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1Abstract—The volume and complexity of the data that is 

generated every day increased in the last years in an 
exponential manner. For processing the generated data in a 
quicker way the hardware capabilities evolved and new 
versions of algorithms were created recently, but the existing 
algorithms were improved and even optimized as well. This 
paper presents an improved clustering approach, based on the 
classical k-means algorithm, and referred to as the centroid 
update approach. The new centroid update approach 
formulated as an algorithm and included in the k-means 
algorithm reduces the number of iterations that are needed to 
perform a clustering process, leading to an alleviation of the 
time needed for processing a dataset. 
 

Index Terms—clustering algorithms, clustering methods, 
data analysis, data mining, machine learning algorithms. 

I. INTRODUCTION 

Data mining is a domain that has developed in the last 
years as one of the most advanced ones in artificial 
intelligence [1]. Data mining processes large volumes of 
data for extracting valuable information, for finding patterns 
or for creating statistics, and uses different types of 
algorithms for processing datasets. Every dataset can be 
processed in several ways using different data mining 
processing algorithms depending on the information that 
needs to be extracted from it. 

Clustering algorithms [2] belong to the data mining ones, 
and divide a dataset in smaller chunks of data called 
clusters. A cluster contains dataset records that have 
similarities and is obtained by running an iterative algorithm 
over a dataset for a specified number of times. Giving the 
fact that a clustering algorithm is an iterative process, the 
volume of time that is needed for splitting a processed 
dataset in clusters is increasing with the size of the 
processed dataset. For increasing the speed of a clustering 
process, there are two approaches: run a parallel clustering 
on multiple machines or using an optimized clustering 
algorithm. The resulting clusters can be post processed to 
obtain further information or statistics. 

This paper suggests a partition-based clustering algorithm 
based on the k-means clustering algorithm [3], [4]. The 
proposed algorithm is an improved version of the k-means 
algorithm that reduces the number of iterations (cycles) 
needed for obtaining the final clusters. By reducing the 
number of iterations that are needed for running the 
clustering algorithm, the total processing time needed for 
obtaining the final clusters will also be reduced, meaning 

that the volume of data that can be processed by the same 
computing device in the same amount of time can be 
increased. 

 
 

The rest of this paper is organized as follows: Section II 
provides an overview of the classical k-means clustering 
algorithm. Section III discusses some of the related work 
that has been performed in this domain. Section IV 
describes the new version of k-means algorithm that was 
proposed. Section V presents the obtained results using the 
new version of k-means algorithm. The conclusions, 
advantages, limitation and a future research are presented in 
Section VI. 

II. OVERVIEW OF THE CLASSICAL K-MEANS ALGORITHM  

The k-means algorithm [3], [4] is an unsupervised 
learning algorithm that divides a dataset in clusters and it is 
one of the most used algorithms for data mining [5]. The k-
means algorithm is able to process only numerical values, so 
if a dataset that contains non-numerical value needs to be 
processed, a convert operation needs to be performed to 
bring all dataset vectors (records)  to the form of a d– 

dimensional set: 
ix
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where the superscript T stands for matrix transposition and n 
is the number of database records. 

The objective of k-means algorithm is represented by 
minimizing the intra-cluster variance by solving the 
optimization problem: 
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centroids and also the solution to the optimization problem 
(2). 

The k-means algorithm uses a mathematical formula for 
calculating the distance  from every record  and a 

centroid . If the Euclidian distance  is considered: 
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by replacing the distance formula in (2) with the formula for 
calculating the Euclidian distance, the optimization problem 
becomes: 
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The formula included in (4) that is used for calculating 
the distance between every record  and all centroids  

determines the shape of the final clusters. 
ix jc

The k-means algorithm consists of five major steps, 0 to 
4, presented as follows. The step 0 is executed once, and the 
other ones are executed in an iterative (cyclic) manner until 
the final clusters are generated. 

Step 0. This is an initialization step, where the number of 
clusters p, the initial centroids, the maximum number of 
iterations and the accepted error are chosen. The general 
notation  will be used as follows for the current iteration, 

, where  is the maximum number of 

iterations, which needs to be initialized. The initial value 
 will be used. 
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There are several ways to initialize the centroid vector c . 
This paper will use an initial centroid vector  that 
contains the points where we believe that the final centroids 
will be. This initial centroid vector is: 
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and it will initialize the set of initial centroids: 
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The accepted error  needs to be initialized and it will 
be used as a stop condition in the algorithm. 

0

Step 1. The distance between every vector  and a 

centroid  of cluster  needs to be calculated using (3) 
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contain the vectors  that are closer to its center, the 

centroid . The cluster generation process is based on the 
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the vector  will be included into a cluster  if the 

distance  is minimum, which means: 
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Step 3. The new centroid  needs to be computed for 

each cluster  based on the vectors  that are assigned to 

the cluster . The new centroid is computed on the basis 

of the next formula that calculates the average of the 
coordinates for all vectors x : 
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where  is the number of vectors assigned to cluster 

. Equation (8) generates the next centroid vector: 
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The scalar version of (8) is: 
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Step 4. The stop condition of the algorithm is checked: 
 . (11) || )()1(   cc

If the condition (11) is fulfilled, this means that the k-
means algorithm had run in a cyclic manner until the 
centroid vector c  did not change between two consecutive 
cycles and the solution to the optimization problem (2) is the 
last obtained vector c : 
 ,  (12) )1(*  cc
which corresponds to the final centroids: 
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If the condition (11) is not fulfilled, then an increment of 
the current iteration replacing   with 1  and the 

algorithm will continue with step 1. 

III. RELATED WORK 

In the last years the applications that were developed for 
processing large volumes of data have grown. There are 
various domains that use algorithms for extracting valuable 
information from datasets. There were developed lots of 
applications for analyzing databases in different domains 
such the healthcare system, where big data application were 
developed for predicting a disease or making statistics [6], 
[7], finance [8], astronomy, where a lot of information is 
generated and needs to be processed [9], [10], transportation 
[11] or image processing [12]. 

The k-means algorithm can be applied to small datasets, 
medium datasets and even on big datasets. The total 
processing time that k-means needs to find an acceptable 
solution is proportional with the size of the processed 
dataset. If the hardware components that are used for 
running the k-means algorithm are not considered, it can be 
concluded that the total processing time that the k-means 
algorithm needs to process a dataset depends on two major 
things: the position of the initial centroids and the number of 
the iterations that are performed until an acceptable solution 
is found. 

Because of the importance of initial centroid selection, 
different methods were proposed in the literature for 
improving the k-means by picking wisely the initial 
centroids. The k-means++ algorithm was proposed in [13] in 
order to speed up the performance of the k-means algorithm. 
The k-means++ algorithm picks the first centroid in a 
random manner as k-means algorithm does, but the others 
centroids are picked by the probability proportional  to the 
shortest distance from all existing centroids. A disadvantage 
of the k-means++ algorithm is the fact that it is inherently 
sequential. Another version of k-means algorithm was 
suggested in [14], where the initial set of clusters is 
generated by computing pair-wise distances and all the 
closer points create a cluster. There is a threshold value for 
the minimum number of the points that can form a cluster. 
The initial centroids will result as the mean value of these 
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centroids. Another method for selecting the initial centroids 
presented in [15] deals with sorting all processed records in 
a table, splitting the table in multiple sections (number of 
section equals the number of desired centroids), and the 
mean value of each section will represent an initial centroid. 

Another way of improving the performance of k-means 
algorithm is to reduce the number of the computation steps 
that are performed until an acceptable solution is found. The 
solution given in [16] to speed up the k-means algorithm 
consists in storing information about the data that is 
clustered. By keeping information about closer centroid for 
every processed record, many of the distance calculations 
can be avoided. A disadvantage of this algorithm is the fact 
that it does not perform well when high dimension vectors 
are processed. Others versions of the k-means algorithm 
were modified to use the triangle inequality [17], [18] to 
avoid the unnecessary point-center distance calculation. This 
algorithm caches  distance bounds for reducing the 

number of distance calculation. Every time when a centroid 
moves, the cached distances are updated based on the 
triangle inequality. Another way to increase the speed of the 
k-means algorithm was proposed in [19] by observing the 
fact that in some cases, some of the clusters were not 
changing anymore between two consecutive iterations. For 
all points that are assigned to these static clusters, the 
distance calculation can be skipped. 

)(nkO

Another direction that evolved into the last years is 
represented by the online clustering that uses fuzzy logic 
[22]–[38] for classifying a dataset in a non-iterative manner. 
This kind of applications is suitable for online data that 
cannot be loaded or stored into the memory for applying 
iterative clustering algorithms. 

IV. NEW K-MEANS ALGORITHM WITH CENTROID UPDATE 

APPROACH 

The proposed version of k-means algorithm has as a main 
target maintaining the objective specified in (2) but reducing 
the number of cycles that are performed for splitting all 
records  in clusters. For achieving this objective a new 

step will be added between steps 3 and 4 of the classical 
algorithm and it has as a main objective the estimation of the 
way of how the centroids will evolve based on their 
previous values. 

ix

A. Monitoring the Centroids Evolution 

The k-means algorithm stops when the centroids 
 are not changing anymore between two 

consecutive iterations. If a centroid  is considered along 

with its value at the iterations 
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Each element of the increment vector   provides 

information about the way of how the centroid  evolved 

between two consecutive iterations of the algorithm: 
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iterations of the algorithm the thl  element of centroid 
)(

jc  has changed and did not match the one from the 

previous iteration )1( 
jc , i.e. )1()(   jljl cc . 

If the evolution of the increment of a centroid is analyzed, 
it is concluded that every element of the increment vector 
has a bigger value at the beginning. In the end, when an 
acceptable solution  is found, the values of the 

elements of the increment vector are zero. 
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B. Using the Evolution of the Centroids to Force the 
Convergence of the K-Means Algorithm Based on Centroid 
Update Approach 

The evolution of the centroids can be used for forcing the 
convergence of the k-means algorithm to a solution. 

The most convenient case when a centroid update 
approach can be applied is the case when all elements of the 
increment vector )(  of a centroid taken in absolute 

values are decreasing from the beginning of the algorithm 
until the algorithm ends, and every element of the increment 
vector keeps the same sign between consecutives cycles of 
the algorithm until the algorithm completes. 

 jc

The worst situation for applying a centroid update 
approach is the case when all elements of the increment 
vector of a centroid taken in absolute value are making an 
increasing and decreasing between consecutive steps of the 
algorithm from the beginning of the algorithm until the 
algorithm ends, and every element of the increment vector 
changes its sign between consecutives cycles of the 
algorithm. 

The centroid update approach can be applied if some of 
the following conditions are met: 

a. The last four centroids )(
jc , )1( 

jc , )2( 
jc  and 

)3( 
jc  are known for kj ...1 . 

b. The centroid update approach is applied if every 
element that has the same position index in the 
vectors )( jc , )1(  jc  and )2(  jc  has the same 

sign. 
c. The centroid update approach is applied as long as 

a stop condition is not met. 
d. The centroid update approach can be applied to one 

or multiple centroids in the same cycle of the 
algorithm. 

e. The formula used to update the value of a centroid 
)(

jc  is: 
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where  is a diagonal update 

matrix and  are parameters that have 

positive values. The updated centroid will be used in the 
next iteration (cycle) of the k-means algorithm, 
speeding up the way of how the processed record are 
assigned to centroid . 

),,...,,(diag 21 daaaM

daaa ,...,, 21

jc

f. After the centroid update approach is applied in one 
iteration, the next iteration of the k-means 
algorithm needs to run without applying the 
centroid update approach because the algorithm 
needs to evaluate the effect that the centroid update 
approach that was applied in the previous iteration 
has produced. 

C. The Stop Condition in the Centroid Update Approach 

The current version of the proposed algorithm uses one of 
the following conditions as a stop condition in the centroid 
update approach: 

I. A constant 0  multiplied with the value of the 

accepted update error 0 . This condition is 

applied in the case when the absolute values of the 
elements for each of the centroids are relative 
small. Every element of the increment vector is 
checked and if one of the elements of the increment 
vector considered as absolute value is lower than 
the updated parameter 0  multiplied by 0 , 

then the centroid update approach is not performed. 
II. A percentage report between every element of the 

increment vector and the current value of the 
element in the same position for a centroid that is 
used to calculate the relative 

increment 



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100||
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c . This condition is used 

in the case when the numeric elements of every 
centroid taken as absolute values are big. If this 
absolute ratio is lower than a predefined percent, 
for which in this paper the predefined value equals 
 , then the centroid update approach is not 
performed. 

D. Centroid Update Approach as an Algorithm 

The centroid update approach can be summarized as an 
algorithm, referred to as centroid update algorithm, with the 
following steps: 

0. The value of the accepted update error 0  and 
the value of update parameter 0  are initialized 

based on the experience of the specialist. 
1. If 3  and in previous step no centroid update 

was applied 
Then  
 Go to step 2 

       Else  
 Go to step 3 

2. Identify all centroids ,...1 ,)  that respect the 

following conditions: 

( kjj c
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 (condition II). 

If there are centroids  that respect the 

conditions a and b 

)(
jc

Then 
 Apply update approach to  using (15) )(

jc

Else 
 Go to step 3. 

3. Centroid update algorithm not applicable at this 
iteration. 

V. VALIDATION 

For validating the proposed algorithm, multiple synthetic 
datasets were used. The synthetic datasets were created 
using a random generation process, and every dataset that 
was used for validating the algorithm had different types of 
records (the number of the elements of each record was 
between 2 and 4) and different ranges for the values in the 
dataset (1) [20]. 

The platform used to process the datasets using the k-
means with centroid update algorithm is BigTim [21]. This 
platform allows running the k-means algorithm in a single 
thread or in a multithread manner. The BigTim platform 
works on Windows operating systems. Currently the 
platform runs the k-means algorithm on a single machine in 
a single or multiple thread version, but in the future it will 
be improved to support parallel computation on different 
machines. 

The machine that was used to run the k-means algorithm 
has the following hardware components: CPU Intel Core i7 
4510U dual core, 16 GB of DDR3 RAM memory at 
800MHz, 256 SSD hard drive. The hardware components 
are not very important in this study because the number of 
cycles that were executed is of interest in this paper and not 
the execution time of the k-means algorithm. 

The operating system that was used for validating the 
algorithm using the BigTim platform was Windows 10 and 
the build version was 10.0.10586. 

The parameters 10  and  were used for all 

datasets that were processed to validate the algorithm. 

0001.0

A. Synthetic Dataset with Records of Two Scalars 

The first dataset consists of 10 million records, each 
record representing a vector with two numerical elements 
( 2d ), . The 

values of  belong to 

}10000000...1|][{ 2
21  ixx T

iiix

1ix ]200,500[  and the values of  

belong to [
2ix

]500,100 . 

Four records were chosen as initial centroids, 
, , , 

, and the maximum number of iterations 

was set to . 

T]80400[)1(
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200max 
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2 c T]3000[)1(
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The diagonal update matrix  was set such 

that , and the parameter  is referred to as 

the correction factor. The classical k-means algorithm was 
applied first to this dataset, and this corresponds to the zero 
value of the diagonal update matrix, i.e.  and 

the correction factor also set to zero, . The k-

),(diag 21 aaM
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)0,0(diag
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means algorithm with centroid update approach was applied 
to the same dataset for five times using for each element of 
the diagonal matrix the values that belong to the set 

. The number of elements of the 

final clusters that were obtained by using the classical k-
means algorithm and the k-means algorithm with centroid 
update approach remained unmodified. 

}5.2,2,5.1,1,5.0{21  aa

The dependency between the number of iterations and the 
correction factor is presented in Fig. 1. The number of 
iterations was reduced for the first dataset from 43 (in the 
initial case, when the classical k-means algorithm was used) 
to 27. 

 
Figure 1. Number of iterations versus correction factor for the first dataset 
 

The values that are picked for the correction factor have a 
direct impact over the total number of centroid updates that 
are performed by the algorithm, and this affects each of the 
centroids. If the correction factor that is used by the 
algorithm has a small value, then the convergence of the 
algorithm will not be so fast and the number of the centroid 
updates that are applied to each centroid will be larger. If the 
correction factor that is used by the algorithm has a big 
value, then the convergence of the algorithm will be quicker 
and the number of the centroid updates that are applied to 
each centroid will decrease. 

The dependency between the number of centroid updates 
performed over the four centroids by the centroid update 
algorithm in some of the cycles of the k-means algorithm 
and the correction factor  (the 

correction factor equals zero, , in the case when 

the classical k-means algorithm is used) is presented in Fig. 
2. 

}5.2,2,5.1,1,5.0,0{21  aa

021  aa

 
Figure 2. Number of centroid updates versus correction factor for the first 
dataset 

 
The dependency between the improvement of the 

convergence speed measured as a percent and the correction 
factor is presented in Fig. 3. The maximum improvement 
has been obtained for the correction factor set to 2.5 which 
implies a reduction of 37.21% of the number of iterations 
performed. 

 
Figure 3. Reduction of the number of iterations measured as percentage for 
the first dataset 

B. Synthetic Dataset with Records of Three Scalars 

The second dataset consists of 10 million records, each 
record representing a vector with three numerical elements 
( 3d ), . The 

values of  belong to 

}10000000...1|][{ 3
321  ixxx T

iiiix

1ix ]200,1000[ , the values of  

belong to 
2ix

]1000,1000[  and the values of  belong to 
3ix

]1000,300[ . 

Four records were chosen as initial centroids, 
, , 

, , and 

 was set. 

T]100800800[)1(
1 c

T]500400300[)1(
3 c c

200max 

T]200100200[)1(
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4

The diagonal update matrix  was set 

such that , and the parameter  is 

again referred to as the correction factor as in the previous 
two applications. The classical k-means algorithm was 
applied first to this dataset, and this corresponds to the zero 
value of the diagonal update matrix, i.e.  and 

the correction factor also set to zero, . The k-

means algorithm with centroid update approach was applied 
to the same dataset for five times using for each element of 
the diagonal matrix the values 

),,(diag 321 aaaM

1 aa 

,0(diagM

0321  aaa

}25.

0321  aaa

.0,5.0,25.0{3

32 a

)0,0

1,1,7521  aaa . The number of 

elements of the final clusters that were obtained by using the 
classical k-means algorithm, and the k-means algorithm 
with centroid update approach remained unmodified for this 
dataset as well. 

The dependency between the number of iterations and the 
correction factor is presented in Fig. 4. The number of 
iterations was reduced for the second dataset from 38 (in the 
initial case, when the classical k-means algorithm was used) 
to 31. 

 
Figure 4. Number of iterations versus correction factor for the second 
dataset 
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The number of centroid updates that are performed over 
the centroids respect the same rule as for the first dataset: 
the number of the centroid updates decreases if the 
correction factor increases. The dependency between the 
number of centroid updates performed over the four 
centroids by the centroid update algorithm in some of the 
cycles of the algorithm and the correction factor 

 (the correction factor 

equals zero, , in the case when the classical 

k-means algorithm is used) is presented in Fig. 5. 

}25.1,1,75.0,5.0,25.0,0{321  aaa

0321  aaa

 
Figure 5. Number of centroid updates versus correction factor for the 
second dataset 
 

The dependency between the improvement of the 
convergence speed measured as a percent and the correction 
factor is presented in Fig. 6. The maximum improvement 
has been obtained for the correction factor set to 1.25 which 
implies a reduction of 18.42% or the number of iterations 
performed. 

 
Figure 6. Reduction of the number of iterations measured as percentage for 
the second dataset 

C. Synthetic Dataset with Records of Four Scalars 

The third dataset consists of 10 million records, each 
record representing a vector with four numerical elements 
( ), . 

The values of  belong to , the values of  

belong to , the values of  belong to 

 and the values of  belong to 
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Four records were chosen as initial centroids: 
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c

c

c

c

and  was set once more. 200max 

The diagonal update matrix  was set 

such that , and the parameter 

 is referred to as the correction factor. The 

classical k-means algorithm was applied first to this dataset, 
and this corresponds to the zero value of the diagonal update 
matrix, i.e. 

),,,(diag 4321 aaaaM

04 321  aaaa

4a

)0,0,0,0(diag

321 aaa 

M

4321  aaaa

.0,5.0,25.0{4 a

 and the correction factor also 

set to zero, . The k-means algorithm 

with centroid update approach was applied to the same 
dataset for four times using for each element of the diagonal 
matrix the values that belong to the set 

. For this dataset, the 

number of elements of the final clusters that were obtained 
by using the classical k-means algorithm, and the k-means 
algorithm with centroid update approach did not remain the 
same. The number of the elements from each of the clusters 
had changed for different values of the correction factor 
(

0

}1,75321  aaa

4..1, iai
) as shown in Table I. The quality of the resulting 

clusters is not affected, the numbers of elements of each of 
the final clusters obtained by using the centroid update 
algorithm are actually changed only by a maximum 
difference of three elements, and if the difference would be 
reported in percent, the number of elements of each cluster 
obtained by the k-means algorithm with centroid update 
approach differs with only  with 
respect to the number of elements of the corresponding 
clusters obtained by the classical k-means algorithm. 

%000002.0000001.0 

 
TABLE I. THE NUMBER OF ELEMENTS IN EACH CLUSTER AS FUNCTION OF 

THE CORRECTION FACTOR 
 Cluster 1 Cluster 2 Cluster 3 Cluster 4 

0ia  2376792 2119321 2557611 2946276 

25.0ia  2376792 2119321 2557611 2976276 

5.0ia  2376792 2119321 2557611 2946276 

75.0ia  2376790 2119324 2557613 2946273 

1ia  2376789 2119324 2557612 2946275 

 
The dependency between the number of iterations and the 

correction factor is presented in Fig. 7. The number of 
iterations was reduced for the third dataset from 131 (in the 
initial case, when the classical k-means algorithm was used) 
to 103. 

 
Figure 7. Number of iterations versus correction factor for the third dataset 
 

The number of centroid updates that are performed over 
the centroids respects the same rule as for the first and 
second datasets, namely: the number of centroids updates 
decreases if the correction factor increases. The dependency 
between the number of centroid updates performed over the 
four centroids by the centroid update algorithm in some of 
the cycles of the algorithm and the correction factor  
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}1,75.0,5.0,25.0{4321  aaaa

04321  aaaa

 (the correction factor 

equals zero, , in the case when the 

classical k-means algorithm is used) is presented in Fig. 8. 

 
Figure 8. Number of centroid updates versus correction factor for the third 
dataset 
 

The dependency between the improvement of the 
convergence speed measured as a percent and the correction 
factor is presented in Fig. 9. The maximum improvement 
has been obtained for the correction factor set to 1 which 
implies a reduction of 21.37% for the number of iterations 
performed. 
 

 
Figure 9. Reduction of the number of iterations measured as percentage for 
the third dataset 

VI. CONCLUSION 

This paper has proposed an approach to speed up the k-
means algorithm by reducing the number of the iterations 
that are performed until an acceptable solution is found for 
the optimization criterion. This approach has been integrated 
in a new k-means algorithm that was developed using the 
classical version of the k-means algorithm, where a 
supplementary step was introduced for estimating the 
evolution of the centroids. The additional step speeds up the 
clustering process by updating the centroids in each step of 
the algorithm if some conditions are met. 

Giving the fact that all algorithms perform well on a 
specific area, the centroid update approach inserted in the k-
means algorithm has advantages and also disadvantages. 
The main benefit of the presented approach is the fact that it 
reduces the number of steps that are needed to obtain the 
final clusters. For the three datasets that were processed 
using this algorithm the number of cycles needed for 
obtaining the final clusters was reduced in average with 
25.67% if the best scenario is considered. 

The centroid update approach is recommended to be 
applied to large datasets, where it reduces the number of 
iterations in some cases to half (comparing it with the 
classical k-means algorithm). A disadvantage of this 

algorithm is represented by the fact that if the convergence 
of the k-means algorithm is forced too much using high 
values of the diagonal update matrix  elements, then the 
final clusters will be different from the ones that are 
obtained using the classical k-means algorithm. The centroid 
update algorithm tries to provide a faster way for obtaining 
the final clusters by reducing the computation time, but at 
the same time it tries to maintain the quality of the resulting 
clusters. For validating the results the content of all the 
resulting clusters obtained with the proposed algorithm was 
checked record by record, and contains the same records 
that were contained in the clusters obtained by using the 
classical k-means approach. 

M

Future research will be dedicated to the update factor and 
the stop condition, which can be improved. Currently the 
partial update of a centroid (only some of its elements) is 
under research in order to understand the impact that will 
have over the other clusters, and this will make the approach 
to be also applicable to the databases that have 
multidimensional records with higher elements. In addition, 
the improvement of the optimization algorithms to solve the 
optimization problem (4) will be treated in terms of using 
several classical and modern optimization algorithms [22]–
[38], but modified such that to work with integer variables. 
In some of the cases when the update factor and the stop 
conditions are not wisely chosen, the results of the classical 
k-means algorithm will differ from the results that are 
obtained using the centroid update approach presented in 
this paper. 
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