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Abstract—This paper proposes a new differential particle 

swarm optimization (DPSO) method for obtaining optimum 
support vector machine (SVM) parameters used for electrical 
fault diagnosis in radial distribution systems. Further, a 
multiple-stage DPSO-SVM classifier is developed to enhance 
classification accuracy in the fault diagnosis. Also, time-domain 
reflectometry (TDR) method with pseudo-random binary 
sequence (PRBS) excitation is utilized for generating the 
dataset required for validating this proposed approach. 
According to the characteristic of echo responses found in 
different types of faults, 12 features are extracted as input 
vectors for purposes of classification. The proposed fault 
diagnosis approach is tested on a typical radial distribution 
system to classify ten types of short-circuit faults accurately. 
Further, to demonstrate the superiority of the proposed DPSO 
algorithm, comparative studies of fault diagnosis are 
performed using SVM having parameters selected using cross-
validation, GA and PSO. The overall classification accuracy 
obtained for fault diagnosis is 98.5%, which shows the 
effectiveness of the proposed approach. 
 

Index Terms—fault diagnosis, particle swarm optimization, 
power distribution lines, reflectometry, support vector 
machines. 

I. INTRODUCTION 

In power systems, distribution networks deliver electrical 
energy from power-generating stations through transmission 
networks to consumers. Electrical faults are one of the most 
common undesirable phenomena which may interrupt the 
energy supply. Once an electrical fault occurs in any 
distribution systems, immediate fault classification plays an 
important role in post-fault analysis and power supply 
restoration. The accuracy of the fault type information not 
only assists the fault diagnosis system to locate the electrical 
faults promptly but also to ensure power quality as well as 
reliability of the system [1].  

A variety of approaches have been developed to build an 
effective fault classifier in electrical distribution networks. 
These studies can be divided into three separate categories, 
as follows: (1) impedance based method [2-3], (2) travelling 
wave based method [4-5], (3) and artificial intelligence 
based method [6-7]. Among them, time-domain 
reflectometry (TDR) is one of the most popular methods for 
finding faults in distribution networks [8-9]. However, it is 
not a perfect fault classification method because of the 
complex characteristics of distribution systems, such as 
multi-branch topology, unbalanced operation and a widely 
varying range of loads [10-11]. Therefore, it requires other 

supporting pattern recognition algorithms to get reliable 
results. With the capacity of strong robust and nonlinear 
mapping, artificial neuron network (ANN) has been widely 
applied to solve the fault classification problem [12]. 
However, the shortcomings of over fitting and sinking into 
the local optimal are the major drawbacks of ANN. 
Compare to ANN, SVM has emerged as a powerful tool for 
fault classification because of the main advantage of high 
generalization and global optimization capability [13-15]. 

 The performance of any SVM classifier is susceptible to 
the regularization parameter C and kernel function 
parameter such as gamma γ for the radial basis function 
(RBF) [16]. Noted that the error penalty parameter C 
controls the trade-off cost between the complexity of model 
and training error. Hence, set small or excessive values of C 
will reduce the generalization ability of SVM. A SVM 
classifier can achieve the best generalization capability with 
the best C value. Also, the RBF kernel parameter  
represents the distribution of training sample data, so it  
determines both the generalization capability and the 
accuracy of classification. Thus, the selection of SVM 
parameters plays an important role in improving  
classification accuracy as well as training speed. In [17], the 
grid search method (GSM) has been proposed to find the 
optimum parameters by attempting different values and 
selecting the values possessing the least testing error. 
However, this method is both time-consuming and unable to 
find the best parameters. To overcome these issues, various 
optimization approaches have been proposed in selecting the 
optimum parameters, including genetic algorithm (GA) [18-
19] a combination of the cross-entropy (CE) method and a 
hill climbing type approach [20], an adaptive charged 
system search (ACSS) algorithm [21], a stochastic variable 
neighbourhood algorithm [22], artificial bee colony (ABC) 
algorithm [23]. Recently, particle swarm optimization 
(PSO)and differential evolution have also been performed as 
new methods  with better performance in parameter 
optimization [24]. Although these optimization algorithm 
have resulted in better accuracy than non-optimizing 
methods, but they often get trapped in local optima.  

To escape from the local optima, a novel differential 
particle swarm optimization (DPSO) algorithm is proposed 
in this paper to obtain a higher quality solution in 
optimization problems. Further, the DPSO-based SVM 
technique is capable of selecting the most optimum 
parameters in order to increase the fault classification 
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accuracy in power distribution systems. Besides, the result 
obtained by DPSO-SVM classifier is compared to that 
obtained by training SVM with cross-validation, GA and 
PSO which proves the superiority of the proposed DPSO 
algorithm. For generating simulated fault data, the TDR 
method with pseudo-random binary sequence (PRBS) 
excitation is utilized.  

The rest of the paper is organized as follows. Section 2 
shows basic theory of the proposed method, including TDR, 
SVM and the proposed differential particle swarm 
optimization algorithm. The DPSO-based SVM classifier 
and the fault diagnosis approach is developed in Section 3. 
Experimental results and discussion are given in Section 4. 
Finally, Section 5 presents the conclusion of the work. 

II. THEORY OF THE PROPOSED APPROACH 

The proposed method can be used to classify multiple 
fault types on multi-branch distribution networks. First, the 
TDR responses with different fault types are recorded by 
using Simulink software and MATLAB Toolbox. Next, the 
TDR curves along with the cross-correlation (CCR) function 
between the reflected wave and the incident wave can be 
used to train the SVM. Once being correctly trained, the 
SVM can classify faults from the measured TDR trace. 
Finally, a novel DPSO algorithm is developed to improve 
the ability of Support Vector Machines in classifying the 
fault types found in the distribution network.  

A. Time-domain reflectometry 

Time-domain reflectometry (TDR) is one of the most 
common methods used for fault classification and location. 
It uses a single pulse injection into a line or a cable and 
records echo responses which are caused by any impedance 
mismatches, including an electrical fault, tee joint or line 
terminal. Therefore, these obtained TDR curves are useful to 
identify the nature of any electrical fault.  

Let us assume an enclosed coaxial distribution line can be 
modeled by an equivalent circuit, as shown in Figure 1.  

The model characteristic impedance Z0 and the 
propagation coefficient  for the equivalent circuit in Figure 
1 are given by: 

 
Figure 1. Equivalent model of a power distribution line 
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where α, β are the attenuation coefficient and the phase 

It can be clearly seen from eqn

change coefficient, respectively. 

. (2) that the TDR methods 
using a single pulse echo for fault diagnosis are inherently 
imprecise because of stimulus attenuation with fault distance 
and phase change distortion with frequency. In addition, the 
pulse width is one of the factors that affect the success rate 
of the reflectometry method. In [25], an improved TDR 
method, using incident pseudo-random binary sequence 
(PRBS) excitation can solve these problems by using cross-
correlation (CCR) function between the reflected wave and 
incident wave given by eqn. (5) for fault diagnosis on 
transmission lines. 

1
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where Cxy is the cross-correlation (CCR) function between 

 extract fault 
in

(SVM) was first mentioned by 
V

 problem solutions, SVM includes 
tra

ning data, (xi,yi) , 
i=

Minimize 

the reflected wave yi and the incident wave xi. 
For the distribution systems, it is not easy to
formation on the branched network from many reflections 

in the reflectometry trace recorded. In this study, a multi-
layer SVM classifier is proposed as a supporting technique 
for TDR method to identify the fault types in multi-branch 
distribution networks. The reflected responses and the CCRs 
between the reflected wave and the incident wave are used 
as input feature vectors for the training phase. 

B. Support Vector Machine 

A support vector machine 
apnik in 1995, and it has become one of the most optimal 

techniques for data classification. It has a solid theoretical 
foundation based on a combination between the structural 
risk minimization principle and statistical machine learning 
theory (SLR). The main advantages of SVM are the global 
optimization and high generalization ability it possesses 
with a limited number of samples. Further, it overcomes 
over-fitting problems and provides sparse solutions in 
comparison to existing methods such as artificial neuron 
network (ANN) and refined genetic algorithm (RGA) in 
fault classification. 

For classification
ining and testing data that are comprised of many 

samples. In the training phase, each sample will consist of 
two attributes, called the feature and the label. The goal of 
the SVM classifier is to create a model which can accurately 
predict the class label of unknown data.  

Let us assume that we have a set of trai
1,2…m, where xiRn are feature vectors and yi(-1,+1) 

are label vectors. A binary classification problem can be 
posed as an optimization problem in the following way; 
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where C is the regularization parameter or the pen

1

alty 
parameter;  i is the penalizing relaxation variables. Eqn. (7) 
can be elaborated as: 
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It is to be noted that the non ear classifier maylin  be 
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denoted in the input space as: 
m * *( ) ( ( , ) )

1
f x sign y x y bi i i ii
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

   (10) 

where f(x) is the decision function; m is the number 

support vector, e Lagrangian multipliers; b* is the bias, 

and K(xi,yi) is ernel function. 
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of 

αi th

the k
From eqn. (10), it can be conclu
 training patterns and kernel function. Therefore, the 

selection of an appropriate kernel function is important to 
SVM. In this paper, the following radial basis function 
(RBF) is used as the kernel function; 
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From eqns. (7), (10) and (11), it is obser
rformance of SVM is dependent on regularization 

parameter C and kernel function parameter . In order to get 
optimal classification performance, these two SVM 
parameters must be selected with due diligence. In this 
work, DPSO-based technique is applied in order to optimize 
these two parameters. 

C. Proposed Differentia

Differential particle swarm optimization (DPSO) i
odified version of classical particle swarm optimization 

(PSO). The classical PSO suffers from getting trapped into 
local minima. To overcome this issue a new modification in 
the classical PSO is proposed in order to obtain a higher 
quality solution for addressing fault diagnosis problems 
given as part of this work. The concepts of the classical PSO 
and the proposed DPSO are discussed below in this section.  

1) Particle Swarm Optimization 

Particle swarm optimization (
d cooperative behavior displayed by various species to fill 

their needs in multi-dimensional search space. The 
algorithm is guided by personal experience (Pbest), overall 
experience (Gbest) and the present movement of the 
particles used to decide their next positions in the search 
space. Further, the experiences are accelerated by the two 
factors c1 and c2, and by two random numbers r1 and r2 
generated between [0, 1], whereas the present movement is 
multiplied by an inertia factor w. Mathematically, updated 
positions of each particle in the search space can be 
expressed using the two equation discussed below. 

The initial population (swarm) of size N and dim
 denoted as X = [X1, X2, ..., XN]T, where 'T' denotes the 

transpose operator. Each individual (particle) Xp (p = 1, 2, 
..., N) is given as Xp  = [Xp,1, Xp,2,...,Xp,D]. Also, the initial 
velocity of the population is denoted as V = [V1,V2,...,VN]T. 
Thus, the velocity of each particle Xp (p = 1, 2, ..., N) is 
given as Vp = [Vp,1,Vp,2, ..., Vp,D]. The index p varies from 
1 to N whereas the index q varies from 1 to D. 
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In eqn. (12), Pbest p,q th

component of pth individual
co

represents personal best q  
, whereas Gbestk

q represents qth 
mponent of the best individual of population up to 

iteration k. Figure 2 shows the search mechanism of PSO in 
the multi-dimensional search space. 

  

 
th thFigure 2. The classical PSO search mechanism of p  particle at k  iteration 
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here f  the ob nction . 
Repeat up e u ndition is 
ached ie mber of iteration is met. 

Once terminated, the Gbestk and f(Gbestk) are
ported as the solution of PSO technique. More details 

about the basic conceptualization of PSO can be found in 
[26-30]. 

2) Differential Particle Swarm Optimization 

The proposed differential particle swarm optimization 
(DPSO) con
The additional feature is the opinion of one of t

lected randomly from the swarm. The randomly-scaled 
difference of the particle and its opinion-giver particle is 
included in the velocity equation of the particle necessary to 
escape from local minima. Mathematically, the concepts of 
DPSO can be expressed as follows. 
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In eqn. (16), c3 is the scaling factor and r3

ber, whereas l represents the
particle corresponding to target particle p (l varies from 1 to 
N but l p). Note that t
nu

t

 is a randomly-
generated random num  expert 

  he introduction of three random 
mbers (r1, r2, and r3) is to mimic the unpredictable 

behavior of nature swarms. Generally, three random 
numbers represent three separate calls, and most 
implemen ations use these random numbers uniformly 
distributed between 0 and 1. Thus, the pulling forces of 
pbest and gbest would vary between 0 and 1 with the 
uniform probability in the optimization procedure. Figure 3 
shows the search mechanism of the proposed DPSO in a 
multidimensional search space. 

 

Figure 3. Proposed DPSO search mechanism of p  particle at k  iteration in 
a multi-dimensional search space 

 
The proposed DPSO algorithm can be expressed using the 

1

2) Initialize positions X and velocities V of each particle 

s of each particle  Fp  = f(Xp ), 

th th

following steps: 
1) Set  w, c , c2 and c3 parameters 

of population 
3) Evaluate fitnes k k

p  

and find the best particle index b 
4) Select Pbestp

k  = Xp
k, p  and Gbestk = Xb

k 

5) Set iteration count k = 1 

e Fp
k+1 = 

6) Update velocity and position of each particle using 
eqns. (16) and (17) 

7) Evaluate updated fitness of each particl
f(Xp

k+1), p   and find the best particle index b1 

8) Update Pbest of each particle p  

If Fp p
k+1<F k then Pbest k+1 = X k+1, else k+1 = 

b1
k+1 and set b = 

10) t 1 a  t

hown in Figure 4. 

D DPSO BASED SVM FOR FAULT DIAGNOSIS 

Since TDR methods are inherently imprecise, they should 
require other supporting techniques to achieve reliable 

re
e the performance of the 

reflectometry method used to identify the fault types in the 

cl

p p Pbestp

Pbestp
k, 

9) Update Gbest of population 
If Fb1

k+1<Fb
k then Gbestk+1 < Pbest

b1 else Gbestk+1 < Gbestk   
 If k < Maxi e then k = k+ nd go o step 6 else go to 
step 11 

11) Optimum solution obtained and so print the results 
Gbestk 

A detailed flowchart of proposed DPSO considering the 
above steps is s

III. DEVELOPE

sults. In this work, a DPSO encoding-based SVM 
classifier is developed to improv

radial distribution system. The overall structure of SVM 
assifier is shown in Figure 5 in which DPSO is performed 

to optimize these two parameters (C and ) of the SVM 
classifier. For this, the data acquisition for data 
preprocessing is mentioned first. 
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Set DPSO parameters 

Initialize positions and velocity of each particle of population

Evaluate initial fitness of each particle and select Pbest and Gbest 

Set iteration count k = 1

Update velocity and position of each particle
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Figure 4. Flowchart of the proposed DPSO  
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Figure 5. Flowchart of the proposed approach 
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A. Data acquisition 

To obtain a suitable dataset for classification process, a 
PRBS disturbance is injected into the distribution feeder 
under test. Once a fault occurs in the distribution feeder, it 
causes to produce a reflected signal that travels between the 
fault location and the substation. These reflected responses 
are recorded and then they are cross-correlated with the 
incident impulse by eqn. (4) in order to reduce the impact of 
noise as well as to surmount amplitude attenuation. 

It is worth noting that, for each of the fault type specified, 
the magnitudes of the feedback waves are different at the 
shortage time; as a result, the peaks of the CCR are not 
found to be the same. 

Based on the above analysis, the reflected voltage and 
current magnitudes along with the peaks of CCR between 
reflected and incident waves are chosen as the input features 
of the SVM classifier, and the fault types are chosen as the 
output features. Therefore, the total number of derived 
features is 12 and comprises a feature vector V=[v1 
v2…v12]T. The corresponding meanings of the feature 
vector are expressed as follows: 

alues (va, vb, vc) a
a b c

 peaks of CCR functions between 
re

osis 
sed. The two approaches are named as 

fo

SVM, the fault dataset are given to 
th

4 respectively. The fourth group is 
to

in two stages, so it is termed as multiple-stage 
D ure of multiple-stage DPSO-
SV  7. 

a) v1-v6 are the reflected voltage v
reflected current values (i , i , i ). 

nd 

b) v7-v12 are the
flected and incident waves of voltage and current. 

B. SVM parameter optimization and the proposed fault 
diagnosis approach 

The performance of SVM is susceptible to the kernel 
function parameter γ and the regularization parameter C, so 
these parameters must be carefully selected to increase the 
classification accuracy.  

In this paper, DPSO technique is used to optimize the 
parameters of the SVM classifier. Performance is measured 
according to the classification accuracy on unseen testing 
data. In the learning stage, the DPSO-based encoding SVM 
model is trained based on structural risk minimization to 
minimize the training error. While training error 
improvement occurs, penalty parameter C and kernel 
function parameter g are regulated by means of DPSO. The 
regulated parameters with minimal error are reported as the 
most suitable parameters. As a result, the optimal 
parameters (C and ) are to be obtained. Once the optimized 
parameters of the SVM are obtained, then it is used for the 
retraining of the SVM model. After the training phase, the 
SVM classifier is ready to identify new samples in the 
testing phase. The testing set is also chosen by means of the 
above parameter selection from the original dataset obtained 
by the TDR responses. 

As such, two different DPSO-based SVM fault diagn
approaches are propo

llows; 
a) Single-stage DPSO-SVM 
b) Multiple-stage DPSO-SVM 
In single-stage DPSO-
e optimized SVM classifier which classifies the fault types 

directly into any of the ten types of faults discussed earlier.  
As the fault types can be directly identified using single 
SVM structure, it is termed as single-stage DPSO-SVM. 
The overall structure of single-stage DPSO-SVM is shown 
in Figure 6. 

In multiple-stage DPSO-SVM, the fault dataset are given 
to the optimized SVM classifier which initially classifies the 
fault types into four possible fault groups (LG, LL, LLG, 
LLL) in the first stage and then each fault group is again 
classified into any fault type of that group in the second 
stage. Thus, in the first stage, fault groups are identified and 
then each group is classified into their corresponding fault 
types. So, in the first stage, four groups are identified by 
SVM1 whereas in the second stage the first three groups are 
classified into their corresponding fault types by use of 
SVM2, SVM3 and SVM

 be left alone as it is already a fault type (ABC fault). As 
in this case, the fault type can only be identified using a 
structure 

PSO-SVM. The overall struct
M classifier is shown in Figure

Testing 
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Optimum 
DPSO-SVM
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BCG
ACG
ABG

BC
AC
AB

CG
BG
AG

 
Figure 6. The overall structure of the proposed single-stage DPSO-SVM 
classifier for fault diagnosis 

IV. TEST RESULTS AND DISCUSSION 

The proposed approach has been tested by means of 
classifying faults on a typical two-branch radial distribution 
system, as shown in Figure 8.  

The sample system consists of a radial primary feeder, 
two distribution transformers and several loads. Two 
distribution transformers in the sample system are used to 
reduce the voltage on the distribution line to the level of 
customers that are distributed along a feeder. Their ratings 
are 500 kVA, 0.22kV and j1.89%, and their phases are 
connected as delta and grounded wye connections, 
respectively. These distribution transformers are operated in 
a full-load condition with 0.8 lagging power factor. The 
main feeder and laterals are constructed by means of 
overhead lines whose impedances are shown in Table I. 

 
TABLE I. PARAMETERS OF DISTRIBUTION LINE IN THE SAMPLE SYSTEM 

Items 

Positive- 
and zero-
sequence 

resistances 
(Ohms/km) 

Positive- and zero-
sequence 

inductances 
(H/km) 

Positive- and zero-
sequence 

capacitances 
(F/km) 

Feeder [0.247 0.309] [1.321e-3 2.473e-3] [5.398e-9 4.656e-9] 
Lateral [0.471 0.561] [1.538e-3 2.692e-3] [9.882e-9 7.106e-9] 

A. Training and testing samples 
The a dataset 
obt

ca

proposed algorithm is implemented on 
y TDR me  Pained b  thod using RBS exciation (as 

mentioned in subsection II.A). In the work, a 127 bit PRBS 
disturbance with frequency f =1MHz is injected into the 
distribution feeder under test. The reflected responses are 

used by any electrical fault on feeder and laterals and then 
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raining and testing sets are randomly selected from this 
nd 

testing re y. ca t 

they are cross-correlated with the incident impulse. Thus, 
each sample has 12 features extracted from the reflected 
signals and CCRs between reflected and incident waves. For 
this, ten types of faults created at distances of 10, 20, 30, . . . 
, 100% of the first lateral length. The fault resistance values 
are varied over the values 1, 5, 20, 30 and 60 during the 
simulation. As such, the samples are generated for 10 types 
of faults on the first lateral over 100 locations with varying 5 
impedance values. For each type of fault, the number of 
samples generated is 100 × 5 = 500 patterns. 

T

http://thom-project.webnode.vn/services. 
Table II only gives a few of the dataset created by 

simulation of all ten types of short circuit faults on the first 
lateral, located at distances of 3km and 4km from the 
substation for desire of brevity. 

The obtained dataset is inputted into a multi-class SVM 
for purpose of fault classification (as expressed in 
subsection II.B). Then, the proposed DPSO algorithm is 
applied to optimize the SVM parameters in order to increase 
the classification accuracy.  

For this, parameter selection of DPSO algorithm plays an 
important role in achieving the best performance of the 
algorithm. 

dataset, where 4000 and 1000 are used for training a
spectivel This dataset n be found a

Testing 
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dataset

Reflected data 
acquisition or 

dataset

DPSO-SVM1
Parameters 

optimization

Optimum 
DPSO-SVM1
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Optimum
DPSO-SVM2

Optimum
DPSO-SVM4

Optimum
DPSO-SVM3
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BG
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Figure 7. The overall structure of the proposed multiple-stage DPSO-SVM classifier for fault diagnosis 

 
Figure 8. A two-branched distribution line diagram of the sample system 
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B. Parameter selection for the proposed DPSO-SVM 
classifier 

In the following procedure is adopted to obtain the best 

parameters of the proposed DPSO-based algorithm for 
optimizing SVM parameters. For different population sizes 
(pop =10, 20 and 30).  

TABLE II. DATASET OF TEN TYPES OF FAULT LOCATED AT DISTANCES OF 3KM AND 4KM FROM THE SUBSTATION 
 va vb vc ia ib ic cc-va cc-vb cc-vc cc-ia cc-ib cc-ic 

1.9197 -0.3071 0.1245 4.9815 -0.7968 0.3232 0.5941 -0.0950 0.0385 0.0502 -0.0080 0.0033 
AG 

0.6990 -0.1118 0.0453 1.5998 -0.2559 0.1038 3.5687 -0.5708 0.2315 3.0765 -0.4921 0.1996 
1.4521 0.7277 0.5122 3.7681 1.8884 1.3290 0.4494 0.2252 0.1585 0.0380 0.0190 0.0134 

BG 
0.5287 0.2650 0.1865 1.2101 0.6064 0.4268 2.6995 1.3528 0.9521 2.3271 1.1662 0.8208 
0.4648 4.5783 3.1718 0.0857 0.8445 0.5851 0.0275 0.2711 0.1878 0.0237 0.2331 0.1615 

CG 
0.0880 0.8668 0.6005 0.2284 2.2492 1.5582 0.0272 0.2683 0.1858 0.0023 0.0227 0.0157 
-8.2016 9.6684 16.2648 -2.5267 2.9785 5.0107 -0.1137 0.1340 0.2254 -0.1137 0.1340 0.2254 

BCG 
-4.1309 4.8697 8.1921 -0.7620 0.8983 1.5112 -0.2446 0.2884 0.4852 -0.2104 0.2480 0.4172 
-1.2835 2.5576 4.8025 -0.9796 1.9519 3.6650 -1.6907 3.3688 6.3257 -1.4240 2.8375 5.3279 

ACG 
-1.4241 1.7834 3.8278 -1.0868 1.3610 2.9212 -1.8757 2.3491 5.0419 -1.5799 1.9786 4.2466 
-1.1327 0.0679 2.6912 -2.9393 0.1763 6.9832 -0.3506 0.0210 0.8329 -0.0296 0.0018 0.0704 

ABG 
-2.0970 0.1258 4.9821 -1.6003 0.0960 3.8021 -2.7621 0.1657 6.5623 -2.3265 0.1395 5.5272 
-7.4589 -4.8688 17.7206 -1.3759 -0.8981 3.2688 -0.4417 -0.2883 1.0495 -0.3798 -0.2479 0.9024 

AB 
-1.4121 -0.9218 3.3549 -3.6643 -2.3918 8.7055 -0.4370 -0.2853 1.0383 -0.0369 -0.0241 0.0877 
-1.0143 -1.2113 7.8915 -0.7741 -0.9244 6.0225 -1.3360 -1.5955 10.3945 -1.1253 -1.3439 8.7550 

AC 
-1.5121 -7.9329 40.5259 -0.4658 -2.4439 12.4847 -0.0210 -0.1099 0.5616 -0.0210 -0.1099 0.5616 
2.0444 -4.2356 23.5915 0.3771 -0.7813 4.3518 0.1211 -0.2508 1.3972 0.1041 -0.2157 1.2013 

BC 
0.1409 -0.2920 1.6262 0.3225 -0.6682 3.7220 0.7195 -1.4907 8.3028 0.6203 -1.2851 7.1576 

Legends: 
AG, BG and CG are single phase to ground faults;  
BCG, ACG and ABG are double line to ground faults;  
AB, AC and BC are line to line faults; ABC is three phase fault.  
va, vb, vc, ia, ib and ic are magnitudes of the reflected voltage and current, respectively.  
cc-va, cc-vb, cc-vc, cc-ia , cc-ib and  cc-ic are CCR between reflected signal and incident signal, respectively. 

 
TABLE III. TOP FIVE LEAST VALUES OF MSE FOR DIFFERENT VALUES OF VARIOUS PARAMETERS OF THE PROPOSED DPSO-SVM  

Pop = 10 Pop = 20 Pop = 30 
Algorithm 

parameters c1 c2 c3 
Top five 

MSE c1 c2 c3 MSE c1 c2 c3 MSE 
1 1.5 1.5 0.04 0.035 1.5 1 0.03 0.035 0.5 1.5 0.01 0.035 
2 1.5 2 0.01 0.035 1.5 1.5 0.01 0.035 0.5 1.5 0.05 0.035 
3 1.5 2.5 0.02 0.035 1.5 1.5 0.04 0.035 0.5 2 0.04 0.035 
4 2 1.5 0.01 0.035 1.5 2 0.02 0.035 1 1.5 0.05 0.035 
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MSE beyond 35 iterations is non-decreasing and thus the 

aining time taken (159.31 sec).  
optimized SVM parameters can be obtained much sooner 
than the total tr
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Figure 9. Convergence characteristic of the proposed DPSO in the multiple-
stage SVM classifier 

It is observed from Table IV that the proposed DPSO 
gives the highest classification accuracy for fault diagnosis. 
Hence, for multiple-stage model (Figure 6), only DPSO has 
been used to optimize parameters of SVMs. The optimized 
va

or

lues of the SVM parameters of the proposed multiple-
stage DPSO-SVM are given in Table V. 

TABLE V. RESULTS OF MULTIPLE-STAGE SVM CLASSIFIER USING THE 

PROPOSED DPSO 

Classifier C  
Classification 
accuracy (%) 

SVM1 1.0 5.6926 99.08 
SVM2 42.41 0.0004 99.17 
SVM3 77.97 0.0071 97.25 
SVM4 42.61 0.0022 98.06 

Overall accuracy  98.50 

From Table V, it is observed that the classification 
accuracy of the proposed multiple-stage DPSO-SVM 
cl

nificantly higher than what is obtainable 
w

assifier in the first stage is 99.08%; whereas, in the second 
stage which possesses three SVMs, the accuracy rates are 
99.17%, 97.25% and 98.06%, respectively. In multiple-stage 
DPSO-SVM classifiers, the overall classification accuracy is 
98.50% which is sig

ith a single-stage DPSO-SVM classifier.  
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Figure 10. Convergence characteristic of the proposed D
mu

PSO in the 

ns are non-

decreasing in all these four curves whereas it takes about 35 
iterations in single-stage DPSO-SVM classifier. Hence, the 
training time of the multiple-stage DPSO-SVM classifier is 
much faster than that of the single-stage DPSO-SVM 
classifier.  

From these studies, it is clear that the proposed DPSO 
algorithm offers better SVM parameter optimization than 
with cross-validation, PSO and GA. Further, the proposed 
multiple-stage SVM classifier is better than any single-stage 
SVM classifier. 

D. Effects of the results by varying training and testing 
datasets  

 
ha

raining and testing 
da  
training to testing (train  as foll

a)
b) 7
c) 8
d) 9

 DP l s have b plied 
to
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Classification  
accuracy (%) 

ltiple-stage SVM classifier 

The convergence characteristic of the proposed multiple-
stage DPSO-SVM classifier is shown in Figure 10. As can 
be seen from Figure 10, there are four different convergence 
characteristics of four SVM classifiers which have been 
trained independently. MSE beyond 15 iteratio

In this subsection, the effects of different ration of diving
training and testing dataset on the classification accuracy

 

ve been studied. Under this study, both the single-stage 
DPSO-SVM and the multiple-stage DPSO-SVM classifier 
have been utilized and four different training and testing 
dataset divisions have been considered for 5000 samples of 
dataset used in this paper. Under this, entire dataset have 
been divided into four different ratios of t

ta samples. These four dataset division ratios from
ing:testing) are ows:  

 60:40  
0:30 
0:20  
0:10.  

The proposed SO-SVM c assifier een ap
 test the classification performance of these four dataset 

division. 
Table VI and Table VII show the classification accuracy 

as well as the optimum SVM parameters obtained using the 
proposed single-stage DPSO-SVM and multiple-stage 
DPSO-SVM classifiers, respectively.  

TABLE VI. RESULTS OF SINGLE-STAGE DPSO-SVM CLASSIFIER USING 

VARIOUS DATASET DIVISION PATTERNS 

Dataset division 
C 

60:40 100 1.3938 95.66 
70:30 52.5271 1.1277 96.08 
80:20 100 1.3468 96.05 
90:10 47.4570 1.0864 96.42 

 
From Table VI, it is observed that the performance of the 

single-stage DPSO-SVM classifier gives the best result in 
the training and testing dataset division of 90:10 ratio 
whereas from Table VII, it is observed that for the multiple-
stage DPSO-SVM classifier, the performance is the best in 
the training and testing dataset division of 80:20 ratio. In 
other words, a higher training dataset gives better 

taset. 
uded 

th

classification accuracy versus that with a lower da
Further, from Table VI and Table VII, it can be concl

at the multiple-stage DPSO-SVM classifier gives better 
classification accuracy than that obtained by the single-stage 
DPSO-SVM classifier.  

The optimum convergence characteristics of the proposed 
single-stage DPSO-SVM and multiple-stage DPSO-SVM 
classifiers have been shown in Figure 11 and Figure 12, 
respectively. Subfigures of these two figures show the 
convergence characteristics of the proposed algorithms 
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rom Figure 11 and Figure 12, it is observed that 
M

w f 
data  
tab  supp d by the characte

LASSIFIE  DATA IVISIO  
S VM

corresponding to different training and testing dataset 
divisions. F

SE is the lowest in the case of dataset division 90:10 
TABLE VII. RESULTS OF MULTIPLE-STAGE DPSO-SVM C

SVM1 SVM2 

hereas, the average MSE is the lowest in the case o
n of 80:20. Thus, the observationset divisio s made from

ulated results are
R U S

orte ristics. 
SING VARIOU SET D N PATTERNS

VM3 S 4 Dataset 
division 

(Training : 
testing) 

C  C  C  
Cla n 
acc %) C  

ssificatio
uracy (

60:40 7.9849 5 47.2832 0.0057 4 0.0763 100 0.0053 97.46 .6708 

70:30 100 1.7848 62.0977 0.0015 92.7704 0.0091 1.0311 0.0032 97.89 

80:20 16.4415 1.7493 21.4799 0.0034 53.1976 0.0116 52.9386 0.0583 98.42 

90:10 56.4793 0.7384 4.8591 0 69.0436 0.0109 40.8192 0.0685 98.07 
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Figure 11. Convergence characteristic of the proposed single-stage DPSO-
SVM classifier for different dataset division patterns 

V. CONCLUSION 

In this paper, a differential particle swarm optimization 
(DPSO) algorithm is proposed to improve the performance 
of SVM for the purpose of fault classification in the radial 
distribution network. The DPSO-based technique can 
optimize the parameters of SVM classifier in order to 
increase the classification accuracy. Further, a multiple-

Figure 12. Convergence characteristic of the proposed multiple-stage 
DPSO-SVM classifier for different dataset division patterns 

 

stage SVM classifier is introduced for purposes of better 
fault classification. Also, time-domain reflectometry (TDR) 
with pseudo-random binary sequence (PRBS) stimulus has 
been utilized for generating a reliable fault dataset. The 
proposed approach is tested successfully to identify ten 
types of electrical short-circuit fault in a typical radial 
distribution network. Then, the results have been compared 
with diagnosis results obtained from different methods, such 
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as cross-validation, PSO and GA. The overall accuracy 
obtained in classifying fault types is 98.5%, which 
demonstrates the effectiveness of the proposed fault 
diagnosis approach. 
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