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Abstract In this paper a biologically inspired neural 
dynamics and map planning based approach are 
simultaneously proposed for AUV (Autonomous 
Underwater Vehicle) path planning and obstacle 
avoidance in an unknown dynamic environment. Firstly 
the readings of an ultrasonic sensor are fused into the 
map using the D-S (Dempster-Shafer) inference rule and a 
two-dimensional occupancy grid map is built. Secondly 
the dynamics of each neuron in the topologically 
organized neural network is characterized by a shunting 
equation. The AUV path is autonomously generated from 
the dynamic activity landscape of the neural network and 
previous AUV location. Finally, simulation results show 
high quality path optimization and obstacle avoidance 
behaviour for the AUV. 

Keywords AUV (Autonomous Underwater Vehicle), Map 
Building, D-S Information Fusion, Path Planning, 
Biologically Inspired Neural Dynamics, Neural Network, 
Obstacle Avoidance 

1. Introduction 

The basic feature of an autonomous mobile robot is its 
capability to operate independently in unknown or 
partially known environments. The autonomy implies 
that the robot is capable of reacting to static obstacles and 
unpredictable dynamic events that may impede the 
successful execution of a task [1]. To achieve this goal, 
solutions need to be developed in map building, path 
planning and navigation. In the paper, map building with 
particular reference to modelling the ultrasonic sensor 
information and probabilistic in map construction is 
discussed. Path planning is a fundamentally important 
issue in robotics. Similarly to an autonomous mobile 
robot, point-to-point AUV path planning in a two-
dimensional environment requires the AUV to pass 
through partially known areas in the workspace. 

The performance of the AUV in navigating in an 
unknown environment depends strongly on the accuracy 
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of its perception capabilities. The system needs to gather 
a large amount of sensory information and to integrate it 
into a proper representation of the environment. The 
traditional paradigm for covering spatial information is 
based on the use of a two-dimensional tessellation called 
an occupancy grid. It was first introduced by Moravec 
and Elfes [2] and it is widely used in mobile robot 
navigation. In principle, occupancy grids store qualitative 
information about which areas of the robot’s 
surroundings are empty and which areas are occupied by 
obstacles.

Map building using ultrasonic sensors has been 
addressed by many researchers and a substantial body of 
modelling and experimental work has been presented in 
[3-7]. Ultrasonic range-finds are common in mobile robot 
navigation due to their simplicity of operation and high 
working speed. The sensor provides the relative distance 
between the robot and surrounding obstacles located 
within its radiation cone. The time elapsed between the 
transmission of a wave and the reception of its echo 
allows the computation of a range reading. This means 
that an obstacle may be located somewhere on the arc of a 
radius within the sensor beam. However, the sensor is 
prone to several measuring errors duo to various 
phenomena, for example, the wide radiation cone, the 
low angular resolution and the specular properties of the 
environment. As a consequence, the sensing process is 
affected by a large amount of uncertainty. In order to 
handle uncertainty during the occupancy grid building 
process, the formulation fusion approach is used to 
process sonar data and build the map. 

The building of an occupancy map is well suited to path 
planning, navigation and obstacle avoidance because it 
explicitly models free space [8]. The Bayesian approach 
[9] has traditionally dominated the probabilistic sensor 
fusion in building occupancy maps. To quantify the 
sensor uncertainty, all conditional probabilities must be 
specified. Because of the difficulty of completing the 
model, the conditional probabilities are usually 
approximated, which causes difficulties in building a 
reliable map. The Bayesian is certainly not the only 
method that has been engaged to solve the problem of 
data fusion. Fuzzy maps have been applied to this 
problem with better results than the Bayesian approach, 
as reported by Gabino [10], as have more methods such 
as histogram grids [11] and the D-S (Dempster-Shafer) 
formulation fusion approach [12]. Daniel applied the D-S 
theory to full three-dimensional mapping of indoor 
environments, employing stereo vision as the measuring 
sensor. In the paper, the D-S approach is used to process 
a series of sonar data from an unknown environment. 

Path planning is one of the key issues in mobile robots 
and it is traditionally divided into two categories: global 

path planning and local path planning. In global path 
planning, prior knowledge of the workspace is available. 
Local path planning methods use ultrasonic sensors, laser 
range finders to perceive the environment in which 
planning is performed. In the paper, the workspace for 
the path planning of the AUV is assumed to be unknown, 
so it may have stationary or non-stationary obstacles.  

There are some learning based models for motion 
planning of mobile robots for unknown environments. 
For example, Gambardella [13] proposed a learning 
method for path planning in a robot in a cluttered 
workspace where the dynamic local minima can be 
detected, and it can avoid the local minima by learning, 
such as in deadlock situations. Svestka [14] proposed a 
probabilistic learning approach to motion planning of a 
mobile robot, which involves a learning phase and a 
query phase and uses a local method to compute feasible 
paths for the robot. Fujii [15] proposed a multilayer 
reinforcement learning model for path planning of 
multiple mobile robots. However, the planned robot 
motion using learning based approaches is not efficient 
and is computationally expensive, especially in its initial 
learning phase. There have been some neural network 
based approaches to path planning. For example Yang 
and Luo [21-22] proposed a neural network model for 
complete coverage path planning in non-stationary 
environments. However, the current knowledge of the 
non-stationary environment was assumed to be 
completely known in the literature [22].  

In this paper, map building and path planning algorithms 
are proposed for an AUV in an unknown environment. A 
local map composed of square cells is built by the D-S 
formulation fusion of sonar data during AUV navigation. 
The state space of the topologically organized neural 
network is the 2D workspace of the AUV map. The 
dynamics of each neuron is characterized by a shunting 
equation derived from Hodgkin and Huxley’s membrane 
model for a biological nervous system [21]. There are only 
local lateral connections among neurons. Thus, the 
computational complexity depends linearly on the neural 
network size. The varying environment is represented by 
the dynamic activity landscape of the neural network. The 
AUV path is directly planned from the dynamic neural 
activity landscape and previous AUV position without any 
prior knowledge of the changing environment. Since the 
neural connection weights are set in the model design and 
can be chosen in an extensive range, there is no need to 
find an optimal connection weight among neurons. Thus, 
there are no learning procedures in the proposed neural 
network and no need for any templates in an unknown 
environment during the navigation. 

This paper is organized as follows. The environment 
model, the ultrasonic sensor model, the establishment 
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and conversion of coordinates and the D-S information 
fusion to build the map in unknown environments for an 
AUV are presented and the simulation results of map 
building are given in Section 2. In Section 3, the biological 
inspiration and the neural network model used to plan 
the path for the AUV are described and the simulation 
results in static and changing environments are 
presented. Finally, in Section 4, several important 
properties of the D-S evidence and the biological 
inspiration approach using path planning for the AUV 
are concluded. 

2. Map Building 

As mentioned above, the building of an occupancy map is 
well suited to path planning, navigation and obstacle 
avoidance because it explicitly uses free space. An 
occupancy grid is essentially a data structure that 
indicates the certainty that a specific part of space is 
occupied by an obstacle. It represents an environment as 
a two-dimensional array. Each element of the array 
corresponds to a specific square on the surface of the 
workspace and its value shows the certainty that there is 
some obstacle there. When new information about the 
workspace is received, the array is adjusted on the basis 
of the nature of the information.  

In the paper, the sonar data are interpreted by D-S 
evidence theory and used to modify the map using 
Dempster’s inference rule. Whenever the AUV moves, it 
catches new information about the environment and 
updates the old map. More specifically, to build an 
occupancy map of the environment, a grid is constructed 
to represent the whole space. Every discrete region of the 
map (each cell) may be in two states: Empty or Occupied. 
A series of range readings of data collected at known 
sensor locations is available. In principle, the task of the 
map building system is to process the readings data in 
order to assess, as accurately as possible, which cells are 
occupied by obstacles and which cells are empty and thus 
suitable for AUV navigation. 

2.1 Environment Modelling 

To build an occupancy map of the environment, in the 
paper we construct a grid representing the whole space. 
Every discrete region of the map (each cell in the grid) is 
characterized by two states: Empty and Occupied. The 
implemented approach finds its formulation through the 
use of the D-S theory of evidence. In this case, the goal of 
the occupancy grids’ building procedure is to determine 
the support for the states E  and O , corresponding to the 
possibilities that the cell is Empty or Occupied. Thus, 
defining the set of discernment by { }EO,=Θ  and the set 
of states by 

{ }{ }OEOE ,,,,2 φ==Λ Θ                     (1) 

The whole grid is defiled by U  and any grid in the 
workspace is represented by ( , )U i j . The state of each 
cell ( , )U i j  is described by assigning basic probability 

jim ,  to each label in Λ . However, it is known that for 

each cell ( , )U i j  in the grid 

( ) 0, =φjim                                     (2) 

and

( ) ( ) ( ) ( ) { }( ) 1,,,,,, =+++=
Λ⊂

OEmOmEmmAm jijijiji
A

ji φ

                     (3) 

Considering this linear dependence and assuming 
( ) 0, =φjim , it is sufficient to store ( )Em ji,  and ( )Om ji,

only to fully represent the state of the system. Every cell 
in the map is first initialized 

( ) ( ) 0,, == EmOm jiji  and { }( ) 1,, =OEm ji       (4) 

which represents total ignorance about the state of each 
cell.  

2.2 Sensor Modelling  

The ultrasonic sensor [16] is a very common device that 
can detect distances within its radiation cone (consider 
30°the width of the radiation cone) and is used for map 
building. A single reading provides the information that 
one or more obstacles are located somewhere along the 
30°arc of circumference of the radius R (Figure 1). 
Hence, there is evidence that cells located in the 
proximity may be ‘occupied’. On the other hand, cells 
well inside the circular sector of radius R  are likely to be 
‘empty’. To model this knowledge, in this paper the D-S 
theory of evidence is used. The evidence is obtained by 
projecting the raw ultrasonic sensor responses onto the 
evidence grid through the sonar profile model. This 
profile sonar model is a function of the angle and the 
sonar range reading, as shown in Figure 2.  
(a) Profile for the range. 
(b) The partition of the ultrasonic sensor model. 
(c) Profile for the angle 

The model converts the range information into 
probability values. For modelling the general behaviour 
of the sonar sensors in angular and range resolution, 
independently of the selected approach, the model [6] in 
Figure 2 is given by Eqs. (5)-(10). 
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Figure 1. The sensor beam on a rectangular gird 
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Figure 2. The ultrasonic sensor model 
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( ) 0=Em                                    (6) 
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In region II, where :min dRrR −≤≤

( ) 0=Om                                   (8) 
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{ }( ) ( ).00.1E EmOm −=、                 (10) 

where R  is the range response from the ultrasonic 
sensor, °= 15α is the half open beam angle of the sonar 
cone, θ  is the angular distance to the beam axis and r  is 
the distance from sensor to obstacle, so ( , )r θ  represents 

the coordinate of a point inside the sonar cone. 1.5md =
is the range error and it distributes the evidence in Region 
I. The 3D profiles of the ultrasonic sensor model for Eqs. 
(5)-(10) are depicted in Figure 3. 

(a) Model for Occupied cells 

(b) Model for Empty cells 

Figure 3. The 3D profiles of the sensor models used to interpret 
range data in the evidence theory 

2.3 The Establishment and Conversion of Coordinates 

The ultrasonic sensor studied in this article is a forward-
looking multi-beam transmitter. To obtain the distance 
from sensor to obstacle, the ultrasonic sensor scanning 
the surrounding environment is based on a certain 
resolution scanning, so the raw data it gets are discrete 
data. If the scattering angle of ultrasonic sensor is α ,
every point within the radiation sector is represented by a 
certain distance r  and the scan angle θ , indicating the 
form of ( , )r θ  as shown in Figure 1. Clearly, the polar 
coordinate of the AUV needs to be changed to an inertial 
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coordinates map. Figure 4 shows an example of the 
establishment and conversion of coordinates. If ( )YX ,  are 
selected as the inertial coordinate system, the data of 
obstacles obtained from ultrasonic sensor are converted to 
the AUV’s inertial coordinate by the following equations. 

' '( , )e ex yObstacle

rθθ

( , )r rx yAUV

r

Figure 4. Schematic diagram for AUV 

When an obstacle is set as ( , )r θ , the conversion is given 
by

( )
( )




+•+=
+•+=

rre

rre

ryy
rxx

θθ
θθ

sin
cos

'

'

                 (11) 

where '
ex  and '

ey  are the coordinates of the obstacle in 

the inertial coordinate system and ( )rrr yx θ,,  are the 
inertial coordinates and the direction angle of AUV, 
respectively.

Furthermore, by transforming the inertial coordinate 
( )'' , ee yx  of an obstacle into the inertial grid coordinate 

( )ee yx , , its physical meaning is that any position within 

a grid is expressed as the location of the centre of the grid. 
Define the size of a grid as 1×1m and w =1. The 
conversion relationships are described as: 
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                     (12) 

  Therefore, in the case where the coordinates and 
direction angle ( )rrr yx θ,,  of the AUV are known, 
combined with obstacles data ( , )r θ  from the ultrasonic 
sensor, the coordinates of the obstacles within the 
radiation of the AUV polar coordinate can be transformed 
into the inertial grid coordinates by Eqs. (11) and (12), 

which is conducive to updating the corresponding grid 
distribution values. 

2.4 The D-S Information Fusion and Its Application  
in Map Building 

D-S evidence theory in the application of multi-sensor 
data fusion is common. The related information data 
obtained from sensors is the theory of evidence, and it 
can constitute belief function assignment for the target 
model to be identified. The credibility of each target 
model is described and treats each sensor as an evidence 
group. The multi-sensor data fusion is combined with a 
number of evidence groups using D-S rules to generate a 
new comprehensive evidence group. 

According to D-S joint rules [17], 1m  and 2m  are belief 
function assignments, corresponding to the same 
identification framework Θ . The target models to be 
identified are kAAA 21,  and kBBB 21, . Assuming 

( ) ( ){ } 121 <
=Φ ji BA

ji BmAm


, the fusion rule can be expressed 

by the following equation (13): 

( )
( ) ( ){ }









Φ=

Φ≠
−

=


=

A

A
C

BmAm
Am ji BAA

ji

,0

,
1

21


      (13) 

and ( ) ( )
=Φ

=
ji BA

ji BmAmC


21

The sonar data fused by the D-S theory of evidence are 
collected and updated into a map using the same theory 
of evidence. In the approach, the probability assignment 
corresponding to a range readings r  and θ  is obtained 
directly using Eqs. (5)-(10). Finally, each cell in the map is 
updated using Dempster’s rule of combination. This rule 
allows the independent evidence to be combined about a 
certain target model A , ( )Am1  and ( )Am2 . In the paper, 
they will be the probability assignments for the old map 
belief ( )jimt

A ,1−  and the current sensor reading ( )jiS t
A , ,

and the current fusion map belief ( )jimt
A , . For the target 

models E  and O , the update rules are: 

( ) ( ) ( )
( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( )
( ) ( )( ) ( )

( ) ( ) ( ) ( )

1

1 1

1 1

1 1

1 1

, , ,

, , , 1 , ,
1 , , , ,

1 , , ,
1 , , , ,

−

− −

− −

− −

− −

= ⊕

+ − −
=

− −

− −
+

− −

t t t
O O O

t t t t t
O O O E O

t t t t
E O O E

t t t
E O O

t t t t
E O O E

m i j m i j S i j

m i j S i j m i j S i j S i j
m i j S i j m i j S i j

m i j m i j S i j
m i j S i j m i j S i j

             (14)
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( ) ( ) ( )
( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( )
( ) ( )( ) ( )

( ) ( ) ( ) ( )
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1 1

1 1

1 1

1 1

, , ,

, , , 1 , ,
1 , , , ,

1 , , ,
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− −

− −

− −

− −

= ⊕

+ − −
=

− −

− −
+

− −

t t t
E E E

t t t t t
E E E E O

t t t t
E O O E

t t t
E O E

t t t t
E O O E

m i j m i j S i j

m i j S i j m i j S i j S i j
m i j S i j m i j S i j

m i j m i j S i j
m i j S i j m i j S i j

             (15)

Then, the corresponding grid obtains new belief 
probability, ( )jimt

O ,  and ( )jimt
E , . With the AUV in the 

process of moving, continuous information is received 
and data conversion and fusion continues, thus 
updating the belief distribution of the overall grid 
map. Finally, based on pre-established identification 
rules for overall grids, dynamic maps are built until 
the AUV reaches the target point. Next, the state 
identification rules for every grid in the map are 
developed. The basic principles to decide the state 
model for each cell are described by: 

(1) The state model to be decided should have a 
maximum probability value larger than a certain 
threshold, 0.4 is set in this paper.  

(2) The difference of probability values between the 
decided state model and other models should be 
larger than a threshold of 0.15. 

(3) The uncertainty model’s probability value must 
be less than a certain threshold, 0.2 is set in this 
paper. 

Furthermore, based on the basic principles, the state 
pattern for any grid and building in the dynamic map can 
be decided. Of course, according to different situations, to 
be more realistic, these rules can be modified to improve 
the recognition accuracy. 

2.5 Simulation Results of Map Building  

The proposed approach is applied to a unknown 
environment and the experimental simulation 
environment includes 20×20 grids representing the 2D 
workspace of the AUV. Initialization for every grid 
should meet Eq. (4). The AUV selects a travel path and 
uses ultrasonic sensor to collect external environment 
data. Combined with coordinate transformation and 
the ultrasonic sensor model, these data are converted 
into a probability assigned value. As the data from the 
external environment are continuous, the constructed 
map is constantly updated. In order to clearly show 
the effectiveness of the D-S evidence theory, in this 
paper proposed an approach to calculate the accuracy 
of the constructed map. Specifically, parameter η  is 
the ratio of the total number A  of obstacles in the 
constructed grid map and the total number 40B =
(shown in Figure 8(b)) of obstacles in the original map, 

and η is defined as the accuracy of map building, 
described by:  


=

B
A

η                                      (16) 

The next sector will give the constructed grid map at the 

moment of reaching the target point. 

It is known that the probability values for every cell in the 

map are constantly updated. When the AUV reaches a 

target point (19, 3), the final belief distribution of the grid 

map is shown as in Figure 5. 

(a) For occupied obstacle cells                             

(b) For empty cells 

Figure 5. The belief distribution of the map when AUV reaches a 
target 

According to the identification rules, the final map can be 
built, as shown in Figure 6(a), while the original 
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experimental map of the environment is shown in Figure 
6(b). By comparing the two constructed maps, the 
ultimate accuracy of the map building using the D-S 
information fusion algorithm can be calculated: 

%5.82
40
33 ===




B
A

endη .

(a) The AUV reach the target point (19,3)                   

(b) The original map of the environment 

Figure 6. The original map and the map building using D-S 
information fusion 

It shows that the constructed map is closer to the original 
underwater environment by using an information fusion 
algorithm. It can be said that map building using the D-S 
information fusion algorithm in underwater dynamic 
environment is practical and effective. It is also conducive 
to path planning for an AUV. 

3. Path Planning 

In this paper, a biologically inspired neural network 
approach is proposed for path planning in an AUV with 
obstacle avoidance in an unknown environment. The 
experimental workspace is based on a constructed map. 
The constructed map can be seen as partially knowing 
environment. In this section, the originality of the 
proposed neural network approach is briefly introduced. 
Then, the model algorithm of the proposed approach is 
presented.

3.1 Originality of The Biologically Inspired Approach 

A computation model for a uniform patch of membrane 
in a biological neural system using electrical circuit 
elements was first proposed by Hodgkin and Huxley [22]. 
In the model, the dynamics of the voltage across the 
membrane mV  is described using a state equation:  

( ) ( ) ( ) smsemermr
m

m gVVgVVgVV
dt

dVC +−−++−=                        

(17)

where mC  is the membrane capacitance, sV , eV  and rV
are the resting potentials (saturation potential) in the 
membrane and sg , eg  and rg represent the synaptic 

and resting conductance of potassium, sodium and 
passive channels, respectively. This model lays the 
foundation for the shunting model. 

By setting mC =1 and substituting mri VVx += , rgA = ,

re VVB += , rs VVD −= , e
e
i gS =  and s

i
i gS =  in Eq. 

(17), a shunting equation is obtained as  

( ) ( ) i
ii

e
iii

i SxDSxBAx
dt
dx +−−+−=         (18) 

where ix  is the neural activity (membrane potential) of 
the ith neuron in the neural network, , ,A B D  are 
nonnegative constants describing the passive decay rate 
and the upper and lower bounds of the neural activity ix ,

respectively and e
iS  and i

iS  are the excitatory and 

inhibitory inputs to the neuron, respectively. This 
shunting model was used to understand the real-time 
adaptive behaviour of individuals to complex and 
dynamic environmental contingencies and has many 
applications such as visual perception and sensory motor 
control, and many other areas [18-20]. 
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The proposed topologically organized model is expressed 
in a 2D workspace of the AUV. The fundamental concept 
of the proposed model is to develop a neural network 
architecture, whose dynamic neural activity landscape 
represents the dynamically varying environment. The 
position of the ith neuron in the neural network, denoted 
by vector iq , uniquely represents a position in the 2D 

workspace. In the proposed model [21-24], the excitatory 
input results from the target and the lateral neural 
connections, while the inhibitory input results from the 
obstacles only. Each neuron has local lateral connections 
to its neighbouring neurons that constitute a sub-area. 
The sub-area is called the receptive field of the ith neuron 
in neurophysiology. The neuron responds only to the 
stimulus within its receptive filed. Thus, the dynamics of 
the ith neuron in the neural network is characterized by a 
shunting equation: 

[ ] [ ] [ ]−

=

++ +−+−+−=  ii
j

jijiii
i IxDxwIxBAx

dt
dx )())((

k

1

                     (19) 

where k is the number of neural connections of the ith
neuron to its neighbouring neurons within the receptive 
field. The external input iI  to the ith neuron is defined as:  








−=

otherwise,0
obstacleanisitif,

 targetisitif,
E

E
Ii              (20) 

where E B  is a very large position constant, which 
guarantees that the target can always be attained at the 
peak and the obstacles can always stay in the valley in the 
neural activity landscape of the neural network . The 

terms [ ] [ ]
=

++ +
k

1j
jiji xwI  and [ ]−

iI  are the excitatory and 

inhibitory inputs e
iS  and i

iS  in (18), respectively. 

Function [ ]+a  is a linear-above-threshold function defined 

as [ ] { }0,max aa =+  and the nonlinear function [ ]−a  is 

defined as [ ] { }0,max aa −=− . The connection weight ijw
between the ith and jth neurons can be defined as 

( )jiij qqfw −= , where ji qq −  represents the 

Euclidean distance between vectors iq  and jq  in the 

neural network and ( )af  is a monotonically decreasing 
function, e.g., a function defined as:  

( )






=
,0

,aaf
μ

    
0

00
raif

raif
≥

≤≤
           (21) 

where μ  and 0r  are position constants. Therefore, each 

neuron has only local lateral connections in a small region 

[0, 0r ]. It is obvious that the weight ijw  is symmetric, 

jiij ww = . Note that the neural connection weights that 

satisfy the fundamental concept of the proposed 
approach are predefined in (21) at the stage of the neural 
network design. Thus, they are needed to obtain a proper 
connection weighs among neurons. A schematic diagram 
of the neural network is shown in Figure 7, where 0r  is 

chosen as 20 =r . The receptive field of the ith neuron is 

represented by a circle with a radius of 0r . Thus, it has 

lateral connections to only its eight neighbouring neurons 
within its receptive filed. 

       

ijw

0r

(a) receptive filed                                   

( , )a a ),( ba ( , )a c

( , )b a ( , )b c

( , )c a ( , )c b ( , )c c

a b c

a

b

c

(b) 8 neighbouring neurons 

Figure 7. Schematic diagram of the neural network for path 
planning 

The proposed neural network is a stable system. The 
neural network activity ix  is bounded in the finite 

interval [ , ]D B− . In addition, the stability and 
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convergence of the proposed shunting neural network 
model can also be rigorously proved using a Lyapunov 
stability theory [22]. 

Because there are excitatory neural connections in (19), the 
proposed neural network characterized by (19) guarantees 
that the position neural activity can propagate to the entire 
neural network, but the negative activity stays locally only. 
Therefore, the target globally attracts the AUV, whereas the 
obstacle areas just locally push the AUV away to avoid 
collisions. The locations of targets and obstacles may vary 
with time, for example if there are moving obstacles or 
sudden obstacles in the front of the AUV. The activity 
landscape of the neural network dynamically changes due to 
the varying external inputs from the changing environment 
and the internal activity propagation among neurons. For a 
given current AUV location in a neural network, denoted by

cp , the next AUV location np  is obtained by:  

{ }max , 1,2,
nn p jp x x j k⇐ = =            (22) 

where k  is the number of neighbouring neurons of the 

cp th neuron, which also is all the possible next locations 

of the current location cp . After the current location 

reaches its next location, the next location becomes a new 
current location (if the next location found is the same as 
the current location, the AUV stays there without any 
movement). The current AUV location adaptively 
changes according to the varying environment. 

The dynamic activity landscape of the topologically 
organized neural network is used to determine the next 
AUV location. However, when the next location is not 
immediately available, for example, in a deadlock 
situation, the AUV has to wait until the next location 
toward the target is available from the neural activity 
landscape. Whenever the neural activity at the current 
AUV location is smaller than the largest neural activity of 
its neighbouring locations, the AUV starts to move to its 
next location. Thus, the AUV movement is determined by 
both the neural activity landscape and the previous 
location. The neural activity landscape will never reach a 
steady state as in a static environment or dynamic 
environment. In a fast changing environment, for 
example, where obstacles suddenly appear in front of the 
AUV, the neural activities at those locations will 
immediately reduce to a very large negative value due to 
their very large inhibitory input. Thus, the AUV should 
be able to avoid those suddenly appearing obstacles. In the 
proposed model, due to the very large external input 
constant E , the target and the obstacles stay at the peak and 
the valley of the activity landscape of the neural network. 
The AUV keeps moving toward the target with obstacle 
avoidance until the designated objective is reached.  

Therefore, the biologically inspired approach is suitable 
for static environments and fast changing environments. 
Any change in the environment directly results in 
changes in the external inputs at those locations. The 
activity landscape of the neural network is automatically 
changing due to neural activity propagation. It can 
therefore deal with arbitrarily changing environments. 

3.2 Simulation Results 

In the simulation, the neural network has 20×20 
topologically organized neurons, where all the neural 
activity is initialized to zero. The model parameters are 
set as 2A = , 1B =  and 1D =  for the shunting equation, 
μ =0.7 and 20 =r  for the lateral connections and 100E =
for the external inputs.  

(1) Path planning in a static environment

In the proposed model, because of the neural activity 
propagation among neurons, the target is able to attract 
the AUV in the complete search process. The AUV starts 
to search from the left side in Figure 8(a).  

It shows that the target point (19, 3) has the largest neural 
activity due to the very large external excitatory input; 
the obstacles areas have the smallest neural activity due 
to their very large inhibitory inputs. Meanwhile, due to 
the lateral excitatory connections among neurons, the 
positive neural activity from the target in the neural 
network will propagate toward the current AUV location 
through neural activity propagation and the neural 
activity is constantly changed. 

From Figure 8 we can easily see the process of the search by 
the AUV and the neural activity of neighbouring neurons at 
some moments are shown in Table 1. In Table 1 the first 
column represents current locations, the last column 
represents next locations and the other columns represent 
the neural activity of neighbouring neurons at current 
locations for Figure 7(b). For example, for current location (2, 
2), it can be found that the neural activity of neighbouring 
neuron (3, 3) is the largest among eight neighbouring 
neurons, so the next location of the AUV is (a, c). 

The activity landscape for when the AUV arrives at point 
(9, 9) is shown in Figure 8(b). At this time, the activities of 
all neighbouring neurons around the current point are 
compared with the activity of the current AUV location, 
searching for the largest neural activity and recording the 
location of the neuron with the largest neural activity. 
According to the algorithm of the proposed model, the 
recorded location with the largest neural activity is regarded 
as the next location of the AUV. From the result of Figure 
8(a) and (b), the next location is point (10, 9). The target point 
(19, 3) has a very large external input and keeps the largest 
neural activity. Therefore, its neural activity keeps 
propagating toward the all over neural network. When the 
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AUV arrives at point (15, 6), the activity landscape is shown 
in Figure 8(c). The next location of the AUV is point (16, 6) 
(see Figure 8(c) and Table 1). The final neural activity 
landscape for when the AUV arrives at target (19, 3) is  

shown in Figure 8(d). The AUV path is shown in Figure 
8(a), it shows that the AUV is able to move without any 
collisions, pass through the workspace and reach the target 
from start point (1, 1) in the shortest distance possible. 

Current location (a a) (a b) (a c) (b a) (b c) (c a) (c b) (c c) Next location

(2, 2) 0.0000 0.0001 0.0003 0.0000 0.0002 0.0000 0.0000 0.0001 (3, 3) 

(4, 4) 0.0004 0.0005 0.0008 0.0003 0.0004 0.0002 0.0001 0.0001 (5, 5) 

(6, 6) 0.0013 0.0017 0.0023 0.0016 0.0014 0.0011 0.0009 0.0008 (7, 7) 

(8, 8) 0.0034 0.0053 0.0065 0.0035 0.0060 0.0030 -0.9803 -0.9801 (9, 9) 

(10, 9) -0.9772 0.0619 -0.9657 0.0587 0.2416 0.0511 0.1169 0.2523 (11, 8) 

(12, 8) 0.3851 0.4844 0.5452 0.3789 0.5522 -0.9580 0.4585 0.5521 (13, 8) 

(14, 7) 0.5652 0.5767 0.5770 0.5615 0.5797 0.5596 0.5774 0.5804 (15, 6) 

(16, 6) 0.5802 0.5796 0.5777 0.5807 0.5804 0.5804 0.5809 0.5815 (17, 5) 

(18, 4) 0.5815 0.5799 0.5604 0.5801 0.5887 0.5607 0.5888 0.9812 (19, 3) 

Table 1. The neural activity of neighbouring neurons at some moments in a static environment 

2 4 6 8 10 12 14 16 18 20

2

4

6

8

10

12

14

16

18

20

x

y

0
5

10
15

20

0
5

10
15

20
-1

-0.5

0

0.5

1

y
x

A
ct

iv
ity

(a) AUV path                                                           (b) Activity landscape when the AUV at location (9, 9) 
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Figure 8. Path planning in the constructed map environment 

0
5

10
15

20

0
5

10
15

20
-1

-0.5

0

0.5

1

y
x

A
ct

iv
ity

0
5

10
15

20

0
5

10
15

20
-1

-0.5

0

0.5

1

y

x

A
ct

iv
ity

10 Int J Adv Robot Syst, 2014, 11:34 | doi: 10.5772/56346



(2) Path planning in dynamic environment with  
sudden changes 

The proposed neural network approach is capable of 
generating a point to point path for an AUV in a dynamic 
environment, even with obstacles suddenly placed in 
front of the AUV. The network has 20×20 neurons, with 
initial neural activities of zero. The model parameters are 
chosen as the same as in the previous case. In the same 
environment, the AUV starts from point (1, 1) and when 
it arrives the point (4, 4), the front of AUV has not hit any 
obstacles (see Figure 9(a)), and continues to move 
forward. The activity landscape of the neural network is 
shown in Figure 9(c). When the AUV arrives the point  
(5, 5), a set of U-shaped obstacles suddenly appears in 
front of the AUV (see Figure 9(b)). The activity landscape 

of the neural network right after the obstacles are placed 
is shown in Figure 9(d). 

From Figure 9(d), it can be seen that the neural activities 
in the areas with the suddenly placed obstacles 
immediately become very large negative values. The 
AUV cannot move forward due to the suddenly added 
obstacles. The AUV has to move through several areas 
without obstacles to point (4, 5), as shown in Figure 9(d), 
then pass around the obstacles, to reach the target with 
obstacle avoidance. Thus, the proposed model is a 
suitable applied plan path for the AUV, where there are 
unstructured obstacles with arbitrary shapes in the 
workspace, as shown in Figure 10(a). 
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(a) AUV arrives the location (4, 4) without obstacles                 (b) AUV arrives the location (5, 5) with U-shaped obstacles 

   
(c) Activity landscape AUV arrives at (4, 4)                 (d) Activity landscape when AUV arrives at (5, 5) with obstacles 

Figure 9. Path planning in a dynamic environment with sudden obstacles in front of the AUV 
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(a) Completed path of the AUV.                            (b) The activity landscape when AUV arrives at the target 

Figure 10. Completed path planning in a dynamic environment with suddenly obstacles 

Current

location 

(a a) (a b) (a c) (b a) (b c) (c a) (c b) (c c) Next 

location 

(2, 2) 0.0000 0.0001 0.0003 0.0000 0.0002 0.0000 0.0000 0.0001 (3, 3) 

(4, 4) 0.0004 0.0005 0.0008 0.0003 0.0004 0.0002 0.0001 0.0001 (5, 5) 

(4, 5) 0.0012 -0.9791 -0.9791 0.0010 0.0009 0.0008 -0.9791 -0.9791 (3, 6) 

(4, 7) 0.0020 0.0022 0.0025 0.0018 0.0023 0.0016 -0.9797 -0.9797 (5, 8) 

(6, 8) 0.0035 0.0108 0.0268 0.0045 0.0232 0.0029 0.0067 0.0117 (7, 9) 

(8, 9) 0.0943 0.1174 -0.9678 0.1220 0.2458 0.1088 0.1542 0.2150 (9, 9) 

(10, 9) -0.9605 0.2353 -0.9515 0.3581 0.4577 0.3143 0.3589 0.4418 (11, 9) 

(12, 9) -0.9505 0.4863 0.5660 0.4712 0.5687 0.4535 0.5248 0.5684 (13, 9) 

(14, 8) 0.5691 0.5782 0.5749 0.5688 0.5782 0.5641 0.5784 0.5803 (15, 9) 

(16, 6) 0.5803 0.5797 0.5778 0.5808 0.5804 0.5805 0.5809 0.5815 (17, 5) 

(18, 4) 0.5815 0.5799 0.5604 0.5801 0.5887 0.5607 0.5888 0.9805 (19, 3) 

Table 2. The neural activity of neighbouring neurons at some moments in a dynamic environment 

From Figure 10, we can easily see the process of the search 
for the AUV and the neural activity of neighbouring neurons 
at some moments as shown in Table 2. In Table 2, the first 
column represents current locations, the last column 
represents the next locations and the other columns 
represent the neural activity of neighbouring neurons at 
current locations. For example, for current location (4, 5), it 
can be found that the neural activity of neighbouring neuron 
(3, 6) is the largest among eight neighbouring neurons from 
Table 1, so the next location of the AUV is (a, a). 

This model will not be trapped in deadlock situations, 
since the rest of the target points can globally attract the 
AUV in the whole workspace through neural activity 
propagating. In Figure 10(a) the AUV can deal with the 
situation of changes in the environment with suddenly 

appearing obstacles and avoid these sudden obstacles in 
front of the AUV. Meanwhile, the neural activity in these 
locations is changed. Thus, the AUV is able to escape 
from the complicated environment. 

4. Conclusion 

A biologically inspired neural dynamics and map 
planning based approach are proposed for obstacle 
avoidance of an AUV (Autonomous Underwater Vehicle) 
in a non-stationary environment. A novel application of 
the theory of evidence is presented for the map building 
of the AUV. The work considers the uncertainties of the 
ultrasonic sensor measurements and makes use of the D-S 
inference rule to fuse sensor information and build the 
map. The constructed map is compared with the original 
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map, the map-building accuracy is calculated, and the 
fusion algorithm is proved to be effective and feasible in 
map building for an AUV.  

In this paper, a biologically inspired neural network 
approach to point-to-point path planning in an AUV is 
proposed. The developed approach is capable of 
autonomously planning a collision-free path for an AUV 
in a static and non-stationary environment. The model 
algorithm is computationally simple. The AUV path is 
generated through a dynamic neural activity landscape 
and the previous AUV location without any prior 
knowledge of the dynamic environment. This model can 
deal with changing environments and even with sudden 
environmental changes.  
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