When the moving platform 
translates inside the three-dimensional zone called the 
“non-singular position-workspace” for a 
constant-orientation, the mechanism is non-singular 
when considering the restriction of the kinematic pairs. 
Similarly, when the moving platform rotates inside the 
three-dimensional “non-singular orientation-workspace” 
for a given position, the mechanism is non-singular when 
taking the restriction of the kinematic pairs into 
consideration. New algorithms for determining the 
aforementioned several types of the workspace, i.e., the 
constraint position workspace, the non-singular position 
workspace, the constraint orientation workspace and the 
non-singular orientation workspace of the GSP will be 
represented based on the inverse kinematics of the 
mechanism when considering the kinematic constraints. 
 
5.1 Inverse kinematics 
 
The starting point of the workspace of the mechanism 
analysis is the solution of the inverse kinematics. Given a 
pose of the moving platform, the ith link vector, denoted 
by li, can be computed by the following formula 
 

li = Bi − Ci   (i=1, 2, …, 6),           (8) 
 
where the meaning of Bi and Ci are illustrated in Section 
3.2 and li represents the length of the ith actuator and can 
be calculated by the following expression 

li =|li|=|Bi − Ci|    (i=1, 2, …, 6).        (9) 
 
5.2 Kinematic constraints 
 
There are three types of main kinematic constraints: the 
actuators’ stroke, the range of passive joints and the link 
interference. 
 
5.2.1 Actuators’ stroke 
 
The limited stroke of the ith actuator imposes a 
link-length constraint on the ith prismatic joint, that is 
 

Lmin ≤ li ≤ Lmax   (i=1, 2, …, 6),        (10) 
 
where Lmin and Lmax are the minimum and maximum 
lengths of the actuators, respectively. 
 
5.2.2 Range of passive joints 
Let θBmaxi and θCmaxi be the range of the ith passive joints Bi 
and Ci, respectively. We can obtain 
 

nii

nii
iB ll

Rll
⋅

⋅= )(arccosθ ,            (11) 
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nii

nii
iC ll

ll
⋅
⋅

= arccosθ ,             (12) 

 
where R is the rotation matrix, as Equation (1) shows. lni 
is the ith actuator’s vector with respect to the fixed 
reference, where all of the lengths of the six actuators are 
0.5(Lmin + Lmax ) for the initial pose of the moving platform. 
Substitute the initial pose parameters (X, Y, Z)=(0, 0, Z0) 
and (q1, q2, q3)= (0, 0, 0) into Equation (2) and compute the 
length of any one actuator determined by Equation (9). 
Set 
 

li = | li | = | Bi − Ci |=0.5(Lmin + Lmax ), 
 
where li =lj (i, j=1, 2, …, 6). Then the following function in 
terms of one variable Z0 can be obtained 
 

)(5.0 maxmin0
2
0 LLgZ +=+ ,         (13) 

 
where g0 is determined by the geometric parameters of 
the mechanism Rb, Rm, βb, βm. Equation (13) has two real 
roots with the same absolute value and the opposite sign. 
Here we set Z0 >0 with considering the case that the 
moving platform only works in the zone on the topside of 
the base platform, as shown in Figure 1. Substitute the 
initial pose parameters (0, 0, Z0, 0, 0, 0) into Equation (2), 
then lni can be derived easily by employing Equation (8) 
but is not given here because of the limited space. 
 
5.2.3 Link interference 

Supposing that each actuator can be approximated by a 
cylinder of diameter D and the distance between two 
adjacent actuators are Di, i+1 (i, i+1=1, 2, …, 6), which 
imposes a constraint on the relative position of all pairs of 
actuators, such that 
 

D ≤ Di, i+1   (i=1, 2, …, 6).         (14) 
 
The method for computing Di, i+1 is addressed in [9] and is 
not represented here because of the limited space. 
 
According to the inverse kinematics and computation of 
the changes of the joints, the constraint position- 
workspace and the constraint orientation-workspace can 
be obtained. Then the non-singular position-workspace 
and the non-singular orientation-workspace can further 
be represented by analysing the distribution of the 
position- singularity locus inside the workspace. In order 
to clearly address the process, the algorithms of the 
constraint workspace and the non-singular workspace 
will be represented by giving numerical examples. The 
design parameters of the mechanism under investigation 
are given in Table 1 where the initial position parameter 
Z0 can be obtained as 3.80 by solving Equation (13) in 
terms of one variable Z0. 

βm 

(°) 
βb 

(°) 
Rm 

(m) 
Rb 

(m) 
Lmin 

(m) 
Lmax 

(m) 
θBmax 

(°) 
θCmax 

(°) 
D

(m) 
75 105 1 2 3 5 55 55 0.15 

Table 1. Design parameters of the GSP under investigation 
 
5.3 Position-workspace determination 
 
Masory [20] and Huang [9] introduced a quick radial search 
to determine the boundary of the position-workspace of 
the GSP. However, using this algorithm it is very difficult 
to find out the boundary of the position-workspace with 
more than one zone and voids located inside the position- 
workspace. Moreover, the centre of the position- 
workspace should be located when using the radical 
search, but the centre generally cannot be located easily. 
This section will propose a new algorithm for finding out 
the boundary of the position-workspace of the GSP for a 
constant-orientation. The new algorithm for determining 
the constraint position-workspace and the non-singular 
position-workspace of the mechanism is developed by 
combining the step-by-step search and the bisection 
method. First, the position-workspace boundaries 
determined by the limitation of every kinematic pair 
should be found out. Then, the intersection of the 
position-workspaces determined by all limitations of the 
kinematic pairs is used as the constraint position- 
workspace. Finally, the non-singular position-workspace 
can be obtained by finding out the singularities inside the 
constraint position-workspace. The process is represented 
as follows: 
 
(1) Substitute the geometry parameters Rb, Rm, βb, βm 
and the initial pose parameters (X, Y, Z, q1, q2, q3)=(0, 0, Z0, 
0, 0, 0) into the left side of Equation (4) which is denoted 
by F(A0, B0 ). 
 
(2) Divide the possible reachable position-workspace for 
a constant-orientation into different slices by step ΔZ, as 
Figure 5 shows. 
 

Figure 5. Slices of the position-workspace 
 

(a) Transform the position parameters (X, Y) into the 
polar form and choice any one position (Xp, Yp) as the 
starting point: 

X = ρ cosα + Xp

Y = ρ sinα +Yp

              (15) 
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where (Xp, Yp) can be set as (0, 0) when the centre of the 
position-workspace in the Z-section is not known. When 
in the slice of Z=Zp, substitute Equation (15) into Equation 
(5), which yields an expression with variables α and ρ 
 

F(ρ, α)=0.                  (16) 
 
(b) Discretize α and ρ by step Δα and Δρ, respectively 
 

αj+1=αj+Δα   (j, j+1=1, 2, …, 2π/Δα), 
 

ρk+1=ρk+Δρ   (k, k+1=1, 2, …, ρmax/Δρ), 
 

where α1=0, ρ1=0 and ρmax is the maximal radius of the 
radial search. ρmax should be long enough so as to find 
out all of the possible position-workspace boundaries in 
the Z-section and can be estimated according to the 
design parameters of the mechanism. 
 
(c) Substitute the geometry parameters Rm, Rb, βm, βb and 
the orientation parameters q1, q2, q3 into the kinematic 
constraint equations as follows: 
 

Li−Lmin=0     (i=1, 2, …, 6)           (17) 
Li−Lmax=0     (i=1, 2, …, 6)           (18) 
θBi−θBmax=0     (i=1, 2, …, 6)          (19) 
θCi−θCmax=0     (i=1, 2, …, 6)          (20) 
Di, i+1−Dmin=0     (i=1, 2, …, 6)         (21) 

 
(3) For one subspace of the slices, the constraint 
position-workspace, taking kinematic constraints into 
consideration, can be searched by the following steps 
(3a)-(3f) using the radial search combining the bisection 
method and the step-by-step search. 
 
(a) Set α=αj (j=1, 2, …, 2π/Δα), increase ρ from 0 by step 
Δρ and substitute ρk and αj into Equation (9), whose value 
is denoted by L(ρk). Set m=0. 
 
(b) If Li(ρk)= Lmini, ρk satisfies Equation (17). Denote ρk as 
ρ(m), and set m=m+1. 
 
(c) If [Li(ρk)−Lmin]×[Li(ρk+1)−Lmin]<0, search the root of 
Equation (17) in terms of variable ρ using the bisection 
method over the starting range [ρk, ρk+1] and denote the 
root as ρ(m) and set m=m+1. The details of the bisection 
method can be represented easily by referring to many 
textbooks about numerical computation and are not 
given here because of the limited space. 
 
The boundaries of the position-workspace determined by 
the minimal length of the six links Lmin as Equation (17) 
shown can be found out using steps (3a)-(3c). 
 
(d) Similarly to steps (3a)-(3c), the boundary points of the 
position-workspace determined by Lmax, θBmax, θCmax and Dmin 
can also be found by searching the real root of Equations 
(18)-(21) in terms of variable ρ when α is set as αj. 

(e) Repeat steps (3a)-(3d), substitute ρ(m) and the 
corresponding αj into Equation (15), then the position of the 
boundaries points of the position-workspace determined by 
the limitations of the kinematic pairs can be obtained as 
 

X(m)= ρ(m)cosαj+Xp 
Y(m)=ρ(m)cosαj+Yp              (22) 

Z(m)=Zp 

 
Thus the constraint position-workspace boundaries 
points determined by Lmax, Lmin, θBmax, θCmax and Dmin can 
be obtained, respectively. 
 
For example, if Z=3, when the orientation parameters are 
given as (0, 0.1, 0.7), the constraint position-workspace 
boundaries determined by the limitations of the kinematic 
pairs are represented as shown in Figure 6. Here ρmax is set 
as six, which is enough to search the possible boundaries 
considering the restrictions of the kinematic pairs. From 
Figure 6, it can be shown that when the design parameters 
are given as shown in Table 1 and the orientation 
parameters are (0, 0, 0.7), link interference will not occur 
because of the limitations of the kinematic pairs. 
 

Figure 6. Constraint position-workspace boundaries determined 
by limitations of the kinematic pairs 
 

Figure 7. Constraint position-workspace in the Z-section when Z=3 
 
(f) Substitute the set of the position parameters (X(m), 
Y(m), Z(m)) into Equation (2) and then calculate the 
length of the six links li using Equation (9), the rotated 
angle of the passive joints θBi, θCi using Equations (11, 12) 
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and the shortest distance between two adjacent actuators 
Di,i+1 addressed in [9]. If li, θBi, θCi and Di, i+1 satisfy 
 

Lmin ≤ li ≤Lmax,                   (23) 

θBi ≤ θBmax,                     (24) 
θCi ≤ θCmax,                     (25) 

Di, i+1≥ Dmin,                     (26) 
 
respectively, the searched X(m), Y(m) and Z(m) are the 
boundary points of the position-workspace of the 
mechanism for constant-orientation in the Z-plane 
considering the kinematic constraints. After carrying out 
Step (3f), the constraint position-workspace boundary in 
the Z-section can be obtained as shown in Figure 7.  
 
Figure 8 further shows the position-singularity curves in the 
Z-section. It can be found out that the singularities exist 
inside the constraint position-workspace. Therefore, the 
non-singular position-workspace should be determined in 
order to avoid the singularities. Figure 9 shows the 
constraint position-workspace in another Z-section when 
Z=2.675. It can be shown that the algorithm proposed here is 
also applicable to searching the boundaries of the constraint 
position-workspace with more than one zone. Moreover, the 
developed process is also efficient in searching the 
position-workspace whose centre is not known. Therefore, 
the algorithm addressed here is more efficient than the 
general radical search and can also be used to determine the 
position-workspace of other types of parallel mechanisms. 
 
(4) Find out the non-singular boundary points of the 
constraint position-workspace. 
    
Substitute the obtained X(m), Y(m), Z(m) to the left side of 
Equation (5) denoted by F[X(m), Y(m), Z(m), q1, q2, q3], where 
(q1, q2, q3) is the given constant orientation parameters. If 
F[X(m), Y(m), Z(m)]×F(A0, B0)≥0, the obtained X(m), Y(m) 
and Z(m) can be used as the boundary points of the 
non-singular position-workspace in the Z-section, where  
(A0, B0) is the initial pose parameters (0, 0, Z0, 0, 0, 0). 
 

Figure 8. Constraint position-workspace and position-singularity 
locus in the horizontal section of Z=3 

 

Figure 9. Constraint position-workspace in the horizontal section 
of Z=2.675 
 
(5) Search the non-singular position-space boundary 
determined by the singularity locus in the Z-section. 
 
(a) Set α=αj (i=1, 2, …, 2π/Δα), increase ρ from 0 by step 
Δρ and substitute ρk and αj into the left side of Equation 
(16), whose value is denoted by F(ρj). Set n=0. 
 
(b) If F(ρk)=0, then ρk satisfies Equation (16). Set ρ(n)=ρk 
and n=n+1. 
 
(c) If F(ρk)×F(ρk+1)<0, search the root of Equation (16) in 
terms of ρ using the bisection method over the starting 
range [ρk, ρk+1], denote the root as ρ(n) and set n=n+1. 
 
(d) The position-singularity points ρ(n) in the polar form 
when α=αj in the Z-plane can be found out by steps 
(5a)-(5c), as Figure 10 shows. 
 

 

Figure 10. Notation of ρ satisfying Equation (16) when α is given 
in the Z-plane 
 

 

Figure 11. Non-singular position-workspace in the horizontal 
section of Z=3 
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(e) Repeat steps (5a)-(5d), substitute ρ(n) and the 
corresponding αj into Equation (15): 
 

X(n)= ρ(n)cosαj+Xp, 
Y(n)=ρ(n)cosαj+Yp,              (27) 

Z(n)=Zp. 
 

The calculated X(n) and Y(n) are the singularity points of 
the mechanism for a constant-orientation in the Z-plane. 
Substitution of the calculated X(n) and Y(n) to Equations 
(9, 11, 12) can obtain the changes of the kinematic pairs. If 
the changes of the kinematic pairs satisfy Equations 
(23)-(26), X(n) and Y(n) can be used as the boundary 
points of the non-singular position-workspace. 
 
(6) Repeat Steps (3)-(5), the boundary points of the 
non-singular position-workspace in one slice of the 
Z-plane can be obtained, as shown in Figure 11. 
 
(7) Determination of the three-dimensional constraint 
position-workspace. For every other subspace of the slices, 
repeat Step (3), the boundary of the three- dimensional 
constraint position-workspace of the mechanism for a 
constant-orientation can be represented. Figure 12 shows the 
constraint position-workspace of a specific GSP, where the 
design parameters are given as shown in Table 1 and the 
orientation parameters are given as (0, 0.1, 0.7). 
 

 

Figure 12. Constraint position-workspace inside which the 
singularities exist 
 

Figure 13. Non-singular position-workspace for a 
constant-orientation 

(8) Determination of the three-dimensional non-singular 
position-workspace. For every other subspace of the 
slices, carry out Steps (3)-(6). The non-singular position- 
workspace of the mechanism for a constant-orientation 
without considering the singularity can be obtained by 
carrying out Steps (3)-(6). Figure 13 shows the 
three-dimensional non-singular position-workspace for 
the constant orientation (0, 0.1, 0.7), inside which no 
singularity exists. 
 
5.4 Orientation-workspace determination 
 
According to Equation (7), when the moving platform 
translates in the workspace with an orientation satisfying 
(q1, q2, q3)=(0, 0, 0), the mechanism will not be singular so 
long as Z≠0, where Z≠0 means the plane where the 
moving platform lies does not coincide with the plane 

where the fixed platform lies. Moreover, when the 
position of the moving platform is given, the left side of 
Equation (7), i.e., the determinant of the matrix JT, is a 
continuous function in terms of the orientation 
parameters (q1, q2, q3). Therefore, when Z≠0, whatever the 
position parameters (X, Y) are, a non-singular 
orientation-void around the orientation origin (q1, q2, 
q3)=(0, 0, 0) can always be found. From Figure 4, it can be 
shown that a singularity-free void really exists around 
the central orientation (q1, q2, q3)=(0, 0, 0) and inside the 
orientation-singularity surface. 
 
In this section, we will represent the algorithm of the 
constraint orientation-workspace and the non-singular 
orientation-workspace of the mechanism for a given 
position considering the kinematic constraints. The 
mechanism is not singular when the moving platform 
rotates inside the non-singular orientation-workspace for 
a given position. 
 
We define a “central orientation” of the mechanism, 
which should satisfy the following two assumptions: 
 
(1) The position of the point P is given. 
 
(2) The orientation of the moving reference frame is the 

same as the orientation of the fixed one. 
 
The process can be briefly addressed as: first, search the 
boundaries determined by all limitations of the kinematic 
pairs starting from the “central orientation”. Then, use 
the boundary being closest to the “central orientation” as 
the constraint orientation-workspace boundary. In fact, if 
the one directional “closest boundary point” determined 
by the limitation of one of the kinematic pairs is found 
out, we can stop searching the other boundary points in 
the one direction determined by other limitations of the 
kinematic pairs. Finally, the intersection set of the 
singularity-free void determined by the orientation- 
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singularity locus and the constraint orientation- 
workspace is used as the non-singular orientation- 
workspace. 
 

Considering 2 2 2

1 2 3
1q q q+ + ≤ , convert the unit quaternion 

to the following representation considering the property 
of the unit quaternion: 
 

,cos
,sinsin
,cossin

3

2

1

γ
φγ
φγ

rq
rq
rq

=
=
=   γ ∈[0, π], β∈[0, 2π], r∈[0, 1]   (28) 

 
Another point to note that the spherical coordinates 
systems is constructed here because of considering the 
computation convenient of the orientation capability 
defined as 2

3
2
2

2
1 qqqRoc ++= , which will be investigated 

in our future work. 
 
By synthetically using the step-by-step search and the 
bisection method, the algorithm of the non-singular 
orientation-workspace of the mechanism for a given 
position can be represented as follows: 
 
(1) Search the constraint position-workspace for the 
“central orientation” considering the limitations of the 
kinematic pairs by using the algorithm proposed in 
Section 5.3. Then, save the set of all positions, (X, Y, Z) 
that can be reached by point P. The constraint 
orientation-workspace and the non-singular orientation- 
workspace for any given position, (X, Y, Z), located in 
this searched position-workspace can be found out by the 
following steps. 
 
(2) Discretize γ, φ and r by step Δγ, Δφ, Δr, respectively 
 

γi+1=γi+Δγ   (i, i+1=1, 2, …, π/Δγ) 
φj+1=φj+Δφ   (j, j+1=1, 2, …, 2π/Δφ) 
 rk+1=rk+Δr   (k, k+1=1, 2, …, 1/Δr) 

 
where γ1=0, φ1=0, r1=0. γi, φj and the boundary point of the 
orientation-workspace denoted by ri,j are shown in Figure 14. 
 

Pa
ram

ete
r x 1

 

Figure 14. Notation of the boundary point of the orientation- 
workspace 

(3) Step (3) mainly deals with the constraint 
orientation-workspace determined by the kinematic 
constraints without considering the singularities. Set γ=γi 
(i=1, 2, …, π/Δγ), carry out the following Steps (a)-(f): 
 
(a) Set φ=φj (j=1, 2, …, 2π/Δφ), increase r from 0 by step Δr 
and denote value of r as λk. Substitute the given position 
parameters (X, Y, Z) and the current parameters (λk, γi, φj) 
into Equation (2), then solve the inverse kinematics by 
employing Equation (9), Equation (11) and Equation (12), 
which are all the functions in terms of λk and denoted by 
Li(λk), θBi(λk), θCi(λk), respectively. 
 
(b) When r is set as λk, if any one change of the 
kinematic pairs satisfies the following: 
 

Li(λk)−Lmin=0                (29) 
Li(λk)−Lmax=0                (30) 

θBi(λk)−θBmax=0                (31) 
θCi(λk)−θCmax=0                (32) 

Di, i+1(λk)−Dmin=0                (33) 
 
then λi,j=λk and stop Step (3b). 
 
(c) If the changes of the kinematic pairs satisfy any one of 
the following: 
 

[Li(λk)−Lmin]×[Li(λk+1)−Lmin]<0 
[Li(λk)−Lmax]×[Li(λk+1)−Lmax]<0 

[θBi(λk)−θBmax]×[θBi(λk+1)−θBmax]<0 
[θCi(λk)−θCmax]×[θCi(λk+1)−θCmax]<0 

[Di, i+1(λk)−Dmin]×[ Di, i+1(λk+1)−Dmin] <0 
 
then λi,j∈(λk, λk+1). Thus the boundary point of the 
orientation-workspace λi,j for γi and φj can be searched by 
using the bisection method over the starting range [λk, λk+1] 
to find out the real root of the corresponding equation as 
Equations (29)-(33) show, respectively. After this search, 
stop Step (3c). 
 
(d) If for all values of λk 
 

[Li(λk)−Lmin]×[Li(λk+1)−Lmin]>0 
[Li(λk)−Lmax]×[Li(λk+1)−Lmax]>0 

[θBi(λk)−θBmax]×[θBi(λk+1)−θBmax]>0 
[θCi(λk)−θCmax]×[θCi(λk+1)−θCmax]>0 

[Di, i+1(λk)−Dmin]×[ Di, i+1(λk+1)−Dmin]>0 
 
then denote λi,j=1. 
 
(e) Repeat Steps (a)-(d) for every other value of φ. 
 
(f) Repeat Steps (a)-(e) for every other value of γ. 
 
(4) Step (4) mainly finds out the orientation-singularity- 
free void determined by the orientation-singularity locus, 
which can be found out by following Steps (a)-(h): 
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(a) After substituting Equation (28) into Equation (6), the 
following expression with three variables r, γ and φ can 
be obtained 

F(r, γ, φ)=0.               (33) 
 
(b) Set γ=γi (i=1, 2, …, π/Δγ). 
 
(c) Set φ=φj (j=1, 2, …, 2π/Δφ), increase r from 0 by step Δr 
and here denote the value of r as Rk. Substitute Rk, γi and 
φj into the left of Equation (33), whose value is denoted by 
F(Rk). If F(Rk)×F(Rk+1)≤0 or Rk=1, stop Step (3c). 
 
(d) If F(Rk)×F(Rk+1)=0, Ri,j=Rk+1. 
 
(e) If F(Rk)×F(Rk+1)<0, then Ri,j∈(Rk, Rk+1). Therefore, 
searching Ri,j solves Equation (33) in terms of the real 
variable R, where R∈(Rk, Rk+1). The bisection method over 
starting range [Rk, Rk+1] can be applied to find the real 
root. 
 
(f) If for all values of Rk, F(Rk)×F(Rk+1)>0, then Ri,j=1. In 
this case, Equation (33) for the variable r has no real root 
when γ=γi and φ=φj. 
 

 
(a)Constraint orientation-workspace 

 

 
(b) Non-singular orientation-workspace 

Figure 15. Orientation-workspace for a given position (0, 0, 3.5) 

(g) Repeat Steps (a)-(f) for every other value of φ. 
 
(h) Repeat Steps (a)-(g) for every other value of γ. 
 
(5) When γ=γi and φ=φj, take the minor value of λi,j 
searched by Step (3) and Ri,j searched by Step (4) as the 
boundary point of the non-singular 
orientation-workspace denoted by r i,j, i.e., r i,j=min(λi,j, Ri,j). 
Thus the boundary points of the non-singular 
orientation-workspace in three-dimensions can be 
computed by using Equation (28). If set r i,j=λi,j, the 
constraint orientation-workspace for a given position can 
be represented by using Equation (28). 
 
After carrying out Steps (1)-(5), the constraint orientation- 
workspace and the non-singular orientation-workspace 
can be described easily. For example, when the 
architecture parameters of the GSP are given as in Table 1, 
Figure 15 describes the constraint orientation- workspace 
and the non-singular orientation-workspace of the 
mechanism for a given position (0, 0, 3.5). Figure 16 
further shows the constraint orientation-workspace and 
the orientation-singularity locus in the two vertical 
sections when q1=0 and q2=0, respectively. It can be shown 
that the orientation-singularity locus may exist inside the 
constraint orientation-workspace.  

 

(a) Vertical section of q1=0 
 

(b) Vertical section of q2=0 
Figure 16. Constraint orientation-workspace and orientation- 
singularity locus in the two vertical sections 
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(a) Vertical section of q1=0 
 

(b) Vertical section of q2=0 
Figure 17. Non-singular orientation-workspace in the two 
different vertical sections 
 
Figure 17 shows the non-singular orientation-workspace 
in the two vertical sections when q1=0 and q2=0, 
respectively. From Figures 15-17, it can be concluded that 
the algorithm addressed here can certainly find out the 
rotation space of the mechanism for a given position 
when considering the restriction of the kinematic joints. 
The developed process can further search the 
non-singular orientation-workspace, inside which the 
mechanism is not singular when the moving platform 
rotates. 
 
It should be pointed out that the orientation-workspace 
size can be precisely represented based on the unit 
quaternion representation but applying the Euler angles 
as the orientation parameters. For example, when the 
moving platform rotates parallel to the base platform, 
only one set of parameters (0, 0, q3) can correctly describe 
the orientation. However, when using the standard 
zyz-Euler angles (φ, θ, ψ) to describe the orientation, if 
φ+ψ=constant, then more than one set of parameters (φ, θ, 
ψ) can equivalently represent the orientation of the 
moving platform. Similarly, the other Euler angles are not 
avoid the singularity in parameterization, which is not 
illustrated here because of the limited space. 
 
The algorithm of the workspace determination is 
programmed by applying Matlab 7.0 and run in 
Windows XP SP3, CPU Pentium Dual 2.0 GHz and RAM 
2.0 GHz. It can be found that the algorithm synthetically 
using the step-by-step search and the bisection method is 

more efficient than the general radical search. For 
instance, when the design parameters of the mechanism 
are given as in Table 1, determining one section of the 
position-workspace boundary, where Z=3, Δρ=0.01 and 
the accuracy of the boundary points is set as 10−10, the 
computation cost is about 392 seconds using the 
algorithm proposed here. However, there is a 
computation cost of about 4105 seconds using the general 
radical search, where the accuracy of the boundary points 
is set as 10−3. Therefore, the algorithms for searching the 
position-workspace proposed here are more efficient than 
the general radical search. Further investigation shows 
that, for other given design parameters and posture 
parameters, the procedure for either position-workspace 
determination or orientation-workspace determination 
addressed here is more efficient than the general radical 
search. 
 
6. Conclusions 
 
(1) From the two types of the singularity representations 
in ℜ3 and in SO(3), it can be shown that the 
orientation-singularity locus SO(3) is more complicated 
than the position-singularity locus in ℜ3. 
 
(2) From the workspace descriptions in ℜ3 and in SO(3), it 
can be concluded that the constraint orientation- 
workspace and the non-singular orientation-workspace 
in SO(3) for a given position must be around the “central 
orientation”, where the “central orientation” is where the 
orientation parameters are (0, 0, 0). However, the location 
of the position-workspace in ℜ3 for a constant-orientation 
cannot be predicted until its boundary is found out. 
 
(3) The modified radical search by synthetically using the 
step-by-step search and the bisection method is a proper 
and efficient process for computing the three- 
dimensional position-workspace in ℜ3 and the three- 
dimensional orientation-workspace in SO(3) of the GSP. 
The new algorithm is more efficient than the general 
radical search. Especially the algorithm proposed in this 
paper, which is very applicable to the search of the work 
zone with an arbitrary complicated shape, which may 
have voids and more than one zone. 
 
(4) The concepts and algorithms of the “constraint 
workspace” and the “non-singular workspace” are very 
significant. The singularities may exist inside the 
constraint workspace determined by the limitations of the 
kinematic pairs, but do not exist inside the non-singular 
workspace when further considering the singularities. 
When the moving platform translates inside the 
non-singular position-workspace for a constant 
orientation or rotates inside the non-singular orientation- 
workspace for a given position, the parallel mechanism is 
not singular. 
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(5) The singularity representation and the non-singular 
workspace determination in this paper can be used to 
investigate the singularity avoidance of the GSP. Based on 
the exploration in this paper, our future work will focus 
on the optimal path planning in SE(3) without singularity 
of the GSP. 
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