
International Journal of Advanced Robotic Systems

Comparison of Three Smart Camera
Architectures for Real-Time Machine
Vision System

Regular Paper

Abdul Waheed Malik1,*, Benny Thörnberg2 and Prasanna Kumar2

1 Department of Electronics Design, MidSweden University, Sudsvall, Sweden
2 MidSweden University, Sweden
* Corresponding author E-mail: maliks1@gmail.com

Received 02 Jul 2013; Accepted 20 Sep 2013

DOI: 10.5772/57135

© 2013 Malik et al.; licensee InTech. This is an open access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract This paper presents a machine vision system
for real-time computation of distance and angle of a
camera from a set of reference points located on a
target board. Three different smart camera
architectures were explored to compare performance
parameters such as power consumption, frame speed
and latency. Architecture 1 consists of hardware
machine vision modules modeled at Register Transfer
(RT) level and a soft-core processor on a single FPGA
chip. Architecture 2 is commercially available software
based smart camera, Matrox Iris GT. Architecture 3 is a
two-chip solution composed of hardware machine
vision modules on FPGA and an external micro-
controller. Results from a performance comparison
show that Architecture 2 has higher latency and
consumes much more power than Architecture 1 and 3.
However, Architecture 2 benefits from an easy
programming model. Smart camera system with FPGA
and external microcontroller has lower latency and
consumes less power as compared to single FPGA chip
having hardware modules and soft-core processor.

Keywords Machine Vision, Component Labeling, Smart
Camera

1. Introduction

Smart cameras are real-time machine vision systems.
Real-time machine vision systems generally perform
image capturing, processing of captured images and
extracting the useful information which is used for
decision making. The typical applications in which smart
cameras are applied include process control, surveillance,
optical navigation and robot vision. Among these
applications, optical navigation and robot vision require
high frame speed and low computational latency. This
requirement on high frame speed comes from the control
and regulation of a robot’s motion [2]. Power
consumption must in some cases still be low enough to
enable small sized portable and battery operated devices
[4]. In addition, most of the above discussed smart
camera applications require programmability for easy
prototyping and incorporation of future modifications.

1Abdul Waheed Malik, Benny Thörnberg and Prasanna Kumar: Comparison of Three
Smart Camera Architectures for Real-Time Machine Vision System

www.intechopen.com

ARTICLE

www.intechopen.com Int. j. adv. robot. syst., 2013, Vol. 10, 402:2013

http://crossmark.crossref.org/dialog/?doi=10.5772%2F57135&domain=pdf&date_stamp=2013-01-01

Pixels

Features
Segmentation

Low level

Intermediate level

High level
Objects

Preprocessing

Classification

Recognition

Figure 1. Image processing tasks pyramid [1]

Image processing operations are generalized in Figure 1.
Low level processing tasks include noise removal,
distortion compensation, contrast enhancement etc. The
Intermediate level processing include segmentation,
labeling and feature extraction. During segmentation,
image components and background are separated.
Labeling assigns a unique label to each image component.
After image component features are extracted, we can
classify them into pre-defined classes such that the objects
are distinguished. High level processing include object
recognition. The data intensity decreases as we move
from preprocessing to object recognition. The architecture
for real-time image processing should be able to handle
low level data intensive pixel processing as well as high
level mathematical functions.

This work is focused on comparison of three smart
camera architectures shown in Figure 2. Architecture 1
consists of Machine Vision Modules (MVM) and soft-core
processor. MVM contains image capturing, segmentation,
labeling and feature extraction. MVM were modeled at
RT level. Extracted features are sent to a soft-core
processor, MicroBlaze, for the calculation of the camera
distance and angle with respect to reference points
located on a target board. A soft-core processor is an RT
level model of a micro-processor, captured using a
Hardware Description Language (HDL) such as VHDL.
This RT model is flexible and can be modified based on
requirements for a particular application. The HDL
description can then be synthesized either for an FPGA or
an ASIC. Architecture 2 is commercially available software
based smart camera. This smart camera has General
Purpose Processor (GPP), on chip RAM, installed
windows environment and image processing library.
Architecture 3 is similar to Architecture 1, except that the
soft-core processor is replaced by an external 32 bit

microcontroller, Atmel AVR32. The application chosen
for the comparison of performance metrics is sensing of
angle and distance of a camera with respect to a target
board.

Smart cameras are common in production lines, security
applications and for industrial process monitoring. The
faster production lines need machine vision system with
short response time. Time-critical smart applications such
as video based driving assistance, high speed visual
feedback for robotic arm [2] and traffic flow control [3]
need quick response times. Thus, the processing
architecture for these time-critical applications should
have high data throughput and low latency. Battery
operated smart camera applications demand low power
consumption. Smart camera applications such as camera
based navigation aid for visually impaired persons [4], [5]
smart camera node for video surveillance [6], [7] and
information collection from a natural disaster by smart
camera [9] require low power consumption for longer
battery life time. Low power consumption is also
necessary for smart camera nodes that are powered by
alternate energy sources such as solar power [8]. Thus,
high frame speed and low power consumption are major
issues that will be considered when comparing the three
presented architectures. The motivation for this study is
to gain knowledge about how to choose architecture for a
smart camera. High abstraction level programming
model and well developed image processing library make
commercially available smart camera systems an
attractive choice for machine vision application
development. On the other hand, an FPGA based system
with hardware-software co-design can exploit the
potential parallelism present in data intensive image
processing applications.

Hardware-software co-design requires efficient
partitioning of image processing tasks between hardware
and software to optimize speed and power consumption.
The results from using a single FPGA chip for processing
is also compared with a heterogeneous platform using
separate chips for FPGA and microcontroller. The results
from this comparison can be analyzed to select an
architecture based on latency, frame speed, power
consumption, ease of programming and level of system
integration.

Figure 2. Smart camera architectures

2 Int. j. adv. robot. syst., 2013, Vol. 10, 402:2013 www.intechopen.com

a)

Binary pixel
stream input

O/E

En

Data
table A

Data
table B

Data table

P7 P8 P9 P6

Labeller

Equivalence table

O/E A B EW

En En

Table A Table B

Mux

Resolver

Eq. read port

Gray scale- or colour
pixel stream input

Codes

Equivalences

COG calculation

COG data of
labelled objects

Table ready

En

b)

c)

Figure 3. Pixel neighborhood, b) Hardware architecture for component labeling and feature calculation, c) Flow graph for software system

An alternative technology to realize high throughput and
low power smart camera system is by using Application
Specific Integrated Circuits (ASIC). ASIC data paths are
highly optimized and have low latency. However smart
camera application presented in [2-8] require
programmability for adaption to the environmental
conditions where they are installed and also for
incorporation of future modifications to algorithms. High
Non Recurring Engineering (NRE) costs for ASIC
Application development make it difficult to easily
incorporate changes. This constraint makes the FPGA
platform more suitable than ASIC for smart camera
applications where programmability is required.

The main scientific contribution of this work is the
performance evaluation of three different architectures
for a smart camera. The chosen architectures have their
own characteristic, and this performance evaluation give
the smart camera designer guidance about the choice of
specific architecture based on application and
performance requirement.

2. Related Work

Smart camera platforms have capabilities of image-
capturing and processing to obtain the desired
information from images [10], [11]. After processing of
the captured images, the obtained results can be sent via

some communication channel to a base station or some
critical decision can be taken locally at smart camera
node.

A multimedia processor is one of the options to
implement a smart camera system. The Trimedia
processor series is developed by Phillips. Trimedia
TM3270 is Very Long Instruction Word (VLIW) based
architecture [13]. This processor can support up to 7
billon operations per second. Applications can be
developed using C language. The dynamic power
consumption of this processor is around 1 mW/MHz. The
processor can be operated at maximum 450 MHz. There
are also other similar multimedia processors available e.g.
SH series from Hitachi, Itanium2 developed by Intel and
Hewlett-Packard.

Commercially available software based smart cameras
have both an image sensor and an on-board
programmable processing platform. Matrox Iris GT [14],
NI-1772 from National Instruments [15] or XCISX100C
from SONY[16] have reasonable high processing
capabilities. Due to the installed operating system and the
imperative programming model, the designer’s work to
develop applications are made simpler compared to RTL-
modellling. However, the power consumption of these
smart cameras is in tens of watts, which is not realistic for
battery operated smart cameras.

3Abdul Waheed Malik, Benny Thörnberg and Prasanna Kumar: Comparison of Three
Smart Camera Architectures for Real-Time Machine Vision System

www.intechopen.com

Smart camera platforms can be built from an image
sensor and an optimized data path for processing of
captured images [17]. FPGAs and custom designed VLSI
circuits can be employed to achieve the desired
functionality with low power consumption. FPGAs are
reprogrammable while VLSI data paths are more
optimized and consume very low power. Re-
programmability in an FPGA based platform, massive
parallelism and shorter design times than VLSI circuits
make them suitable for smart camera applications. High
throughput and low power consumption are
fundamental requirement for many smart camera
applications. A smart camera used in feedback loop of a
robotic arm to re-grasp an object is presented by Noriastu
et al [2]. This vision system provides feedback at a rate of
1 KHz so that the robotic arm and finger can adjust their
position according to the object’s position. Industrial
surface monitoring of cylindrical objects and sheets is
presented by Tomohira et al [12]. Camera based
inspection of rapidly spinning object and fast moving
sheet needs high throughput to be able to inspect any
defects on the surface. Battery operated smart camera
applications demand low power consumption to achieve
a reasonable battery life time. The application such as
vision based navigation support for blind people is
presented by Joao et al [4]. Stereovision cameras were
attached on chest of a blind person and captured image
were sent to a portable computer for detection of obstacles
and planning of path. Battery operated smart camera
systems with low power consumption is suitable for this
scenario to reduce the size and easy mounting together with
image sensors. The surveillance applications presented in [5-
7] are also battery powered camera based system that
requires low power consumption.

Wu Liming et al presented experiments on image
processing tasks executed on a single chip using a soft-
core processor MicroBlaze. They aimed to compare the
performance of a software implementation with a
software/hardware implementation. Bitonic sort and
median filter were used as test cases for the evaluation of
system performance. They concluded that a system
design using soft-core processor with hardware IPs not
only speeds up the development time but also results in a
more than ten times performance improvement as
compared to that of a software implementation [19].

Figure 4. On chip system architecture1

p

Ø
Ø

Dqp

ß

Dwq

DpzDwz

Dxyx

y
f

q
w

Dqz

z

Figure 5. Triangulation view

A summary of different smart camera architectures and
platforms was discussed by Shi Y et al [20]. The selection
of architecture depends on the application. For in-camera
processing of captured images, homogenous and
heterogeneous platforms are described. In most smart
camera applications, there are data intensive tasks like
segmentation, component labeling, feature extraction and
math intensive tasks such as pattern matching. Authors
suggested that data intensive tasks should be
implemented on parallel architectures, while control and
mathematical computations can be performed using a
Application RISC or DSP processor. One such smart
camera system for face recognition is presented by
Broeres et al [21].

The main contribution of this article is an evaluation of
three different smart camera systems having computation
either: on a single-chip FPGA, or a heterogeneous system
consisting of an FPGA and microcontroller versus a
commercially available smart camera based on an Intel
computer and Microsoft Windows. From the study of
related literature we have not found any comparison of
this nature. Therefore this study is a valuable scientific
contribution that will help a smart camera designer about
choice of particular architecture.

The remaining section of this paper is organized as
follows:. Section 3 explains the different architectures
used for comparison. Section 4 describes experimental
setup and methodology, Section 5 explains results, and
Section 6 deals with discussion on the results.

3. Proposed architectures

In this section we will discuss the proposed architectures.

3.1 Proposed Architecture 1

Architecture 1 consists of three major components i.e.
MVMs, soft-core processor MicroBlaze and software
system. A CMOS image sensor (MT9V032) from Micron,
operating at maximum clock frequency of 27 MHz, was
used to capture the images. The VmodBB connector from
Digilent is used to connect camera signal to Spartan-6
development board. This is a parallel interface

4 Int. j. adv. robot. syst., 2013, Vol. 10, 402:2013 www.intechopen.com

transferring one pixel per clock cycle. The capture images
are fed to MVMs for further processing. MVMs perform
image capturing, segmentation, labeling and feature
extraction. The features were sent to the soft-core
processor. Computation of distance and angle was done
by a software system executed on the processor.

In past, FPGAs used to be homogeneous hardware
platforms containing a huge set of logic blocks. Today’s
FPGA architectures are more of heterogeneous
computational platforms. FPGAs still have a large set of
configurable logic gates but they have also embedded
arithmetic units, block memories and memory controllers.
In addition, the FPGA circuit technologies are targeted
towards very low power applications.

3.1.1 Machine Vision Modules

MVMs were modeled at RT level using the hardware
descriptive language VHDL. Images captured by an
image sensor are processed at a segmentation step.
Segmentation in this case involves a simple thresholding
of gray levels to separate bright reference points from
their background. The segmented images are further
separated into background and a set of labeled image
components while at the same time, features are extracted
for each component. The hardware architecture for image
component labeling and feature extraction is shown in
Figure 3(b). For the labeling process of a typical image,
the neighborhood is shown in Figure 3(a).

The pixel P5 is assigned a label based on its neighboring
pixels P6 to P9. A delay line of one FIFO-buffer and two
registers hold the labels assigned to previous row [23].
The kernel for labeling and feature extraction is depicted
Figure 3(b). The labeler assigns labels to P5 depending on
its neighbors. If the labeler does not find any labeled
pixels in the neighborhood, a new label is assigned to P5.
If the labeler finds two different labels in the

neighborhood of P5, then P5 is assigned to one of these
labels and the detected pair of labels must be recorded as
equivalent. This is, because all connected pixels must be
recognized as belonging to the same image component.
The equivalences are recorded in Table A or B based on
odd or even frame. Equivalences are resolved after
labeling whole frame such that all labels in an image
component should have same value. This label assigning
and resolution runs in parallel in Table A or B. Along with
labeling process we also accumulate data for feature
extraction in Data table A or B. When all equivalences are
resolved in Table A or B, the Table ready signal is sent to
feature extraction unit e.g. COG calculation in Figure 3(b).
The extracted features are sent to soft-core processor. The
software system then calculates the distance and angle
information of camera from reference points.

3.1.2 Soft-Core Processor And Interconnects

A vendor specific system based on a Xilinx Spartan 6
FPGA is shown Figure 4. MicoBlaze is Harvard
architecture based 32 bit RISC soft processor. MicroBlaze
contains Memory Management Unit, instruction and data
cache, floating point unit and configurable pipeline
depth. A Processor Local Bus (PLB) is used to
communicate between process and different peripherals.
Fast Simplex Link (FSL) or Advance eXtensible Interface
(AXI) can be used to communicate between MicroBlaze
and user defined hardware IP’s. A MicroBlaze [24] soft
processor connects to MVM via a Fast Simplex Link (FSL)
bus. As a soft-core processor, MicroBlaze is implemented
entirely in the general-purpose logic fabric of Xilinx
FPGAs. The MicroBlaze based system can be developed
under Xilinx's EDK (Embedded Development Kit)
environment. FSL is a uni-directional point-to-point FIFO
based communication channel bus that is used to perform
fast communication between the MVM and the
MicroBlaze processor.

Figure 6. Two chip system for architecture 3

 Frame Speed/sec Power Consumption Total

Architecture 1

77

FPGA Image Sensor
400mW 80mW 320mW

Architecture 2 33 5.5W 5.5W

Architecture 3

77

FPGA Micro-controller Image Sensor
368mW 48mW 0.3mW 320mW

Table 1. Results (power consumption)

5Abdul Waheed Malik, Benny Thörnberg and Prasanna Kumar: Comparison of Three
Smart Camera Architectures for Real-Time Machine Vision System

www.intechopen.com

Images captured as a continuous stream of video are fed
to the MVM. The image component features extracted by
the MVM are sent to the Microblaze through the FSL bus.
A UART and a Timer were interfaced with the
MicroBlaze through a Processor Local Bus (PLB). The
UART is used to send computed values for distances and
angles to an external host system.

3.1.3 Softwar System

The software system defines the distance and angle
measurement of camera from a set of reference points
located on a target board The hardware-software
partitioning for Architecture 1 and 3 is shown in Figure
3(c). In these two architectures the software System
performs the distance and angle measurement of camera
from reference points based on extracted Centre of
Gravity “COG” values computed by MVM. For
Architecture 1 and 3, the software was coded using
imperative programming language “C”. The general flow
graph of all computational operations is shown in Figure
3(c). The MVM modules compute the “COG” of reference
points as a required feature. The distance of camera from
the reference point was calculated using lens formula
[25]. After knowing the distance between camera and
reference points, we used triangulation to calculate the
viewing angle of camera.

Image processing tasks are divided between MVM and
software system such that all data intensive task are
modeled at RT level. Only features data is sent from MVM to
software system that will reduce communication overhead
associated with data transfer from MVM to software
system. Different strategies for partitioning image
processing tasks between hardware and software are
studied in [22]. The result in this literature shows that
minimum data transfer between hardware modules and
software can be achieved if data intensive image
processing tasks up to feature extraction, as shown in
Figure 1, are performed on hardware modules. Thus, the
partitioning between hardware and software is based on
data intensity. The RT level design models the synchronous
data flow of signals in digital circuits. RT level is motivated
when we have synchronous data intensive system e.g. pixel
stream from a camera. However, non data intensive but
more reactive and control flow intensive computations can
be well performed by micro-controller. This fact is also
highlighted in [19]. In addition, the implementation of
complex mathematical equations in RT level design is time
consuming and requires high NRE cost.

3.2 Proposed architecture 2

The second architecture chosen for comparison is a
commercially available smart camera, Matrox Iris GT.
This smart camera comes with Microsoft Windows XP
embedded as operating system. Developing a vision

application in C++ is much easier compared to RTL
modeling for the other two architectures. Iris GT has a
Sony ICX274AQ progressive scan CCD image sensor
having square pixels of diagonal size 8.923mm. It has an
onboard 1.6GHz Intel atom processor with 512MB of
volatile and 2GB of non volatile memory. Matrox Iris
smart camera contains Intel® Atom® (Z530) embedded
processor. The Intel atom (Z530) is 32 bit processor. This
processor is common in many note books and embedded
applications. This processor has 512KB of cache and Front
Side Bus (FSB) that operates at 533 MHz. The processor
support Hyper- Threading and operate at 1.6GHz clock
frequency It has three main interfaces such as digital I/O,
VGA/USB and 100/1G Ethernet.

The flow graph for Architecture 2 is same as presented in
Figure 3(c). All tasks from image capturing to distance
and angle of camera, computational steps 1 to 8 in Figure
3(c) are executed on software system for Architecture 2.
The Matrox Imaging Library (MIL) helps easy
prototyping and contains most of basic image processing
functions that reduce the workload on developer. The
developer of applications uses the high level
programming model VisualC++.

3.3 Proposed architecture 3

Architecture3 is similar to Architecture1 except that the
soft-core processor is replaced by an Atmel AVR 32 bit
micro-controller AT32UC3B0256 [26] as shown in Figure 6.
This micro-controller has high processing capabilities and
has low power consumption. AT32UC3B0256 has six
different operation modes in order to meet different
performance and power consumption requirement. The
maximum clock frequency can be 60 MHz. Architecture 3
includes 32 bit micro-controller Atmel AVR 32
AT32UC3B0256 to execute software system. Atmel AVR
32 is RISC base micro-controller. The controller can be
clocked up to 60 MHz. The micro-controller provides 6
different power modes that can be adopted to optimize
power consumption depending upon the performance
requirement of application.

To measure the performance and power consumption we
used SENTIO32 [27] board developed at Mid-Sweden
University, Sweden. The SENTIO32 board is equipped
with an AVR microcontroller and communication
interfaces. The extracted features from MVM were
transferred to the microcontroller board using SPI link
operating at a clock frequency of 8 MHz. The software
system for Architecture 3 is already explained in section
3.1.3.

3.4 Viewing Angle and Distance Calculation

For all three architectures, computation of distance and
angle from camera to a target board is defined by

6 Int. j. adv. robot. syst., 2013, Vol. 10, 402:2013 www.intechopen.com

software. This section describes the mathematical
formulas captured in software in accordance with
computational step 4 to 7 as shown in Figure 3(c). Inputs
for the computation are the COG values of reference
points, focal length of camera, computed distances
between reference points in image plane and known
distances between reference points on the target board.
The camera was placed in front of target board in a way
to achieve the orthogonal projection on camera lens. The
line, Dwq, in Figure 5, show the alignment of the target
board. We are interested in find the reference points to
camera distance Dwz and view angle Ф. Viewing angle of
camera from target board was calculated by solving
similar triangles, ∆pqz and ∆xyz. Following information
is used to draw the final equation for distance and angle
of camera.

Dwz Distance between the camera and Black board
ф Viewing angle of the camera
Dwq Euclidean distance between points on the board
Dxy Euclidean distance between points in image plane
f Focal length of the camera
Dqz Distance between the focal point(z) and reference

point(q) on board as shown in Figure 5
Dpz Distance between the focal point(z) and projection

of reference point(w) as shown in Figure 5
∠zxy = ∠wpq = 90degree, ∠pwq = ф= viewing angle,

∠pqw = β

(1)

 (2)

4. Experimental setup and methodology

The experimental setup used for Architecture 1 is shown
in Figure 7(a). It consists of white reference points fixed
on a black colored target board. A CMOS image sensor
was clamped on a stand along with lightning facilities.
The image sensor captures images and sends them to an
experimental FPGA board, which executes the embedded
real-time machine vision system described in section 3.
Computed distance and angle are sent from the FPGA
board using RS232 to a host computer. This experiment is
performed to make a functional verification of the system
for a few selected distances and angles. The Atlys
Spartan6 board has the capacity of monitoring power
consumption on different voltage rails available on
Digilent board. The FPGA core is connected to a 1.2 Volt
rail. The monitors are based on Linear Technology’s
LTC2481C sigma-delta analog-to-digital converters that
return 16-bit samples for each channel. The latency of the
soft-core processor is measured by code profiling i.e.
using a timer at start and end of program. The latency

value is also verified using a logic analyzer. Specific
pattern is sent to a set of IO pins at start and end of
software program allowing for the logic analyzer to
trigger and compute the time difference between the two
patterns. The latency of MVM modules are computed in
simulations and also measured using a logic analyzer.
These latency values contain camera overhead for row
and frame synchronization.

For experiments with Architecture 2, the Matrox IRIS GT
smart camera is placed in front of the reference board.
Images are continuously grabbed and processed from a
stream of video generated at the image detector output.
The smart camera is configured to simultaneously grab
next image and process current image in an interleaved
mode. A host computer is needed for development of
applications. Camera and host computer are connected
using a 1Gbit Ethernet interface configured to a static IP
address. The application is developed in Microsoft visual
studio using Matrox imaging library and deployed in the
Iris GT using a remote debugger. The programming
language used to develop applications is visual C++.
When the application is deployed in Iris GT, it can solely
run without any connection to the host computer. The
camera is programmed to execute image processing steps
like segmentation, component labeling and feature
extraction. Firstly, during segmentation, the white
reference points are separated from the image
background. Later at component labeling and feature
extraction, all reference points are labeled into unique
image objects and their COG values are computed as
object features. Euclidean distances between reference
points are calculated based on their COG values. Distance
and angle are computed in accordance with equations (1)
and (2). The computed values of distance and angle are
then transmitted using a serial cable to a host computer
and viewed on a graphical display using LabVIEW
software environment, as shown in Figure 7(b). Iris GT
computes and transmits distance and angle for every
frame such that the actual camera position is updated on
the LabVIEW graphical display at a rate of 33values per
second. The latency for the smart camera is measured
using code profiling. Power measurement for smart
camera is made using voltage- and ampere meters
connected to the camera through a break out board [14] .

(3)

Experimental setup for Architecture 3 is similar to
Architecture 1 except that the soft-core processor is
replaced with a microcontroller assembled on a second
circuit board. The extracted features from MVM are sent
to the microcontroller through SPI for further

7Abdul Waheed Malik, Benny Thörnberg and Prasanna Kumar: Comparison of Three
Smart Camera Architectures for Real-Time Machine Vision System

www.intechopen.com

 Frame
Speed/sec

Latency Total Maximum Frame
(640x480) Speed/sec

Architecture 1

77

MVM Soft-core
17.4 msec

227 13 msec 4.4 msec

Architecture 2

33

Frame Grabbing Processing
68.03 msec

33 33.95 msec 34.08 msec

Architecture 3

77

MVM Micro-controller
13.037 msec

315 13 msec 37 usec

Table 2. Results (Latency)

computation of distance and viewing angle of camera
from target board. The latency of the software system in
the micro-controller is measured using a logic analyzer.
DC current measurements for the microcontroller are
taken from SENTIO32 board using Agilent 34410A
digital multi-meter [28]. This digital meter can sample
the data at 10 KHz and store samples on a host
computer. For all activities that have execution time less
than one sample period i.e 100 usec, we repeated the
activity for extended duration. During this duration a
large number of samples that correspond to
instantaneous current consumption were used to obtain
average current consumption that is reported in this
article. Average value can be found from stored data.
The power consumption associated with data transfer
from the FPGA to the micro-controller and processing in
the micro-controller is computed using equation (3). In
this equation, Pp, Pc and Pi represent average power
consumption during processing, communication and in
idle mode respectively. Tp, Tc and Ti are time taken for
processing, communication and in idle mode
respectively. Vdd is supply voltage that was equal to 3.3
volt.

5. Results

In this section we present results for power
consumption, maximum frame speed and latency.
Results are summarized in Table 1 and Table 2. In
architecture 1, the MVM modules were operated at 27
MHz, while soft core processor at 16 MHz. The latency
of MVM modules is measured to be 13 msec and soft-
core processor compute distance and angle in 4.4 msec.
MVM were implemented on a Digilent Atlys Spartan-6
board. The maximum frame speed for Architecture 1 is
approximately 227 frames per second at a frame size of
640 by 480 pixels. This frame speed is limited by
latency of computation in soft-core processor.
Otherwise the MVM could operate at frame speed of
315 frames per second. Maximum frame speed is
calculated based on maximum clock frequency
reported by Xilinx synthesis tool and without
considering speed of image sensor. Total power
consumption for Architecture 1 is 400 mW. This power
consumption for the whole camera system includes 320
mW dissipated in the Aptina image sensor.

In Architecture 2, the Intel atom processor was operating
at 1.6 GHz. Maximum frame speed at resolution of 640 by
480 pixels is 33 frames per second and power
consumption is 5.5W. The average latency of frame
grabbing and computation is approximately 68 msec.
Detailed results for measured computational latencies
and frame speeds are presented in Table 4.

In Architecture 3, MVM and an external microcontroller
are combined into a smart camera platform. The AVR32
microcontroller operating at 16 MHz only takes Tp=12.54
usec for processing, while Tc=24.5 usec for
communication from MVM to microcontroller.
Microcontroller remains idle for Ti=12.96 msec. The
microcontroller consumes in average Ip=4.51 mA current
during processing, Ic=6.37 mA during communication
and only Ii=75 uA during idle mode. In order to minimize
power consumption, the controller can be put into idle
mode where it consumes very low power. The total
average power for microcontroller is calculated using
equation (3). The result from momentanious power
consumption for each activity is presented in Table 3. The
Aptina image sensor consumes 320 mW power at full
resolution, while 120 uW in standby mode. The power
consumption for FPGA includes both static and dynamic
power. Total power consumption for Architecture 3 is 368
mW.

6. Discussion

In this work we compare a performance matrix of three
smart camera architectures. Results from analyzing
power consumption are presented in Table 1. For
Architecture 1, total 18 percent of the available slices are
used for the whole system, in which 6 percent of the
available slices are used for the MicroBlaze only. 33 block
RAMs are used, 17 block RAMs for the MVM [23] and 16
block RAMs for the data and instructions memories
related to MicroBlaze. MVM are connected to MicroBlaze
though an FSL link. The latency for MVM is 13 msec at 27
MHz. This latency value is approximately equal to one
image frame [23]. Thus, latency value can be decreased to
3.2 msec if MVM are operated at maximum clock speed
reported as by Xilinx ISE toolset. MVM module only
consumes 12mW dynamic power while static power
consumption is 36mW. Static power consumption is

8 Int. j. adv. robot. syst., 2013, Vol. 10, 402:2013 www.intechopen.com

dominant due to low device utilization as compared to
total logic cells available on spartan6 LX45. Smaller
FPGAs such as spatran6 LX25 or spatran6 LX16 can be
selected to reduce static power.

Results clearly show that the Architecture1 and 3 have
lower latency and are more power efficient than
Architecture2. The Microsoft Windows based smart
camera have ease of application development as its
application development environment is supported by an
image processing library to choose among different
functions. This ease of programming model comes at the
cost of higher power consumption and larger latency
compared to the other two architectures. The results in
Table 4 show that Matrox smart camera misses some of
the frames while continuously grabbing and processing a
video stream. These missed frames come as a result of
higher average processing time than compared to the
time needed for frame grabbing. Hence, a homogeneous
sampling in time domain cannot be guaranteed. On the
other hand, the FPGA based systems we have proposed
can process a new pixel at each clock cycle, thus greatly
reducing the risk that frames are missed. MVM modules
with soft-core processor provide a one-chip solution. A
soft-core processor also has the benefit that it is very
flexible such that a designer can add different modules of
their own choice, but the soft processor’s data paths are
not as optimized as compared to the Atmel micro-
controller used for Architecture 3. The latency of program
in soft-core processor can be reduced by increasing the
clock frequency but it will subsequently increase the power
consumption. The results in Table 2 clearly show that
latency of software system when executed on an external
micro-controller is much less as compared to soft-core
processor. As the execution in microcontroller is a few
microseconds, we can force the micro-controller into sleep
mode to further reduce the power consumption.

One obvious benefit from using a smart camera based on
Intel computer and Microsoft Windows is the rapid
design times. Application programming is done using a
high abstraction level language if compared to
Architecture 1 and 3 which partly need modeling of
hardware system at RT-level. RT-level modeling means

that all computations and data transactions on register
level needs to be scheduled for each clock cycle. A library
of hardware IP-components could ease this complex
programming model.

The workload for the microprocessors in both Architecture
1 and 3 as well as for the Intel computer in Architecture 2
is for the general applications data dependent. The more
image components in a single image, the more features to
process per time unit. Efficient segmentation of images is
required to segregate objects of interest from image
background, so that minimum number of unwanted
objects left after segmentation process. The latency time
reported in Table 2 for MVM is valid for a frame speed of
77 frames per second (fps). This frame speed can easily
drop for Architecture 1 if number of image components
after segmentation increases. This is because the latency
for computation in microprocessor will risk of becoming
larger than the frame period resulting in lost frames.
Architecture 3 is much more tolerant for increase in
number of image components. If the reported latency of
37 us for computation in the microprocessor and for six
image objects is linearly extrapolated, it will require more
than two thousand objects per image before the frame
speed in Architecture 3 starts to drop from the input image
sensor speed of 77 fps

The maximum frame speed for the MVM on FPGA is
estimated from the maximum clock frequency reported
by the design tool set. This maximum speed will be
almost independent of number of image components due
to a high level of data parallelism and a mostly
synchronous data flow. Table 2, rightmost column reports
the maximum frame speed for the video processing
without considering speed of image sensor. The
maximum frame speed of image sensor MT9V032 is quite
low as compared to achieved frame speed presented in
Table 2. If we want to operate the system at maximum
speed as reported in Table 2, we need another image
sensor providing much higher bandwidth on the output
video stream.CMV2000 from CMOSIS is an example of a
CMOS sensor that can operate at maximum 340 fps at 2
Mega pixel resolutions.

Activity Momentanious Current Time Consumed Applied Voltage Momentanious Power
Consumption

Processing 4.54 mA 12.54 usec 3.3 v 14.88 mW
Communication 6.37 mA 24.5 usec 3.3 v 21.02 mW

Idle 75 uA 12.96 msec 3.3 v 0.24 mW
Overall mean power consumption for micro-controller in Architecture3 is 0.3mW

Table 3. Results (power consumption of each activity run on Micro-controller in Architecture 3)

9Abdul Waheed Malik, Benny Thörnberg and Prasanna Kumar: Comparison of Three
Smart Camera Architectures for Real-Time Machine Vision System

www.intechopen.com

S No Processed
frames

Missed
frames

Computational
time in sec

Frame rate
per second

Computation
latency

Frame Grabbing latency

1 2014 280 68.31 30.18 33.90ms 33.10ms
2 1613 211 54.47 29.43 33.70ms 33.90ms
3 4718 749 161.75 29.40 34.20ms 34.00ms
4 2043 314 70.16 28.53 34.34ms 35.04ms
5 1562 236 53.72 30.38 34.39ms 32.91ms
6 3586 562 122.89 27.19 34.26ms 36.76ms
7 2502 390 85.92 28.65 34.34ms 34.90ms
8 5954 943 203.84 27.80 34.23ms 35.96ms
9 7904 1081 265.32 29.96 33.56ms 33.36ms
10 2547 397 87.43 29.10 34.32ms 34.35ms
11 4713 634 158.19 33.92 33.50ms 29.47ms
12 6014 962 206.18 29.71 34.28ms 33.65ms

Table 4. Results (computational and frame grabbing latency in smart camera)

Figure 7. Experimental setup (a) (b)

These results indicate that the maximum frame speed
of the whole system is limited by the microprocessor
for Architecture 1. If Architecture 1 is run at maximum
frame speed of MVM, the risk of missed frames will be
high due to that the latency of computation in
microprocessor will be closer to the frame period.
Consequently, for a general application, it will not be
realistic to run Architecture 1 at such high frame speed
as the maximum for MVM and without missing
frames. The maximum frame speed for Architecture 3 is
limited by the hardware MVM. The optimized data
paths in the stand-alone Atmel micro-controller are
able to run software system much faster as compared
to soft-core processor. Thus, a realistic machine vision
system at hundreds of fps will require a powerful
micro-controller or digital signal processor to run the
control flow and mathematical computations. Major
FPGA vendors are incorporating hard processor IPs
along with programmable logic on single chip. Zynq-
7000 [29] from Xilinx and SmartFusion2 [30] from Actel
are some recent example of them. Both systems include
ARM® Cortex™ processors interfacing with FPGA
programmable logic through high speed, low power
communication channels. We have not included any of
these later and more powerful FPGA families in this
study but we aim to investigate their performance in
future studies.

We have not considered different choices of image
sensors in this study. Our study is focused on choice of
architecture for image processing and analysis. However,
the Aptina CMOS sensor used in our experimental setup
for architecture 1 and 3 represents the major power
consumption for those systems.

7. Conclusion

In this work we have compared a performance matrix of
three smart camera architectures. This comparison was
done for real-time computation of distance and angle of a
camera from a set of reference points located on a target
board. Architecture 2 is a commercially available smart
camera based on an Intel computer and Microsoft
Windows. It is power hungry and has longer latency than
Architecture 1 and 3. However, this software based
platform is attractive due to its use of a high level
programming model and a source code library for image
processing. Architecture2 should be the first choice when
short engineering time is the most important design
metric. Further, we have shown that the hardware based
smart camera systems presented as Architecture 1 and 3
have better performance in terms of frame speed and
latency. In addition, FPGA based systems consume much
less power if compared with the Microsoft Windows
based smart camera. Architecture 3 is a heterogeneous

10 Int. j. adv. robot. syst., 2013, Vol. 10, 402:2013 www.intechopen.com

solution having FPGA and an external microcontroller. It
has both lower latency and lower power consumption
than the single-chip soft-core based system design on
FPGA. This lower power consumption is due to the more
optimized data paths of the Atmel microcontroller if
compared with a soft processor on FPGA. In addition,
data transfers between FPGA and microcontroller are
kept at minimum by a well partitioned algorithm
between hardware and software leading to lower overall
power consumption for the microcontroller. We
recommend using Architecture 3 when speed and power
are the most important design metrics. Architecture 1
based on soft-core processor offers more flexibility,
portability and higher level of system integration. If
portability, small physical sizes and high level of
integration are the most important design metrics, we
recommend using Architecture 1.

8. References

[1] Donald B. (2011) Design for embedded image
processing on FPGA, John Wiley & Sons (Asia) Pte
Ltd. pp 7-9.

[2] Furukawa N, Namiki A, Taku S, Ishikawa M. (2006)
"Dynamic regrasping using a high-speed
multifingered hand and a high-speed vision system"
Robotics and Automation, 2006. ICRA 2006.
Proceedings 2006 IEEE International Conference on ,
pp.181,187, 15-19 May 2006

[3] Belbachir, Ahmed Nabil (2009) (Ed.), Smart Cameras,
Springer ISBN 978-1-4419-0953-4 pp 48-50

[4] João José, Miguel Farrajota, João M.F. Rodrigues, J.M.
Hans du Buf,(2011) “The SmartVision local
navigation aid for blind and visually impaired
persons” international journal of digital content
technology and its application Vol.5 May 2011.

[5] Emina Petrović, Adrian Leu, Danijela Ristić-
Durrant and Vlastimir Nikolić. Stereo Vision-
Based Human Tracking for Robotic Follower,
International Journal of Advanced Robotic
Systems, DOI: 10.5772/56124

[6] Marcozzi, D, Conti, M (2007) "Image processing
performance analysis for low power wireless image
sensors," Intelligent Solutions in Embedded
Systems”, 2007 Fifth Workshop on pp.1,12, 21-22
June 2007 doi: 10.1109/WISES.2007.4408503

[7] Rasheed Z, Taylor G, Yu L, Lee, M, Choe T, Guo F,
Hakeem A, Ramnath K, Smith M, Kanaujia A,
Eubanks D, Haering N.(2010) "Rapidly Deployable
Video Analysis Sensor units for wide area
surveillance," Computer Vision and Pattern
Recognition Workshops (CVPRW), 2010 IEEE
Computer Society Conference on pp.41,48, 13-18 June
2010 doi: 10.1109/CVPRW.2010.5543799

[8] Magno M, Brunelli D, Thiele L, Benini L.(2009)
"Adaptive power control for solar harvesting
multimodal wireless smart camera," Distributed Smart

Cameras, 2009. ICDSC 2009. Third ACM/IEEE
International Conference on pp.1,7, Aug. 30 2009-
Sept. 2 2009 doi: 10.1109/ICDSC.2009.5289358

[9] Sato H, Kawabata K, Suzuki T, Kaetsu H, Hada Y,
Tobe Y.(2008) "Information gathering by wireless
camera node with passive pendulum
mechanism," Control, Automation and Systems,
2008. ICCAS 2008. International Conference on,
pp.137,140, 14-17 Oct. 2008 doi: 10.1109/
ICCAS.2008.4694539

[10] W. Wolf, B. Ozer, and T. Lv. (2002) Smart cameras as
embedded systems. Computer, 35(9):48–53, 2002.

[11] M. Bramberger, A. Doblander, A. Maier, B. Rinner,
and H. Schwabach (2006). Distributed embedded
smart cameras for surveillance applications.
Computer, 39(2):68–75, 2006.

[12] Tomohira T, Takashi K, Masatoshi I.(2010) “Surface
image synthesis of moving spinning cans using a
1,000-fps area scan camera” Machine vision and
Application August 2010, Volume 21, Issue 5, pp 643-
652.

[13] J.-W. van de Waerdt et al. (2005)”The TM3270 media-
processor. In MICRO 38”: Proceedings of the 38th
annual IEEE/ACM International Symposium on
Micro architecture, 2005.

[14] http://www.matrox.com/imaging/en/products/smart
_cameras/iris_gt/ last accessed (2013).

[15] http://sine.ni.com/nips/cds/view/p/lang/en/nid/210029
#specifications last accessed (2013).

[16] http://pro.sony.com/bbsc/ssr/cat-industrialcameras/cat-
smart/product-XCISX100C%2FXP/ (2012).

[17] Acosta, Nelson; Leiva, Lucas, (2012) “High
Performance Customizable Architecture for Machine
Vision Applications” Journal of Computer Science &
Technology (JCS&T);2012, Vol. 12 Issue 1, p1

[18] P. Garcia, K. Compton, M. Schulte, E. Blem, and W.
Fu. (2006). An overview of re-congurable hardware
in embedded systems. EURASIP Journal on
Embedded Systems, 2006, 2006

[19] Liming w, Junxiu l, Yuling l, (2009) "The Design of
Co-processor for the Image Processing Single Chip
System," Computer Sciences and Convergence
Information Technology, 2009. ICCIT '09. pp.943-946,
24-26 Nov. 2009

[20] Shi, Y. & Lichman, S. (2005) “Smart Cameras: A
Review”. Proceedings of the Asia-Pacific Conference
on Visual Information Processing, Hong Kong, Dec.
2005, pp. 95-100.

[21] H. Broers, R. Kleihorst, M. Reuvers and B. Krose:
(2004) “Face Detection and Recognition on a Smart
Camera.” Proceedings of ACIVS 2004, Brussels,
Belgium, Aug.31- Sept.3, 2004.

[22] M. Imran, K. Khursheed, M. A. Waheed, N. Ahmad,
M. O'Nils, N. Lawal, and B. Thörnberg, “Architecture
Exploration Based on Tasks Partitioning Between
Hardware, Software and Locality for a Wireless
Vision Sensor Node” (2012) Intl. Journal of

11Abdul Waheed Malik, Benny Thörnberg and Prasanna Kumar: Comparison of Three
Smart Camera Architectures for Real-Time Machine Vision System

www.intechopen.com

Distributed Systems and Technologies, vol. 3(2), pp.
58-71, 2012

[23] Abdul W. M, Benny T, Xeng, C, and Najeem, L.
(2011) “Real time Component Labelling with Centre
of Gravity Calculation on FPGA,” ICONS 2011, The
Sixth International Conference on Systems, Jan.
(2011).

[24] Sang J L, Dae R L, Seung H J, Jae W J, Key, H K,
(2007)"MicroBlaze based image processing system
using IEEE1394a," International Conference on
Control, Automation and Systems, 644-648, 17-20
Oct. (2007)

[25] http://www.physicsclassroom.com/class/refln/
u13l3f.cfm

[26] AT32UC3B0256: Atmel, (2012). www.atmel.com.

[27] Cheng p, Yang y, Bengt O , (2012) "Design and
Implementation of a Stator-Free RPM Sensor Prototype
Based on MEMS Accelerometers, Instrumentation and
Measurement, IEEE Transactions on, vol.61, no.3,
pp.775,785, March 2012

[28] http://www.home.agilent.com/en/pd-692834-pn-
34410A/digital-multimeter-6-digit-high-
performance?&cc=SE&lc=eng last accessed (2013).

[29] Keith DeHaven “The Ideal Solution for a Wide Range
of Embedded Systems” white paper available at
http://www.xilinx.com/support/documentation/white_
papers last accessed (2013).

[30] http://www.actel.com/products/smartfusion2/default.a
spx#architecture last accessed (2013).

12 Int. j. adv. robot. syst., 2013, Vol. 10, 402:2013 www.intechopen.com

