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Abstract This paper presents a machine vision system 
for real-time computation of distance and angle of a 
camera from a set of reference points located on a 
target board. Three different smart camera 
architectures were explored to compare performance 
parameters such as power consumption, frame speed 
and latency. Architecture 1 consists of hardware 
machine vision modules modeled at Register Transfer 
(RT) level and a soft-core processor on a single FPGA 
chip. Architecture 2 is commercially available software 
based smart camera, Matrox Iris GT. Architecture 3 is a 
two-chip solution composed of hardware machine 
vision modules on FPGA and an external micro-
controller. Results from a performance comparison 
show that Architecture 2 has higher latency and 
consumes much more power than Architecture 1 and 3. 
However, Architecture 2 benefits from an easy 
programming model. Smart camera system with FPGA 
and external microcontroller has lower latency and 
consumes less power as compared to single FPGA chip 
having hardware modules and soft-core processor. 

Keywords Machine Vision, Component Labeling, Smart 
Camera 

 
1. Introduction  

Smart cameras are real-time machine vision systems. 
Real-time machine vision systems generally perform 
image capturing, processing of captured images and 
extracting the useful information which is used for 
decision making. The typical applications in which smart 
cameras are applied include process control, surveillance, 
optical navigation and robot vision. Among these 
applications, optical navigation and robot vision require 
high frame speed and low computational latency. This 
requirement on high frame speed comes from the control 
and regulation of a robot’s motion [2]. Power 
consumption must in some cases still be low enough to 
enable small sized portable and battery operated devices 
[4]. In addition, most of the above discussed smart 
camera applications require programmability for easy 
prototyping and incorporation of future modifications.  
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Figure 1. Image processing tasks pyramid [1] 
 
Image processing operations are generalized in Figure 1. 
Low level processing tasks include noise removal, 
distortion compensation, contrast enhancement etc. The 
Intermediate level processing include segmentation, 
labeling and feature extraction. During segmentation, 
image components and background are separated. 
Labeling assigns a unique label to each image component. 
After image component features are extracted, we can 
classify them into pre-defined classes such that the objects 
are distinguished. High level processing include object 
recognition. The data intensity decreases as we move 
from preprocessing to object recognition. The architecture 
for real-time image processing should be able to handle 
low level data intensive pixel processing as well as high
level mathematical functions. 
 
This work is focused on comparison of three smart 
camera architectures shown in Figure 2. Architecture 1 
consists of Machine Vision Modules (MVM) and soft-core 
processor. MVM contains image capturing, segmentation, 
labeling and feature extraction. MVM were modeled at 
RT level. Extracted features are sent to a soft-core 
processor, MicroBlaze, for the calculation of the camera 
distance and angle with respect to reference points 
located on a target board. A soft-core processor is an RT 
level model of a micro-processor, captured using a 
Hardware Description Language (HDL) such as VHDL. 
This RT model is flexible and can be modified based on 
requirements for a particular application. The HDL 
description can then be synthesized either for an FPGA or 
an ASIC. Architecture 2 is commercially available software 
based smart camera. This smart camera has General 
Purpose Processor (GPP), on chip RAM, installed 
windows environment and image processing library. 
Architecture 3 is similar to Architecture 1, except that the 
soft-core processor is replaced by an external 32 bit 

microcontroller, Atmel AVR32. The application chosen 
for the comparison of performance metrics is sensing of 
angle and distance of a camera with respect to a target 
board. 
 
Smart cameras are common in production lines, security 
applications and for industrial process monitoring. The 
faster production lines need machine vision system with 
short response time. Time-critical smart applications such 
as video based driving assistance, high speed visual 
feedback for robotic arm [2] and traffic flow control [3] 
need quick response times. Thus, the processing 
architecture for these time-critical applications should 
have high data throughput and low latency. Battery 
operated smart camera applications demand low power 
consumption. Smart camera applications such as camera 
based navigation aid for visually impaired persons [4], [5] 
smart camera node for video surveillance [6], [7] and 
information collection from a natural disaster by smart 
camera [9] require low power consumption for longer 
battery life time. Low power consumption is also 
necessary for smart camera nodes that are powered by 
alternate energy sources such as solar power [8]. Thus, 
high frame speed and low power consumption are major 
issues that will be considered when comparing the three 
presented architectures. The motivation for this study is 
to gain knowledge about how to choose architecture for a 
smart camera. High abstraction level programming 
model and well developed image processing library make 
commercially available smart camera systems an 
attractive choice for machine vision application 
development. On the other hand, an FPGA based system 
with hardware-software co-design can exploit the 
potential parallelism present in data intensive image 
processing applications.  
 
Hardware-software co-design requires efficient 
partitioning of image processing tasks between hardware 
and software to optimize speed and power consumption. 
The results from using a single FPGA chip for processing 
is also compared with a heterogeneous platform using 
separate chips for FPGA and microcontroller. The results 
from this comparison can be analyzed to select an 
architecture based on latency, frame speed, power 
consumption, ease of programming and level of system 
integration. 

 

 
Figure 2. Smart camera architectures 
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Figure 3. Pixel neighborhood, b) Hardware architecture for component labeling and feature calculation, c) Flow graph for software system
 
An alternative technology to realize high throughput and 
low power smart camera system is by using Application 
Specific Integrated Circuits (ASIC). ASIC data paths are 
highly optimized and have low latency. However smart 
camera application presented in [2-8] require 
programmability for adaption to the environmental 
conditions where they are installed and also for 
incorporation of future modifications to algorithms. High 
Non Recurring Engineering (NRE) costs for ASIC 
Application development make it difficult to easily 
incorporate changes. This constraint makes the FPGA 
platform more suitable than ASIC for smart camera 
applications where programmability is required. 
 
The main scientific contribution of this work is the 
performance evaluation of three different architectures 
for a smart camera. The chosen architectures have their 
own characteristic, and this performance evaluation give 
the smart camera designer guidance about the choice of 
specific architecture based on application and 
performance requirement. 

2. Related Work 

Smart camera platforms have capabilities of image- 
capturing and processing to obtain the desired 
information from images [10], [11]. After processing of 
the captured images, the obtained results can be sent via 

some communication channel to a base station or some 
critical decision can be taken locally at smart camera 
node. 
 
A multimedia processor is one of the options to 
implement a smart camera system. The Trimedia 
processor series is developed by Phillips. Trimedia 
TM3270 is Very Long Instruction Word (VLIW) based 
architecture [13]. This processor can support up to 7 
billon operations per second. Applications can be 
developed using C language. The dynamic power 
consumption of this processor is around 1 mW/MHz. The 
processor can be operated at maximum 450 MHz. There 
are also other similar multimedia processors available e.g. 
SH series from Hitachi, Itanium2 developed by Intel and 
Hewlett-Packard.  
 
Commercially available software based smart cameras 
have both an image sensor and an on-board 
programmable processing platform. Matrox Iris GT [14], 
NI-1772 from National Instruments [15] or XCISX100C 
from SONY[16] have reasonable high processing 
capabilities. Due to the installed operating system and the 
imperative programming model, the designer’s work to 
develop applications are made simpler compared to RTL-
modellling. However, the power consumption of these 
smart cameras is in tens of watts, which is not realistic for 
battery operated smart cameras. 
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Smart camera platforms can be built from an image 
sensor and an optimized data path for processing of 
captured images [17]. FPGAs and custom designed VLSI 
circuits can be employed to achieve the desired 
functionality with low power consumption. FPGAs are 
reprogrammable while VLSI data paths are more 
optimized and consume very low power. Re-
programmability in an FPGA based platform, massive 
parallelism and shorter design times than VLSI circuits 
make them suitable for smart camera applications. High 
throughput and low power consumption are 
fundamental requirement for many smart camera 
applications. A smart camera used in feedback loop of a 
robotic arm to re-grasp an object is presented by Noriastu 
et al [2]. This vision system provides feedback at a rate of 
1 KHz so that the robotic arm and finger can adjust their 
position according to the object’s position. Industrial 
surface monitoring of cylindrical objects and sheets is 
presented by Tomohira et al [12]. Camera based 
inspection of rapidly spinning object and fast moving 
sheet needs high throughput to be able to inspect any 
defects on the surface. Battery operated smart camera 
applications demand low power consumption to achieve 
a reasonable battery life time. The application such as 
vision based navigation support for blind people is 
presented by Joao et al [4]. Stereovision cameras were 
attached on chest of a blind person and captured image 
were sent to a portable computer for detection of obstacles 
and planning of path. Battery operated smart camera 
systems with low power consumption is suitable for this 
scenario to reduce the size and easy mounting together with 
image sensors. The surveillance applications presented in [5-
7] are also battery powered camera based system that 
requires low power consumption.  
 
Wu Liming et al presented experiments on image 
processing tasks executed on a single chip using a soft-
core processor MicroBlaze. They aimed to compare the 
performance of a software implementation with a 
software/hardware implementation. Bitonic sort and 
median filter were used as test cases for the evaluation of 
system performance. They concluded that a system 
design using soft-core processor with hardware IPs not 
only speeds up the development time but also results in a 
more than ten times performance improvement as 
compared to that of a software implementation [19]. 
 

 
Figure 4. On chip system architecture1 
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Figure 5. Triangulation view  
 
A summary of different smart camera architectures and 
platforms was discussed by Shi Y et al [20]. The selection 
of architecture depends on the application. For in-camera 
processing of captured images, homogenous and 
heterogeneous platforms are described. In most smart 
camera applications, there are data intensive tasks like 
segmentation, component labeling, feature extraction and 
math intensive tasks such as pattern matching. Authors 
suggested that data intensive tasks should be 
implemented on parallel architectures, while control and 
mathematical computations can be performed using a 
Application RISC or DSP processor. One such smart 
camera system for face recognition is presented by 
Broeres et al [21]. 
 
The main contribution of this article is an evaluation of 
three different smart camera systems having computation 
either: on a single-chip FPGA, or a heterogeneous system 
consisting of an FPGA and microcontroller versus a 
commercially available smart camera based on an Intel 
computer and Microsoft Windows. From the study of 
related literature we have not found any comparison of 
this nature. Therefore this study is a valuable scientific 
contribution that will help a smart camera designer about 
choice of particular architecture. 
 
The remaining section of this paper is organized as 
follows:. Section 3 explains the different architectures 
used for comparison. Section 4 describes experimental 
setup and methodology, Section 5 explains results, and 
Section 6 deals with discussion on the results.  

3. Proposed architectures  

In this section we will discuss the proposed architectures. 

3.1 Proposed Architecture 1 

Architecture 1 consists of three major components i.e. 
MVMs, soft-core processor MicroBlaze and software 
system. A CMOS image sensor (MT9V032) from Micron, 
operating at maximum clock frequency of 27 MHz, was 
used to capture the images. The VmodBB connector from 
Digilent is used to connect camera signal to Spartan-6 
development board. This is a parallel interface 
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transferring one pixel per clock cycle. The capture images 
are fed to MVMs for further processing. MVMs perform 
image capturing, segmentation, labeling and feature 
extraction. The features were sent to the soft-core 
processor. Computation of distance and angle was done 
by a software system executed on the processor. 
 
In past, FPGAs used to be homogeneous hardware 
platforms containing a huge set of logic blocks. Today’s 
FPGA architectures are more of heterogeneous 
computational platforms. FPGAs still have a large set of 
configurable logic gates but they have also embedded 
arithmetic units, block memories and memory controllers. 
In addition, the FPGA circuit technologies are targeted 
towards very low power applications. 

3.1.1 Machine Vision Modules

MVMs were modeled at RT level using the hardware 
descriptive language VHDL. Images captured by an 
image sensor are processed at a segmentation step. 
Segmentation in this case involves a simple thresholding 
of gray levels to separate bright reference points from 
their background. The segmented images are further 
separated into background and a set of labeled image 
components while at the same time, features are extracted 
for each component. The hardware architecture for image 
component labeling and feature extraction is shown in 
Figure 3(b). For the labeling process of a typical image, 
the neighborhood is shown in Figure 3(a). 
 
The pixel P5 is assigned a label based on its neighboring 
pixels P6 to P9. A delay line of one FIFO-buffer and two 
registers hold the labels assigned to previous row [23]. 
The kernel for labeling and feature extraction is depicted 
Figure 3(b). The labeler assigns labels to P5 depending on 
its neighbors. If the labeler does not find any labeled 
pixels in the neighborhood, a new label is assigned to P5. 
If the labeler finds two different labels in the 

neighborhood of P5, then P5 is assigned to one of these 
labels and the detected pair of labels must be recorded as 
equivalent. This is, because all connected pixels must be 
recognized as belonging to the same image component. 
The equivalences are recorded in Table A or B based on 
odd or even frame. Equivalences are resolved after 
labeling whole frame such that all labels in an image 
component should have same value. This label assigning 
and resolution runs in parallel in Table A or B. Along with 
labeling process we also accumulate data for feature 
extraction in Data table A or B. When all equivalences are 
resolved in Table A or B, the Table ready signal is sent to 
feature extraction unit e.g. COG calculation in Figure 3(b). 
The extracted features are sent to soft-core processor. The 
software system then calculates the distance and angle 
information of camera from reference points. 

3.1.2 Soft-Core Processor And Interconnects 

A vendor specific system based on a Xilinx Spartan 6 
FPGA is shown Figure 4. MicoBlaze is Harvard 
architecture based 32 bit RISC soft processor. MicroBlaze 
contains Memory Management Unit, instruction and data 
cache, floating point unit and configurable pipeline 
depth. A Processor Local Bus (PLB) is used to 
communicate between process and different peripherals. 
Fast Simplex Link (FSL) or Advance eXtensible Interface 
(AXI) can be used to communicate between MicroBlaze 
and user defined hardware IP’s. A MicroBlaze [24]  soft 
processor connects to MVM via a Fast Simplex Link (FSL) 
bus. As a soft-core processor, MicroBlaze is implemented 
entirely in the general-purpose logic fabric of Xilinx 
FPGAs. The MicroBlaze based system can be developed 
under Xilinx's EDK (Embedded Development Kit) 
environment. FSL is a uni-directional point-to-point FIFO 
based communication channel bus that is used to perform 
fast communication between the MVM and the 
MicroBlaze processor.  

 

 

Figure 6. Two chip system for architecture 3 
 

 Frame Speed/sec Power Consumption Total 
 
Architecture 1 

 
77 

FPGA Image Sensor  
400mW 80mW  320mW 

Architecture 2 33 5.5W 5.5W 
 
Architecture 3 

 
77 

FPGA Micro-controller Image Sensor  
368mW 48mW  0.3mW 320mW 

Table 1. Results (power consumption) 
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Images captured as a continuous stream of video are fed 
to the MVM. The image component features extracted by 
the MVM are sent to the Microblaze through the FSL bus. 
A UART and a Timer were interfaced with the 
MicroBlaze through a Processor Local Bus (PLB). The 
UART is used to send computed values for distances and 
angles to an external host system. 

3.1.3 Softwar System 

The software system defines the distance and angle 
measurement of camera from a set of reference points 
located on a target board The hardware-software 
partitioning for Architecture 1 and 3 is shown in Figure 
3(c). In these two architectures the software System 
performs the distance and angle measurement of camera 
from reference points based on extracted Centre of 
Gravity “COG” values computed by MVM. For 
Architecture 1 and 3, the software was coded using 
imperative programming language “C”. The general flow 
graph of all computational operations is shown in Figure 
3(c). The MVM modules compute the “COG” of reference 
points as a required feature. The distance of camera from 
the reference point was calculated using lens formula 
[25]. After knowing the distance between camera and 
reference points, we used triangulation to calculate the 
viewing angle of camera. 
 
Image processing tasks are divided between MVM and 
software system such that all data intensive task are 
modeled at RT level. Only features data is sent from MVM to 
software system that will reduce communication overhead 
associated with data transfer from MVM to software 
system. Different strategies for partitioning image 
processing tasks between hardware and software are 
studied in [22]. The result in this literature shows that 
minimum data transfer between hardware modules and 
software can be achieved if data intensive image 
processing tasks up to feature extraction, as shown in 
Figure 1, are performed on hardware modules. Thus, the 
partitioning between hardware and software is based on 
data intensity. The RT level design models the synchronous 
data flow of signals in digital circuits. RT level is motivated 
when we have synchronous data intensive system e.g. pixel 
stream from a camera. However, non data intensive but 
more reactive and control flow intensive computations can 
be well performed by micro-controller. This fact is also 
highlighted in [19]. In addition, the implementation of 
complex mathematical equations in RT level design is time 
consuming and requires high NRE cost.  

3.2 Proposed architecture 2 

The second architecture chosen for comparison is a 
commercially available smart camera, Matrox Iris GT. 
This smart camera comes with Microsoft Windows XP 
embedded as operating system. Developing a vision 

application in C++ is much easier compared to RTL 
modeling for the other two architectures. Iris GT has a 
Sony ICX274AQ progressive scan CCD image sensor 
having square pixels of diagonal size 8.923mm. It has an 
onboard 1.6GHz Intel atom processor with 512MB of 
volatile and 2GB of non volatile memory. Matrox Iris 
smart camera contains Intel® Atom® (Z530) embedded 
processor. The Intel atom (Z530) is 32 bit processor. This 
processor is common in many note books and embedded 
applications. This processor has 512KB of cache and Front 
Side Bus (FSB) that operates at 533 MHz. The processor 
support Hyper- Threading and operate at 1.6GHz clock 
frequency  It has three main interfaces such as digital I/O, 
VGA/USB and 100/1G Ethernet.  
 
The flow graph for Architecture 2 is same as presented in 
Figure 3(c). All tasks from image capturing to distance 
and angle of camera, computational steps 1 to 8 in Figure 
3(c) are executed on software system for Architecture 2. 
The Matrox Imaging Library (MIL) helps easy 
prototyping and contains most of basic image processing 
functions that reduce the workload on developer. The 
developer of applications uses the high level 
programming model VisualC++.  

3.3 Proposed architecture 3 

Architecture3 is similar to Architecture1 except that the 
soft-core processor is replaced by an Atmel AVR 32 bit 
micro-controller AT32UC3B0256 [26] as shown in Figure 6. 
This micro-controller has high processing capabilities and 
has low power consumption. AT32UC3B0256 has six 
different operation modes in order to meet different 
performance and power consumption requirement. The 
maximum clock frequency can be 60 MHz. Architecture 3 
includes 32 bit micro-controller Atmel AVR 32 
AT32UC3B0256 to execute software system. Atmel AVR 
32 is RISC base micro-controller. The controller can be 
clocked up to 60 MHz. The micro-controller provides 6 
different power modes that can be adopted to optimize 
power consumption depending upon the performance 
requirement of application. 
 
To measure the performance and power consumption we 
used SENTIO32 [27] board developed at Mid-Sweden 
University, Sweden. The SENTIO32 board is equipped 
with an AVR microcontroller and communication 
interfaces. The extracted features from MVM were 
transferred to the microcontroller board using SPI link 
operating at a clock frequency of 8 MHz. The software 
system for Architecture 3 is already explained in section 
3.1.3. 

3.4 Viewing Angle and Distance Calculation 

For all three architectures, computation of distance and 
angle from camera to a target board is defined by 
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software. This section describes the mathematical 
formulas captured in software in accordance with 
computational step 4 to 7 as shown in Figure 3(c). Inputs 
for the computation are the COG values of reference 
points, focal length of camera, computed distances 
between reference points in image plane and known 
distances between reference points on the target board. 
The camera was placed in front of target board in a way 
to achieve the orthogonal projection on camera lens. The 
line, Dwq, in Figure 5, show the alignment of the target 
board. We are interested in find the reference points to 
camera distance Dwz and view angle Ф. Viewing angle of 
camera from target board was calculated by solving 
similar triangles, ∆pqz and ∆xyz. Following information 
is used to draw the final equation for distance and angle 
of camera. 
 
Dwz Distance between the camera and Black board 
ф Viewing angle of the camera 
Dwq Euclidean distance between points on the board 
Dxy Euclidean distance between  points in image plane 
f Focal length of the camera 
Dqz Distance between the focal point(z) and reference 

point(q) on board as shown in Figure 5 
Dpz Distance between the focal point(z) and projection 

of reference point(w) as shown in  Figure 5 
∠zxy = ∠wpq = 90degree,  ∠pwq = ф= viewing angle, 

∠pqw = β 

(1) 

 (2) 

4. Experimental setup and methodology 

The experimental setup used for Architecture 1 is shown 
in Figure 7(a). It consists of white reference points fixed 
on a black colored target board. A CMOS image sensor 
was clamped on a stand along with lightning facilities. 
The image sensor captures images and sends them to an 
experimental FPGA board, which executes the embedded 
real-time machine vision system described in section 3. 
Computed distance and angle are sent from the FPGA 
board using RS232 to a host computer. This experiment is 
performed to make a functional verification of the system 
for a few selected distances and angles. The Atlys 
Spartan6 board has the capacity of monitoring power 
consumption on different voltage rails available on 
Digilent board. The FPGA core is connected to a 1.2 Volt 
rail. The monitors are based on Linear Technology’s 
LTC2481C sigma-delta analog-to-digital converters that 
return 16-bit samples for each channel. The latency of the 
soft-core processor is measured by code profiling i.e. 
using a timer at start and end of program. The latency 

value is also verified using a logic analyzer. Specific 
pattern is sent to a set of IO pins at start and end of 
software program allowing for the logic analyzer to 
trigger and compute the time difference between the two 
patterns. The latency of MVM modules are computed in 
simulations and also measured using a logic analyzer. 
These latency values contain camera overhead for row 
and frame synchronization.          
 
For experiments with Architecture 2, the Matrox IRIS GT 
smart camera is placed in front of the reference board. 
Images are continuously grabbed and processed from a 
stream of video generated at the image detector output. 
The smart camera is configured to simultaneously grab 
next image and process current image in an interleaved 
mode. A host computer is needed for development of 
applications. Camera and host computer are connected 
using a 1Gbit Ethernet interface configured to a static IP 
address. The application is developed in Microsoft visual 
studio using Matrox imaging library and deployed in the 
Iris GT using a remote debugger. The programming 
language used to develop applications is visual C++. 
When the application is deployed in Iris GT, it can solely 
run without any connection to the host computer. The 
camera is programmed to execute image processing steps 
like segmentation, component labeling and feature 
extraction. Firstly, during segmentation, the white 
reference points are separated from the image 
background. Later at component labeling and feature 
extraction, all reference points are labeled into unique 
image objects and their COG values are computed as 
object features. Euclidean distances between reference 
points are calculated based on their COG values. Distance 
and angle are computed in accordance with equations (1) 
and (2). The computed values of distance and angle are 
then transmitted using a serial cable to a host computer 
and viewed on a graphical display using LabVIEW 
software environment, as shown in Figure 7(b).  Iris GT 
computes and transmits distance and angle for every 
frame such that the actual camera position is updated on 
the LabVIEW graphical display at a rate of 33values per 
second. The latency for the smart camera is measured 
using code profiling. Power measurement for smart 
camera is made using voltage- and ampere meters 
connected to the camera through a break out board [14] . 
 

 

 

(3)

 
Experimental setup for Architecture 3 is similar to 
Architecture 1 except that the soft-core processor is 
replaced with a microcontroller assembled on a second 
circuit board. The extracted features from MVM are sent 
to the microcontroller through SPI for further  
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 Frame 
Speed/sec 

Latency Total Maximum Frame 
(640x480) Speed/sec 

 
Architecture 1 

 
77 

MVM Soft-core  
17.4 msec 

 
227 13 msec 4.4 msec 

 
Architecture 2 

 
33 

Frame Grabbing Processing  
68.03 msec 

 
33 33.95 msec 34.08 msec 

 
Architecture 3 

 
77 

MVM Micro-controller  
13.037 msec 

 
315 13 msec 37 usec 

Table 2. Results (Latency) 
 
computation of distance and viewing angle of camera 
from target board. The latency of the software system in 
the micro-controller is measured using a logic analyzer. 
DC current measurements for the microcontroller are 
taken from SENTIO32 board using Agilent 34410A 
digital multi-meter [28]. This digital meter can sample 
the data at 10 KHz and store samples on a host 
computer. For all activities that have execution time less 
than one sample period i.e 100 usec, we repeated the 
activity for extended duration. During this duration a 
large number of samples that correspond to 
instantaneous current consumption were used to obtain 
average current consumption that is reported in this 
article. Average value can be found from stored data. 
The power consumption associated with data transfer 
from the FPGA to the micro-controller and processing in 
the micro-controller is computed using equation (3). In 
this equation, Pp, Pc and Pi represent average power 
consumption during processing, communication and in 
idle mode respectively. Tp, Tc and Ti are time taken for 
processing, communication and in idle mode 
respectively. Vdd is supply voltage that was equal to 3.3 
volt. 

5. Results 

In this section we present results for power 
consumption, maximum frame speed and latency. 
Results are summarized in Table 1 and Table 2. In 
architecture 1, the MVM modules were operated at 27 
MHz, while soft core processor at 16 MHz. The latency 
of MVM modules is measured to be 13 msec and soft-
core processor compute distance and angle in 4.4 msec. 
MVM were implemented on a Digilent Atlys Spartan-6 
board. The maximum frame speed for Architecture 1 is 
approximately 227 frames per second at a frame size of 
640 by 480 pixels. This frame speed is limited by 
latency of computation in soft-core processor. 
Otherwise the MVM could operate at frame speed of 
315 frames per second. Maximum frame speed is 
calculated based on maximum clock frequency 
reported by Xilinx synthesis tool and without 
considering speed of image sensor. Total power 
consumption for Architecture 1 is 400 mW. This power 
consumption for the whole camera system includes 320 
mW dissipated in the Aptina image sensor. 

In Architecture 2, the Intel atom processor was operating 
at 1.6 GHz. Maximum frame speed at resolution of 640 by 
480 pixels is 33 frames per second and power 
consumption is 5.5W. The average latency of frame 
grabbing and computation is approximately 68 msec. 
Detailed results for measured computational latencies 
and frame speeds are presented in Table 4.  
 
In Architecture 3, MVM and an external microcontroller 
are combined into a smart camera platform. The AVR32 
microcontroller operating at 16 MHz only takes Tp=12.54 
usec for processing, while Tc=24.5 usec for 
communication from MVM to microcontroller. 
Microcontroller remains idle for Ti=12.96 msec. The 
microcontroller consumes in average Ip=4.51 mA current 
during processing, Ic=6.37 mA during communication 
and only Ii=75 uA during idle mode. In order to minimize 
power consumption, the controller can be put into idle 
mode where it consumes very low power. The total 
average power for microcontroller is calculated using 
equation (3). The result from momentanious power 
consumption for each activity is presented in Table 3. The 
Aptina image sensor consumes 320 mW power at full 
resolution, while 120 uW in standby mode. The power 
consumption for FPGA includes both static and dynamic 
power. Total power consumption for Architecture 3 is 368 
mW. 

6. Discussion 

In this work we compare a performance matrix of three 
smart camera architectures. Results from analyzing 
power consumption are presented in Table 1. For 
Architecture 1, total 18 percent of the available slices are 
used for the whole system, in which 6 percent of the 
available slices are used for the MicroBlaze only. 33 block 
RAMs are used, 17 block RAMs for the MVM [23] and 16 
block RAMs for the data and instructions memories 
related to MicroBlaze. MVM are connected to MicroBlaze 
though an FSL link. The latency for MVM is 13 msec at 27 
MHz. This latency value is approximately equal to one 
image frame [23]. Thus, latency value can be decreased to 
3.2 msec if MVM are operated at maximum clock speed 
reported as by Xilinx ISE toolset. MVM module only 
consumes 12mW dynamic power while static power 
consumption is 36mW. Static power consumption is 
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dominant due to low device utilization as compared to 
total logic cells available on spartan6 LX45. Smaller 
FPGAs such as spatran6 LX25 or spatran6 LX16 can be 
selected to reduce static power. 
 
Results clearly show that the Architecture1 and 3 have 
lower latency and are more power efficient than 
Architecture2. The Microsoft Windows  based smart 
camera have ease of application development as its 
application development environment is supported by an 
image processing library to choose among different 
functions. This ease of programming model comes at the 
cost of higher power consumption and larger latency 
compared to the other two architectures. The results in 
Table 4 show that Matrox smart camera misses some of 
the frames while continuously grabbing and processing a 
video stream. These missed frames come as  a result of 
higher average processing time than compared to the 
time needed for frame grabbing. Hence, a homogeneous 
sampling in time domain cannot be guaranteed. On the 
other hand, the FPGA based systems we have proposed 
can process a new pixel at each clock cycle, thus greatly 
reducing the risk that frames are missed. MVM modules 
with soft-core processor provide a one-chip solution. A 
soft-core processor also has the benefit that it is very 
flexible such that a designer can add different modules of 
their own choice, but the soft processor’s data paths are 
not as optimized as compared to the Atmel micro-
controller used for Architecture 3. The latency of program 
in soft-core processor can be reduced by increasing the 
clock frequency but it will subsequently increase the power 
consumption. The results in Table 2 clearly show that 
latency of software system when executed on an external 
micro-controller is much less as compared to soft-core 
processor. As the execution in microcontroller is a few 
microseconds, we can force the micro-controller into sleep 
mode to further reduce the power consumption.  
 
One obvious benefit from using a smart camera based on 
Intel computer and Microsoft Windows is the rapid 
design times. Application programming is done using a 
high abstraction level language if compared to 
Architecture 1 and 3 which partly need modeling of 
hardware system at RT-level. RT-level modeling means  
 

that all computations and data transactions on register 
level needs to be scheduled for each clock cycle. A library 
of hardware IP-components could ease this complex 
programming model. 
 
The workload for the microprocessors in both Architecture 
1 and 3 as well as for the Intel computer in Architecture 2 
is for the general applications data dependent. The more 
image components in a single image, the more features to 
process per time unit. Efficient segmentation of images is 
required to segregate objects of interest from image 
background, so that minimum number of unwanted 
objects left after segmentation process. The latency time 
reported in Table 2 for MVM is valid for a frame speed of 
77 frames per second (fps). This frame speed can easily 
drop for Architecture 1 if number of image components 
after segmentation increases. This is because the latency 
for computation in microprocessor will risk of becoming 
larger than the frame period resulting in lost frames. 
Architecture 3 is much more tolerant for increase in 
number of image components. If the reported latency of 
37 us for computation in the microprocessor and for six 
image objects is linearly extrapolated, it will require more 
than two thousand objects per image before the frame 
speed in Architecture 3 starts to drop from the input image 
sensor speed of 77 fps  
 
The maximum frame speed for the MVM on FPGA is 
estimated from the maximum clock frequency reported 
by the design tool set. This maximum speed will be 
almost independent of number of image components due 
to a high level of data parallelism and a mostly 
synchronous data flow. Table 2, rightmost column reports 
the maximum frame speed for the video processing 
without considering speed of image sensor. The 
maximum frame speed of image sensor MT9V032 is quite 
low as compared to achieved frame speed presented in 
Table 2. If we want to operate the system at maximum 
speed as reported in Table 2, we need another image 
sensor providing much higher bandwidth on the output 
video stream.CMV2000 from CMOSIS is an example of a 
CMOS sensor that can operate at maximum 340 fps at 2 
Mega pixel resolutions. 
 

 

Activity Momentanious Current Time Consumed Applied Voltage Momentanious Power 
Consumption 

Processing 4.54 mA 12.54 usec 3.3 v 14.88 mW 
Communication 6.37 mA 24.5 usec 3.3 v 21.02 mW 

Idle 75 uA 12.96 msec 3.3 v 0.24 mW 
Overall mean power consumption for micro-controller in Architecture3 is 0.3mW 

Table 3. Results (power consumption of each activity run on Micro-controller in Architecture 3) 
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S No Processed 
frames 

Missed 
frames 

Computational 
time in sec 

Frame rate 
per second 

Computation 
latency 

Frame Grabbing latency 

1 2014 280 68.31 30.18 33.90ms 33.10ms 
2 1613 211 54.47 29.43 33.70ms 33.90ms 
3 4718 749 161.75 29.40 34.20ms 34.00ms 
4 2043 314 70.16 28.53 34.34ms 35.04ms 
5 1562 236 53.72 30.38 34.39ms 32.91ms 
6 3586 562 122.89 27.19 34.26ms 36.76ms 
7 2502 390 85.92 28.65 34.34ms 34.90ms 
8 5954 943 203.84 27.80 34.23ms 35.96ms 
9 7904 1081 265.32 29.96 33.56ms 33.36ms 
10 2547 397 87.43 29.10 34.32ms 34.35ms 
11 4713 634 158.19 33.92 33.50ms 29.47ms 
12 6014 962 206.18 29.71 34.28ms 33.65ms 

Table 4. Results (computational and frame grabbing latency in smart camera) 
 

  
Figure 7. Experimental setup                      (a)                                                                                       (b) 
 
These results indicate that the maximum frame speed 
of the whole system is limited by the microprocessor 
for Architecture 1. If Architecture 1 is run at maximum 
frame speed of MVM, the risk of missed frames will be 
high due to that the latency of computation in 
microprocessor will be closer to the frame period. 
Consequently, for a general application, it will not be 
realistic to run Architecture 1 at such high frame speed 
as the maximum for MVM and without missing 
frames. The maximum frame speed for Architecture 3 is 
limited by the hardware MVM. The optimized data 
paths in the stand-alone Atmel micro-controller are 
able to run software system much faster as compared 
to soft-core processor. Thus, a realistic machine vision 
system at hundreds of fps will require a powerful 
micro-controller or digital signal processor to run the 
control flow and mathematical computations. Major 
FPGA vendors are incorporating hard processor IPs 
along with programmable logic on single chip. Zynq-
7000 [29] from Xilinx and SmartFusion2 [30] from Actel 
are some recent example of them. Both systems include 
ARM® Cortex™ processors interfacing with FPGA 
programmable logic through high speed, low power 
communication channels. We have not included any of 
these later and more powerful FPGA families in this 
study but we aim to investigate their performance in 
future studies. 

We have not considered different choices of image 
sensors in this study. Our study is focused on choice of 
architecture for image processing and analysis. However, 
the Aptina CMOS sensor used in our experimental setup 
for architecture 1 and 3 represents the major power 
consumption for those systems.  

7. Conclusion 

In this work we have compared a performance matrix of 
three smart camera architectures. This comparison was 
done for real-time computation of distance and angle of a 
camera from a set of reference points located on a target 
board. Architecture 2 is a commercially available smart 
camera based on an Intel computer and Microsoft 
Windows. It is power hungry and has longer latency than 
Architecture 1 and 3. However, this software based 
platform is attractive due to its use of a high level 
programming model and a source code library for image 
processing. Architecture2 should be the first choice when 
short engineering time is the most important design 
metric. Further, we have shown that the hardware based 
smart camera systems presented as Architecture 1 and 3 
have better performance in terms of frame speed and 
latency. In addition, FPGA based systems consume much 
less power if compared with the Microsoft Windows 
based smart camera. Architecture 3 is a heterogeneous 
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solution having FPGA and an external microcontroller. It 
has both lower latency and lower power consumption 
than the single-chip soft-core based system design on 
FPGA. This lower power consumption is due to the more 
optimized data paths of the Atmel microcontroller if 
compared with a soft processor on FPGA. In addition, 
data transfers between FPGA and microcontroller are 
kept at minimum by a well partitioned algorithm 
between hardware and software leading to lower overall 
power consumption for the microcontroller. We 
recommend using Architecture 3 when speed and power 
are the most important design metrics. Architecture 1 
based on soft-core processor offers more flexibility, 
portability and higher level of system integration. If 
portability, small physical sizes and high level of 
integration are the most important design metrics, we 
recommend using Architecture 1.  
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