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Abstract—This paper proposes a new differential particle
swarm optimization (DPSO) method for obtaining optimum
support vector machine (SVM) parameters used for electrical
fault diagnosis in radial distribution systems. Further, a
multiple-stage DPSO-SVM classifier is developed to enhance
classification accuracy in the fault diagnosis. Also, time-domain
reflectometry (TDR) method with pseudo-random binary
sequence (PRBS) excitation is utilized for generating the
dataset required for validating this proposed approach.
According to the characteristic of echo responses found in
different types of faults, 12 features are extracted as input
vectors for purposes of classification. The proposed fault
diagnosis approach is tested on a typical radial distribution
system to classify ten types of short-circuit faults accurately.
Further, to demonstrate the superiority of the proposed DPSO
algorithm, comparative studies of fault diagnosis are
performed using SVM having parameters selected using cross-
validation, GA and PSO. The overall classification accuracy
obtained for fault diagnosis is 98.5%, which shows the
effectiveness of the proposed approach.

Index Terms—fault diagnosis, particle swarm optimization,
power distribution lines, reflectometry, support vector
machines.

I. INTRODUCTION

In power systems, distribution networks deliver electrical
energy from power-generating stations through transmission
networks to consumers. Electrical faults are one of the most
common undesirable phenomena which may interrupt the
energy supply. Once an electrical fault occurs in any
distribution systems, immediate fault classification plays an
important role in post-fault analysis and power supply
restoration. The accuracy of the fault type information not
only assists the fault diagnosis system to locate the electrical
faults promptly but also to ensure power quality as well as
reliability of the system [1].

A variety of approaches have been developed to build an
effective fault classifier in electrical distribution networks.
These studies can be divided into three separate categories,
as follows: (1) impedance based method [2-3], (2) travelling
wave based method [4-5], (3) and artificial intelligence
based method [6-7]. Among them, time-domain
reflectometry (TDR) is one of the most popular methods for
finding faults in distribution networks [8-9]. However, it is
not a perfect fault classification method because of the
complex characteristics of distribution systems, such as
multi-branch topology, unbalanced operation and a widely
varying range of loads [10-11]. Therefore, it requires other
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supporting pattern recognition algorithms to get reliable
results. With the capacity of strong robust and nonlinear
mapping, artificial neuron network (ANN) has been widely
applied to solve the fault classification problem [12].
However, the shortcomings of over fitting and sinking into
the local optimal are the major drawbacks of ANN.
Compare to ANN, SVM has emerged as a powerful tool for
fault classification because of the main advantage of high
generalization and global optimization capability [13-15].

The performance of any SVM classifier is susceptible to
the regularization parameter C and kernel function
parameter such as gamma vy for the radial basis function
(RBF) [16]. Noted that the error penalty parameter C
controls the trade-off cost between the complexity of model
and training error. Hence, set small or excessive values of C
will reduce the generalization ability of SVM. A SVM
classifier can achieve the best generalization capability with
the best C wvalue. Also, the RBF kernel parameter y
represents the distribution of training sample data, so it
determines both the generalization capability and the
accuracy of classification. Thus, the selection of SVM
parameters plays an important role in improving
classification accuracy as well as training speed. In [17], the
grid search method (GSM) has been proposed to find the
optimum parameters by attempting different values and
selecting the values possessing the least testing error.
However, this method is both time-consuming and unable to
find the best parameters. To overcome these issues, various
optimization approaches have been proposed in selecting the
optimum parameters, including genetic algorithm (GA) [18-
19] a combination of the cross-entropy (CE) method and a
hill climbing type approach [20], an adaptive charged
system search (ACSS) algorithm [21], a stochastic variable
neighbourhood algorithm [22], artificial bee colony (ABC)
algorithm [23]. Recently, particle swarm optimization
(PSO)and differential evolution have also been performed as
new methods  with better performance in parameter
optimization [24]. Although these optimization algorithm
have resulted in better accuracy than non-optimizing
methods, but they often get trapped in local optima.

To escape from the local optima, a novel differential
particle swarm optimization (DPSO) algorithm is proposed
in this paper to obtain a higher quality solution in
optimization problems. Further, the DPSO-based SVM
technique is capable of selecting the most optimum
parameters in order to increase the fault classification
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accuracy in power distribution systems. Besides, the result
obtained by DPSO-SVM classifier is compared to that
obtained by training SVM with cross-validation, GA and
PSO which proves the superiority of the proposed DPSO
algorithm. For generating simulated fault data, the TDR
method with pseudo-random binary sequence (PRBS)
excitation is utilized.

The rest of the paper is organized as follows. Section 2
shows basic theory of the proposed method, including TDR,
SVM and the proposed differential particle swarm
optimization algorithm. The DPSO-based SVM classifier
and the fault diagnosis approach is developed in Section 3.
Experimental results and discussion are given in Section 4.
Finally, Section 5 presents the conclusion of the work.

II. THEORY OF THE PROPOSED APPROACH

The proposed method can be used to classify multiple
fault types on multi-branch distribution networks. First, the
TDR responses with different fault types are recorded by
using Simulink software and MATLAB Toolbox. Next, the
TDR curves along with the cross-correlation (CCR) function
between the reflected wave and the incident wave can be
used to train the SVM. Once being correctly trained, the
SVM can classify faults from the measured TDR trace.
Finally, a novel DPSO algorithm is developed to improve
the ability of Support Vector Machines in classifying the
fault types found in the distribution network.

A. Time-domain reflectometry

Time-domain reflectometry (TDR) is one of the most
common methods used for fault classification and location.
It uses a single pulse injection into a line or a cable and
records echo responses which are caused by any impedance
mismatches, including an electrical fault, tee joint or line
terminal. Therefore, these obtained TDR curves are useful to
identify the nature of any electrical fault.

Let us assume an enclosed coaxial distribution line can be
modeled by an equivalent circuit, as shown in Figure 1.

The model characteristic impedance Z, and the
propagation coefficient y for the equivalent circuit in Figure
1 are given by:

L/2dz R/2dz L2dz R/2dz

Cdz l ? Gdz

.1 .

Figure 1. Equivalent model of a power distribution line
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where o, B are the attenuation coefficient and the phase
change coefficient, respectively.
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It can be clearly seen from eqn. (2) that the TDR methods
using a single pulse echo for fault diagnosis are inherently
imprecise because of stimulus attenuation with fault distance
and phase change distortion with frequency. In addition, the
pulse width is one of the factors that affect the success rate
of the reflectometry method. In [25], an improved TDR
method, using incident pseudo-random binary sequence
(PRBS) excitation can solve these problems by using cross-
correlation (CCR) function between the reflected wave and
incident wave given by eqn. (5) for fault diagnosis on
transmission lines.

1 L
Cry (k)= 2 x(Dy(i+k) )

where C,, is the cross-correlation (CCR) function between
the reflected wave y; and the incident wave x;.

For the distribution systems, it is not easy to extract fault
information on the branched network from many reflections
in the reflectometry trace recorded. In this study, a multi-
layer SVM classifier is proposed as a supporting technique
for TDR method to identify the fault types in multi-branch
distribution networks. The reflected responses and the CCRs
between the reflected wave and the incident wave are used
as input feature vectors for the training phase.

B. Support Vector Machine

A support vector machine (SVM) was first mentioned by
Vapnik in 1995, and it has become one of the most optimal
techniques for data classification. It has a solid theoretical
foundation based on a combination between the structural
risk minimization principle and statistical machine learning
theory (SLR). The main advantages of SVM are the global
optimization and high generalization ability it possesses
with a limited number of samples. Further, it overcomes
over-fitting problems and provides sparse solutions in
comparison to existing methods such as artificial neuron
network (ANN) and refined genetic algorithm (RGA) in
fault classification.

For classification problem solutions, SVM includes
training and testing data that are comprised of many
samples. In the training phase, each sample will consist of
two attributes, called the feature and the label. The goal of
the SVM classifier is to create a model which can accurately
predict the class label of unknown data.

Let us assume that we have a set of training data, (x;,y;) ,
i=1,2...m, where x;€R, are feature vectors and y;e(-1,+1)
are label vectors. A binary classification problem can be
posed as an optimization problem in the following way;

1 m
Minimize — w3 +CD & (6)
i=1
Subjected to
Vi (wxx)+b21-&.4 20i=1..m 7
where C is the regularization parameter or the penalty

parameter; &; is the penalizing relaxation variables. Eqn. (7)
can be elaborated as:

wxP(%)+b = +1if y; =+1 ®)
wx (X)) +b > —1if y; =1 9

It is to be noted that the nonlinear classifier may be
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denoted in the input space as:
. m *
f(x)= S|gn(i§1ai x¥i x (X, Yj)+b ) (10)

where f(x) is the decision function; m is the number of

support vector, a; the Lagrangian multipliers; b is the bias,

and K(x;,y;) is the kernel function.

From eqn. (10), it can be concluded that SVM is decided
by training patterns and kernel function. Therefore, the
selection of an appropriate kernel function is important to
SVM. In this paper, the following radial basis function
(RBF) is used as the kernel function;

<(y) = e -7 [x-f")

where vy is the kernel function parameter.

From eqns. (7), (10) and (11), it is observed that the
performance of SVM is dependent on regularization
parameter C and kernel function parameter y. In order to get
optimal classification performance, these two SVM
parameters must be selected with due diligence. In this
work, DPSO-based technique is applied in order to optimize
these two parameters.

(11

C. Proposed Differential Particle Swarm Optimization

Differential particle swarm optimization (DPSO) is a
modified version of classical particle swarm optimization
(PSO). The classical PSO suffers from getting trapped into
local minima. To overcome this issue a new modification in
the classical PSO is proposed in order to obtain a higher
quality solution for addressing fault diagnosis problems
given as part of this work. The concepts of the classical PSO
and the proposed DPSO are discussed below in this section.

1) Particle Swarm Optimization

Particle swarm optimization (PSO) is inspired by social
and cooperative behavior displayed by various species to fill
their needs in multi-dimensional search space. The
algorithm is guided by personal experience (Pbest), overall
experience (Gbest) and the present movement of the
particles used to decide their next positions in the search
space. Further, the experiences are accelerated by the two
factors ¢, and c,, and by two random numbers r; and r,
generated between [0, 1], whereas the present movement is
multiplied by an inertia factor w. Mathematically, updated
positions of each particle in the search space can be
expressed using the two equation discussed below.

The initial population (swarm) of size N and dimension D
is denoted as X = [X1, Xy, ..., Xn]', where 'T' denotes the
transpose operator. Each individual (particle) X, (p =1, 2,
... N) is given as X, = [X,1, X;2,....Xpp]. Also, the initial
velocity of the population is denoted as V = [Vl,VZ,...,VN]T.
Thus, the velocity of each particle X, (p = 1, 2, ..., N) is
given as Vi, =[V,1,V,2, ..., Vppl. The index p varies from
1 to N whereas the index q varies from 1 to D.

k+1 k k k

k k
) (Gbestq - Xp,q) (12)
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x i = xK g v (13)

In eqn. (12), Pbestkp,q represents personal best q"

component of p™ individual, whereas Gbestkq represents q"

component of the best individual of population up to

iteration k. Figure 2 shows the search mechanism of PSO in
the multi-dimensional search space.

A

Figure 2. The classical PSO search mechanism of p" particle at k™ iteration

The initial Pbest of each particle is their initial position,
whereas the initial Gbest is the initial best particle position
among randomly initialized population. The Pbest and Gbest
of the swarm are updated as follows;

At iteration k

Iff (X5) < £ (Pbest} ) then Pbest" = X

else Pbest’" = Pbest (14)
Iff(X5™) < £(Gbest*) then Gbest* = X"
else Gbest*"' = Gbest* (15)

where f(-) is the objective function of minimization.

Repeat updating procedure until a stop condition is
reached, such as a pre-specified number of iteration is met.
Once terminated, the Gbest® and f(Gbest) are to be
reported as the solution of PSO technique. More details
about the basic conceptualization of PSO can be found in
[26-30].

2) Differential Particle Swarm Optimization

The proposed differential particle swarm optimization
(DPSO) considers an additional feature in the classical PSO.
The additional feature is the opinion of one of the particles
selected randomly from the swarm. The randomly-scaled
difference of the particle and its opinion-giver particle is
included in the velocity equation of the particle necessary to
escape from local minima. Mathematically, the concepts of
DPSO can be expressed as follows.

K+l K K K
Vp,g =WxVp g +¢n(Pbesty g = Xpgq)

k k
+Cyly (Gbestq -X p,q)
k k
+c3r3(x|’q —Xp’q) (16)

k+1 _ k k+1
D A (17)
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In eqn. (16), cj3 is the scaling factor and rj is a randomly-
generated random number, whereas | represents the expert
particle corresponding to target particle p (I varies from 1 to
N but | #p). Note that the introduction of three random
numbers (ry, rp, and r3) is to mimic the unpredictable
behavior of nature swarms. Generally, three random
numbers represent three separate calls, and most
implementations use these random numbers uniformly
distributed between 0 and 1. Thus, the pulling forces of
pbest and gbest would vary between 0 and 1 with the
uniform probability in the optimization procedure. Figure 3
shows the search mechanism of the proposed DPSO in a
multidimensional search space.

A

Figure 3. Proposed DPSO search mechanism of p" particle at k™ iteration in
a multi-dimensional search space

The proposed DPSO algorithm can be expressed using the
following steps:
1) Set w, cy, C, and C3 parameters
2) Initialize positions X and velocities V of each particle
of population
3) Evaluate fitness of each particle Fpk = f(ka), vp

and find the best particle index b
4) Select Pbest,* = X", vp and Ghest* = X,

5) Set iteration count k=1

6) Update velocity and position of each particle using
eqns. (16) and (17)

7) Evaluate updated fitness of each particle Fpk+l =
f(ka+1), vp and find the best particle index bl

8) Update Pbest of each particle vp

If FoK*<F ¥ then Pbest,*"* = X,**!, else Pbest,**! =
Pbest,",

9) Update Gbest of population
If Fp " <F,X then Gbest‘! < Pbesty;“** and set b
b1 else Ghest*"! < Gbest"

10)If k < Maxite then k = k+1 and go to step 6 else go to
step 11

11)Optimum solution obtained and so print the results
Gbest*

A detailed flowchart of proposed DPSO considering the
above steps is shown in Figure 4.

III. DEVELOPED DPSO BASED SVM FOR FAULT DIAGNOSIS

Since TDR methods are inherently imprecise, they should
require other supporting techniques to achieve reliable
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results. In this work, a DPSO encoding-based SVM
classifier is developed to improve the performance of the
reflectometry method used to identify the fault types in the
radial distribution system. The overall structure of SVM
classifier is shown in Figure 5 in which DPSO is performed
to optimize these two parameters (C and y) of the SVM
classifier. For this, the data acquisition for data
preprocessing is mentioned first.

Set DPSO parameters |

l

Initialize positions and velocity of each particle of population

l

Evaluate initial fitness of each particle and select Pbest and Gbest

l

Set iteration count k = 1

l

Update velocity and position of each particle

A

Evaluate fitness of each particle and update Pbest and Gbest

Yes
k=k+1

No

Print optimum values as Gbest

Figure 4. Flowchart of the proposed DPSO

Data acquisition

A 4 A

Training Dataset

!

DPSO based selection of p

!

’ Training of SVM

Is SVM training complete?

Is DPSO based selecti

Testing Dataset

Fi

NO

Trained SVM classifier with selected
parameters

!

’ SVM output ‘

!

Fault diagnosis ‘

Figure 5. Flowchart of the proposed approach
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A. Data acquisition

To obtain a suitable dataset for classification process, a
PRBS disturbance is injected into the distribution feeder
under test. Once a fault occurs in the distribution feeder, it
causes to produce a reflected signal that travels between the
fault location and the substation. These reflected responses
are recorded and then they are cross-correlated with the
incident impulse by eqn. (4) in order to reduce the impact of
noise as well as to surmount amplitude attenuation.

It is worth noting that, for each of the fault type specified,
the magnitudes of the feedback waves are different at the
shortage time; as a result, the peaks of the CCR are not
found to be the same.

Based on the above analysis, the reflected voltage and
current magnitudes along with the peaks of CCR between
reflected and incident waves are chosen as the input features
of the SVM classifier, and the fault types are chosen as the
output features. Therefore, the total number of derived
features is 12 and comprises a feature vector V=[v,
Vo...vio]". The corresponding meanings of the feature
vector are expressed as follows:

a) v,-vg are the reflected voltage values (v,, vy, V) and
reflected current values (i,, iy, ic).

b) v;-vy, are the peaks of CCR functions between
reflected and incident waves of voltage and current.

B. SVM parameter optimization and the proposed fault
diagnosis approach

The performance of SVM is susceptible to the kernel
function parameter y and the regularization parameter C, so
these parameters must be carefully selected to increase the
classification accuracy.

In this paper, DPSO technique is used to optimize the
parameters of the SVM classifier. Performance is measured
according to the classification accuracy on unseen testing
data. In the learning stage, the DPSO-based encoding SVM
model is trained based on structural risk minimization to
minimize the training error. While training error
improvement occurs, penalty parameter C and kernel
function parameter g are regulated by means of DPSO. The
regulated parameters with minimal error are reported as the
most suitable parameters. As a result, the optimal
parameters (C and vy) are to be obtained. Once the optimized
parameters of the SVM are obtained, then it is used for the
retraining of the SVM model. After the training phase, the
SVM classifier is ready to identify new samples in the
testing phase. The testing set is also chosen by means of the
above parameter selection from the original dataset obtained
by the TDR responses.

As such, two different DPSO-based SVM fault diagnosis
approaches are proposed. The two approaches are named as
follows;

a) Single-stage DPSO-SVM

b) Multiple-stage DPSO-SVM

In single-stage DPSO-SVM, the fault dataset are given to
the optimized SVM classifier which classifies the fault types
directly into any of the ten types of faults discussed earlier.
As the fault types can be directly identified using single
SVM structure, it is termed as single-stage DPSO-SVM.
The overall structure of single-stage DPSO-SVM is shown
in Figure 6.

Volume 17, Number 3, 2017

In multiple-stage DPSO-SVM, the fault dataset are given
to the optimized SVM classifier which initially classifies the
fault types into four possible fault groups (LG, LL, LLG,
LLL) in the first stage and then each fault group is again
classified into any fault type of that group in the second
stage. Thus, in the first stage, fault groups are identified and
then each group is classified into their corresponding fault
types. So, in the first stage, four groups are identified by
SVMI1 whereas in the second stage the first three groups are
classified into their corresponding fault types by use of
SVM2, SVM3 and SVM4 respectively. The fourth group is
to be left alone as it is already a fault type (ABC fault). As
in this case, the fault type can only be identified using a
structure in two stages, so it is termed as multiple-stage
DPSO-SVM. The overall structure of multiple-stage DPSO-
SVM classifier is shown in Figure 7.

AG
BG
CG
AB
Testing Optimum AC
" dataset [ | DPSOsVM|[] | [BC
ABG
ACG
Reflected data BCG
acquisition or [ ABC
dataset
Training | DPSO-SVM |
—> — Parameters
dataset o
| optimization |

Figure 6. The overall structure of the proposed single-stage DPSO-SVM
classifier for fault diagnosis

IV. TEST RESULTS AND DISCUSSION

The proposed approach has been tested by means of
classifying faults on a typical two-branch radial distribution
system, as shown in Figure 8.

The sample system consists of a radial primary feeder,
two distribution transformers and several loads. Two
distribution transformers in the sample system are used to
reduce the voltage on the distribution line to the level of
customers that are distributed along a feeder. Their ratings
are 500 kVA, 0.22kV and j1.89%, and their phases are
connected as delta and grounded wye connections,
respectively. These distribution transformers are operated in
a full-load condition with 0.8 lagging power factor. The
main feeder and laterals are constructed by means of
overhead lines whose impedances are shown in Table 1.

TABLE I. PARAMETERS OF DISTRIBUTION LINE IN THE SAMPLE SYSTEM

Positive- Positive- and zero- | Positive- and zero-
and zero-
sequence sequence
Items sequence . ;
resistances ind :j%(ances capia:c/:(tances
(Ohms/km) (H/km) (F/km)
Feeder | [0.247 0.309] | [1.321e-3 2.473e-3] [5.398e-9 4.656e-9]
Lateral | [0.471 0.561] | [1.538e-3 2.692e-3] [9.882e-9 7.106e-9]

A. Training and testing samples

The proposed algorithm is implemented on a dataset
obtained by TDR method using PRBS exciation (as
mentioned in subsection II.A). In the work, a 127 bit PRBS
disturbance with frequency f =IMHz is injected into the
distribution feeder under test. The reflected responses are
caused by any electrical fault on feeder and laterals and then
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they are cross-correlated with the incident impulse. Thus,
each sample has 12 features extracted from the reflected
signals and CCRs between reflected and incident waves. For
this, ten types of faults created at distances of 10, 20, 30, . . .
, 100% of the first lateral length. The fault resistance values
are varied over the values 1, 5, 20, 30 and 60Q during the
simulation. As such, the samples are generated for 10 types
of faults on the first lateral over 100 locations with varying 5
impedance values. For each type of fault, the number of
samples generated is 100 x 5 =500 patterns.

Training and testing sets are randomly selected from this
dataset, where 4000 and 1000 are used for training and
dataset can be found at

testing

respectively. This

Volume 17, Number 3, 2017
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Table II only gives a few of the dataset created by
simulation of all ten types of short circuit faults on the first
lateral, located at distances of 3km and 4km from the
substation for desire of brevity.

The obtained dataset is inputted into a multi-class SVM
for purpose of fault classification (as expressed in
subsection II.B). Then, the proposed DPSO algorithm is
applied to optimize the SVM parameters in order to increase
the classification accuracy.

For this, parameter selection of DPSO algorithm plays an
important role in achieving the best performance of the
algorithm.

Reflected data
acquisition or
dataset

AG
BG
Optimum
r DPSO-SVM2
LG - AB
. . Optimum
Testing .| Optimum LL > DPSO-SVM3 > AC
dataset “Ippso-svMmi[| 7| [LLG
7y ABC L Optimum
DPSO-SVM4 ABG
ACG
BCG
- | DPSO-SVMI |
Training X
{ Parameters |
dataset | o
|_optimization |
Figure 7. The overall structure of the proposed multiple-stage DPSO-SVM classifier for fault diagnosis
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Figure 8. A two-branched distribution line diagram of the sample system
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B. Parameter selection for the proposed DPSO-SVM
classifier

In the following procedure is adopted to obtain the best

Volume 17, Number 3, 2017

parameters of the proposed DPSO-based algorithm for
optimizing SVM parameters. For different population sizes
(pop =10, 20 and 30).

TABLE II. DATASET OF TEN TYPES OF FAULT LOCATED AT DISTANCES OF 3KM AND 4KM FROM THE SUBSTATION

A Vp Ve ia in CC-Vq CC-Vp CC-V, CC-i, CC-ip CC-i¢

AG 1.9197 -0.3071 0.1245 4.9815 -0.7968 0.3232 0.5941 -0.0950 0.0385 0.0502 -0.0080 0.0033
0.6990 -0.1118 0.0453 1.5998 -0.2559 0.1038 3.5687 -0.5708 0.2315 3.0765 -0.4921 0.1996

BG 1.4521 0.7277 0.5122 3.7681 1.8884 1.3290 0.4494 0.2252 0.1585 0.0380 0.0190 0.0134
0.5287 0.2650 0.1865 1.2101 0.6064 0.4268 2.6995 1.3528 0.9521 2.3271 1.1662 0.8208

cG 0.4648 4.5783 3.1718 0.0857 0.8445 0.5851 0.0275 0.2711 0.1878 0.0237 0.2331 0.1615
0.0880 0.8668 0.6005 0.2284 2.2492 1.5582 0.0272 0.2683 0.1858 0.0023 0.0227 0.0157

BCG -8.2016 9.6684 16.2648 | -2.5267 2.9785 5.0107 -0.1137 0.1340 0.2254 -0.1137 0.1340 0.2254
-4.1309 4.8697 8.1921 -0.7620 0.8983 1.5112 -0.2446 0.2884 0.4852 -0.2104 0.2480 0.4172

ACG -1.2835 2.5576 4.8025 -0.9796 1.9519 3.6650 -1.6907 3.3688 6.3257 -1.4240 2.8375 5.3279
-1.4241 1.7834 3.8278 -1.0868 1.3610 2.9212 -1.8757 2.3491 5.0419 -1.5799 1.9786 4.2466

ABG -1.1327 0.0679 2.6912 -2.9393 0.1763 6.9832 -0.3506 0.0210 0.8329 -0.0296 0.0018 0.0704
-2.0970 0.1258 4.9821 -1.6003 0.0960 3.8021 -2.7621 0.1657 6.5623 -2.3265 0.1395 5.5272

AB -7.4589 -4.8688 17.7206 | -1.3759 -0.8981 3.2688 -0.4417 -0.2883 1.0495 -0.3798 -0.2479 0.9024
-1.4121 -0.9218 3.3549 -3.6643 -2.3918 8.7055 -0.4370 -0.2853 1.0383 -0.0369 -0.0241 0.0877

AC -1.0143 -1.2113 7.8915 -0.7741 -0.9244 6.0225 -1.3360 -1.5955 10.3945 -1.1253 -1.3439 8.7550
-1.5121 -7.9329 | 40.5259 | -0.4658 -2.4439 12.4847 | -0.0210 -0.1099 0.5616 -0.0210 -0.1099 0.5616

BC 2.0444 -4.2356 | 23.5915 0.3771 -0.7813 4.3518 0.1211 -0.2508 1.3972 0.1041 -0.2157 1.2013
0.1409 -0.2920 1.6262 0.3225 -0.6682 3.7220 0.7195 -1.4907 8.3028 0.6203 -1.2851 7.1576

Legends:

AG, BG and CG are single phase to ground faults;
BCG, ACG and ABG are double line to ground faults;
AB, AC and BC are line to line faults; ABC is three phase fault.

Va, Vb, Ve, 1a, 1p and i, are magnitudes of the reflected voltage and current, respectively.
CC-V,, CC-Vp, CC-V,, CC-1,, CC-1, and cc-i, are CCR between reflected signal and incident signal, respectively.

TABLE III. TOP FIVE LEAST VALUES OF MSE FOR DIFFERENT VALUES OF VARIOUS PARAMETERS OF THE PROPOSED DPSO-SVM

. Top five Pop =10 Pop =20 Pop =30

Algorithm parameters cl 2 3 | MSE | el 2 3 | MSE | ol 2 3| MSE
1 1.5 1.5 0.04 0.035 1.5 1 0.03 0.035 0.5 1.5 0.01 0.035

2 1.5 2 0.01 0.035 1.5 1.5 0.01 0.035 0.5 1.5 0.05 0.035

DPSO 3 1.5 2.5 0.02 0.035 1.5 1.5 0.04 0.035 0.5 2 0.04 0.035

4 2 15 | 001 ] 0035] 15 2 0.02 | 0.035 1 1.5 | 0.05 | 0.035

5 2 2 0.04 0.035 1.5 2.5 0.03 0.035 1 2 0.03 0.035

a. Inertia weight is taken in between 0.1 to 0.5

(randomly at each iteration);

b. Acceleration factors (c1 and c2) are varied from 0.5
to 2.5 (in step of 0.5)

c. Scaling factor c3 is varied from 0.01 to 0.05 (in step
of 0.1)

d. Maximum iteration is set to 1000.

A summary of the parameter selection results for DPSO is
given in Table III which five sets of important parameters
and the corresponding values of mean square error (MSE)
are included in the table for desire of brevity.

From Table III, it is clear that the best set of parameters
for the DPSO algorithm are ¢l = 1.5, ¢2 = 1.5, ¢3 = 0.04 and
population size pop = 10. Although, the values of MSE for
the pop = 20 and pop = 30 are the same with different
parametric values than that of pop = 10. However, the
parameters corresponding to pop = 10 are selected since
they take less execution time because of the smaller
population size. It is to be noted that similar testing has been
performed in selecting the acceleration coefficients c1 and
c¢2 for PSO and crossover rate (CR) and the mutation
fraction (MF) for GA. The best values of c1 and c2 for PSO
have been obtained as 1.5 and 2.5, whereas the best values
of CR and MF for GA have been obtained as 0.8 and 0.01,
respectively.

Furthermore, the 5-fold cross-validation approach has
been considered to select optimum SVM parameters for
SVM classifier.

C. Experimental results

In this subsection, results of the two types of DPSO-SVM
fault diagnosis approaches discussed in Section 3 are given.
Further, to show the effectiveness of the proposed DPSO-
trained SVM, the results obtained by cross-validation, PSO
and GA trained SVM have been compared.

For the single-stage model, the results of the fault
classification made for the sample system using the SVM
classifier whose parameters are optimized by cross-
validation, PSO, GA and the proposed DPSO techniques are

given in Table I'V.
TABLE IV. RESULTS OF SINGLE-STAGE SVM CLASSIFIER USING VARIOUS
OPTIMIZATION TECHNIQUES

Classification

Classifier C Y accuracy (%)

Cross-validation-

SVM 181.0193 1.1212 93.00
PSO-SVM 97.2221 8.2346 95.08
GA-SVM 3.4218 3.1067 96.42

DPSO-SVM 2.0817 42174 96.50

As can be seen from Table IV, the optimum values of C
and y of the SVM classifier are 2.0817 and 4.2174 with
testing data accuracy of 96.50% by means of the proposed
DPSO. Further, DPSO results in the highest accuracy claim
over any other SVM parameter optimizers. The accuracy
rates of Cross validation-SVM, PSO-SVM and GA-SVM
are 93%, 95.08% and 96.42%, respectively.

The convergence characteristic of the proposed DPSO is
shown in Figure 9. From this figure, it can be observed that
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MSE beyond 35 iterations is non-decreasing and thus the
optimized SVM parameters can be obtained much sooner
than the total training time taken (159.31 sec).
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Figure 9. Convergence characteristic of the proposed DPSO in the multiple-
stage SVM classifier

It is observed from Table IV that the proposed DPSO
gives the highest classification accuracy for fault diagnosis.
Hence, for multiple-stage model (Figure 6), only DPSO has
been used to optimize parameters of SVMs. The optimized
values of the SVM parameters of the proposed multiple-

stage DPSO-SVM are given in Table V.
TABLE V. RESULTS OF MULTIPLE-STAGE SVM CLASSIFIER USING THE

PROPOSED DPSO
- Classification
Classifier C ¥ accuracy (%)
SVM1 1.0 5.6926 99.08
SVM2 42.41 0.0004 99.17
SVM3 77.97 0.0071 97.25
SVM4 42.61 0.0022 98.06
Overall accuracy 98.50

From Table V, it is observed that the classification
accuracy of the proposed multiple-stage DPSO-SVM
classifier in the first stage is 99.08%; whereas, in the second
stage which possesses three SVMs, the accuracy rates are
99.17%, 97.25% and 98.06%, respectively. In multiple-stage
DPSO-SVM classifiers, the overall classification accuracy is
98.50% which is significantly higher than what is obtainable
with a single-stage DPSO-SVM classifier.
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Figure 10. Convergence characteristic of the proposed DPSO in the
multiple-stage SVM classifier

The convergence characteristic of the proposed multiple-
stage DPSO-SVM classifier is shown in Figure 10. As can
be seen from Figure 10, there are four different convergence
characteristics of four SVM classifiers which have been
trained independently. MSE beyond 15 iterations are non-
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decreasing in all these four curves whereas it takes about 35
iterations in single-stage DPSO-SVM classifier. Hence, the
training time of the multiple-stage DPSO-SVM classifier is
much faster than that of the single-stage DPSO-SVM
classifier.

From these studies, it is clear that the proposed DPSO
algorithm offers better SVM parameter optimization than
with cross-validation, PSO and GA. Further, the proposed
multiple-stage SVM classifier is better than any single-stage
SVM classifier.

D. Effects of the results by varying training and testing
datasets

In this subsection, the effects of different ration of diving
training and testing dataset on the classification accuracy
have been studied. Under this study, both the single-stage
DPSO-SVM and the multiple-stage DPSO-SVM classifier
have been utilized and four different training and testing
dataset divisions have been considered for 5000 samples of
dataset used in this paper. Under this, entire dataset have
been divided into four different ratios of training and testing
data samples. These four dataset division ratios from
training to testing (training:testing) are as follows:

a) 60:40

b) 70:30

¢) 80:20

d) 90:10.

The proposed DPSO-SVM classifiers have been applied
to test the classification performance of these four dataset
division.

Table VI and Table VII show the classification accuracy
as well as the optimum SVM parameters obtained using the
proposed single-stage DPSO-SVM and multiple-stage

DPSO-SVM classifiers, respectively.
TABLE VI. RESULTS OF SINGLE-STAGE DPSO-SVM CLASSIFIER USING
VARIOUS DATASET DIVISION PATTERNS

Dataset division c Classification
(Training : testing) v accuracy (%)
60:40 100 1.3938 95.66
70:30 52.5271 1.1277 96.08
80:20 100 1.3468 96.05
90:10 47.4570 1.0864 96.42

From Table VI, it is observed that the performance of the
single-stage DPSO-SVM classifier gives the best result in
the training and testing dataset division of 90:10 ratio
whereas from Table VII, it is observed that for the multiple-
stage DPSO-SVM classifier, the performance is the best in
the training and testing dataset division of 80:20 ratio. In
other words, a higher training dataset gives better
classification accuracy versus that with a lower dataset.
Further, from Table VI and Table VII, it can be concluded
that the multiple-stage DPSO-SVM classifier gives better
classification accuracy than that obtained by the single-stage
DPSO-SVM classifier.

The optimum convergence characteristics of the proposed
single-stage DPSO-SVM and multiple-stage DPSO-SVM
classifiers have been shown in Figure 11 and Figure 12,
respectively. Subfigures of these two figures show the
convergence characteristics of the proposed algorithms



[Downloaded from ww

Advances in Electrical and Computer Engineering

corresponding to different training and testing dataset
divisions. From Figure 11 and Figure 12, it is observed that
MSE is the lowest in the case of dataset division 90:10
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whereas, the average MSE is the lowest in the case of
dataset division of 80:20. Thus, the observations made from
tabulated results are supported by the characteristics.

TABLE VII. RESULTS OF MULTIPLE-STAGE DPSO-SVM CLASSIFIER USING VARIOUS DATASET DIVISION PATTERNS

Dataset SVM1 SVM2 SVM3 SVM4
division Classification
(Training : c y C ¥ c y C Y accuracy (%)
testing)
60:40 7.9849 5 47.2832 0.0057 4.6708 0.0763 100 0.0053 97.46
70:30 100 1.7848 62.0977 0.0015 92.7704 0.0091 1.0311 0.0032 97.89
80:20 16.4415 1.7493 21.4799 0.0034 53.1976 0.0116 52.9386 0.0583 98.42
90:10 56.4793 0.7384 4.8591 0 69.0436 0.0109 40.8192 0.0685 98.07
0.055 T T T T T T T Ratio 60:40
- RatIO 60.40 008 T T T T T T T SVM1
2 = o=
o o
| o -
© [0) o
g S " —¥— SVM4
= 0.045} a T 0.04% i
=
s g
= 0.02t+ B
004 Il Il Il Il Il Il Il 5
0 5 10 15 20 25 30 35 40 L L
No of iteration 5 10 15 20 25 30 35 40
No of iteration
0.05 T : : : : Ratio 70:30
0.08 T T T T T T T
. — Ratio 70:30
5 _ ——
® 0,045/ 1 2500 e SVM2
o ¥ & 0.06) H
g o —&— SVM3
g S —%— SVM4
c 004} J g 0.04} V\\QA\ i
s c
= 8
| | | | | = 0021 b
0 5 10 15 20 25 30 l ‘ ‘
No of iteration 5 10 15 29 ] 25 30 35 40
No of iteration
0.05 T T T T T Ratio 80:20
5 | Ratio 80:20] e T T e
£ 1<
o 0.045f g 5 0.06f ——— SVM2 ]
g o —4— SVM3
g el —¥— SVM4
c 0.04f | 3 0.04f 1
© c
s g
= 0.02f B
I I I I I o ‘
0 5 10 1 5 . 20 25 30 5 10 15 20 25 30 35 40
No of iteration . .
No of iteration
Ratio 90:10
o ' ' ' ' ' : ——] 0.08 : : : , , , ,
. i ST
£ 0.08f 1 e ) —— SVM2 |
& 0.06
< o —&— SVM3
2 0.06 - 7 S DAY —V— SVM4
o & 004} *\ :
c
S 0.04 B c
g 3 X
= 0.02t+ B
0.02 . : L ! v ! ! o o o o o o o o e o e s o s ! !
5 10 15 20 25 30 35 40

No of iteration
Figure 11. Convergence characteristic of the proposed single-stage DPSO-

SVM classifier for different dataset division patterns

V. CONCLUSION

In this paper, a differential particle swarm optimization
(DPSO) algorithm is proposed to improve the performance
of SVM for the purpose of fault classification in the radial
distribution network. The DPSO-based technique can
optimize the parameters of SVM classifier in order to
increase the classification accuracy. Further, a multiple-

5 10 15 20 25 30 35 40
No of iteration
Figure 12. Convergence characteristic of the proposed multiple-stage

DPSO-SVM classifier for different dataset division patterns

stage SVM classifier is introduced for purposes of better
fault classification. Also, time-domain reflectometry (TDR)
with pseudo-random binary sequence (PRBS) stimulus has
been utilized for generating a reliable fault dataset. The
proposed approach is tested successfully to identify ten
types of electrical short-circuit fault in a typical radial
distribution network. Then, the results have been compared
with diagnosis results obtained from different methods, such
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as cross-validation, PSO and GA. The overall accuracy
obtained in classifying fault types is 98.5%, which
demonstrates the effectiveness of the proposed fault
diagnosis approach.
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