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Abstract

This mini review outlines studies of cell volume
regulation in two closely related mammalian cell
lines: nonadherent Ehrlich ascites tumour cells
(EATC) and adherent Ehrlich Lettre ascites (ELA)
cells. Focus is on the regulatory volume decrease
(RVD) that occurs after cell swelling, the volume
regulatory ion channels involved, and the
mechanisms (cellular signalling pathways) that
regulate these channels. Finally, | shall also briefly
review current investigations in these two cell
lines that focuses on how changes in cell volume
can regulate cell functions such as cell migration,
proliferation, and programmed cell death.

Copyright © 2011 S. Karger AG, Basel

Introduction

Current knowledge of cell volume homeostasis
supports the notion of a pump-leak balance, based on
the pump-leak, steady-state concept introduced by
Krogh [1] and analysed in detail by Leaf [2], Ussing
[3], and Tosteson and Hoffman [4]. Later, many of
the classical “leak” pathways were found to be the
actual effectors of volume regulation, due to their
extreme sensitivity to changes in cell volume. This mini
review will discuss two of these effector pathways
(the K" and CI- channels involved in RVD) and their
regulation in two model cell types: Ehrlich ascites tumour
cells (EATC) and Ehrlich Lettre ascites (ELA) cells.
The basic physiology of cell volume regulation
has been detailed in previous reviews [5-7].

Regulatory volume decrease (RVD)
In EATCs, the osmotic permeability to water is 10°

times higher than the permeabilities to K* and Na* [8]
and 10°times higher than the permeability to C1~[9]. Thus,
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a decrease in the extracellular osmolarity or an increase
in the intracellular osmolarity leads to a rapid increase in
cell volume. The cell swells like an almost perfect os-
mometer, followed by a regulatory volume decrease
(RVD) (Fig. 1). The steady-state cell volume attained
after the RVD process is typically greater than the initial
cell volume and depends on the degree of initial cell swell-
ing. Thus, after RVD, at a relative extracellular tonicity
of 0.5 (Fig. 1), EATC cell volume stabilizes at 1.23 +0.01
(n= 23) times the initial cell volume [10]; however, at
relative tonicity of 0.75, EATC cell volume stabilizes to
1.09+0.01 (n=6) [10]. The mechanism for this increase
in the new steady —state volume obtained after swelling
and RVD is not well understood. The volume obtained
after the RVD process may increase with decreasing
intracellular ionic strength, or it may increase with the
decrease in [CI™ ] [7]. Several signalling molecules can
affect this volume. Thus, we have found that in EATCs it
increased after inhibition of Ser/Thr phosphatases and
decreased after inhibition of tyrosine phosphatases (see
[7, 10-12]. It is important to mention that cells do not
have one preferred cell volume; thus, the cell volume
depends on the functional state of the cell; furthermore,
altered cell volume can be a physiological signal, as in
cell cycle progression and programmed cell death (see
below). Actually, cell volume appears to play essential
signalling roles in a wide range of physiological and patho-
physiological processes; I shall discuss a few of these at
the end of the review.

Effectors of RVD in EATC and ELA cells

Below, I shall discuss findings that have led to our
current understanding of the structural basis and func-
tion of ion channels involved in volume regulation in EATC
and ELA cells. In addition, In shall discuss the biochemi-
cal basis for channel regulation. Focus will be on the two
main types of channels involved in RVD: swelling -acti-
vated CI" and K" channels.

Swelling-activated Cl~ channels

It was first demonstrated in EATCs that cell swell-
ing induced the activation of a CI~ leak pathway [8]. This
was also shown in lymphocytes [13] and later, in essen-
tially all cell types investigated [14, 15]. Direct
electrophysiological recordings of swelling -activated K*
and CI” currents were first carried out in human intestine
407 cells [16]; later, the activation of separate K" and CI-
channels was measured during RVD in many cells [5, 7].
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Fig. 1. Regulatory volume decrease (RVD) in EATCs. Cells
were preincubated in isotonic (300 mOsm) medium for 40 min.
At time=0 (A), they were transferred to hypotonic medium (150
mOsm). (Top panel) Cell volume was followed over time with a
Coulter counter. The maximal swelling (B) was followed by cell
shrinking (RVD). Cell volume is expressed relative to the initial
isotonic volume. (Bottom panel) Images were taken by scan-
ning electron microscopy at time points indicated in the top
panel (A, B). Images are from [8]. The figure is reproduced from
[7] with permission from The American Physiological Society.

It was originally assumed that, in the basal steady state,
the CI" conductance (g) was high, and an increase in
g., was not necessary for RVD to take place. However,
around 1970 [17], a Cl” exchange diffusion was demon-
strated, and it became clear that the net conductive CI
transport could be much smaller than assumed from uni-
directional flux measurements, because the major part of
the flux was due to C1/CI" exchange. Thus, in 1979, we
found in EATCs that the conductive Cl permeability ac-
counts for only 5% of the apparent permeability deduced
from unidirectional **Cl efflux measurements. [18]. Fur-
thermore, **Clefflux increased in swollen cells and it was
inferred that this increase reflects a dramatic increase in
CI" conductance upon swelling [8] (Fig. 2A), which oc-
curred in parallel with an increase in conductive K* flux
[19]. This resulted in a net KCI efflux and led to RVD.
To understand the Cl loss during RVD it is important to
know that in EATC, [CI']. is much higher than predicted
from thermodynamic equilibrium [9]. The increase in**Cl
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Fig. 2. Volume-regulated CI- permeability. (A) The rate con-
stant for *°Cl efflux was dependent on cell volume in EATC.
Efflux was measured as a unidirectional, steady state 3°Cl
efflux. The NaCl concentration is in all cases 75mM, and differ-
ences in osmolarity are obtained by addition of different
amounts of sucrose. Under isotonic conditions, (dashed line)
the electroneutral anion exchanger (AE) was responsible for
95% of the efflux, and the remaining 5% constituted a conduc-
tive Cl- flux (volume-regulated anion current; VRAC). Increase
in CI flux on cell swelling was taken to represent an activation
of conductive CI- channels. Thus VRAC increased significantly
after cell swelling (cell water >4 mg/g dry wt). The anion/cation
cotransporter (NKCC), which was quiescent under isotonic
conditions, was responsible for the increased unidirectional
CI" flux in shrunken cells (cell water < 3.5 mg/g dry wt). [Data
from [8]]. (B) Changes in EATC volume after transfer (at time=0)
to a hypotonic (150 mOsm), Na*-free medium that contained a
K channel inhibitor (quinine). Gramicidin (0.5 pM) was added
to induce high K* permeability. When the K* channel is blocked
by quinine but bypassed by addition of gramicidin, the rate of
cell shrinkage can be used to monitor the Cl- conductance. The
Cl conductance is increased about 60-fold when the cells are
swollen and decreases again within 10 minutes following the
hypotonic exposure. The volume-induced activation of the CI-
transport pathway is transient, with inactivation within about
10 minutes[Data from [20]]. (C) I-V relationship obtained with
whole cell patch clamp recordings (-100 mV to +100 mV, using a
fast ramp-protocol) of the CI" current (VRAC) in EATCs under
isotonic and hypotonic (27% decrease in osmolarity) condi-
tions. [Data from [23]]. The figure is reproduced from [7] with
permission from the American Physiological Society.

exchange flux seen in shrunken cells reflects an activa-
tion of anion cation cotransport, later shown to be Na*,
K* 2 CI cotransport (see [7]). In the experiments [20]
shown in Fig. 2B, we recorded the RVD process, when
the K* channel was blocked by quinine but bypassed by
addition of the K* ionophore gramicidin. Under these
conditions the rate of cell shrinkage could be used to
monitor the Cl- conductance, which was now rate limit-
ing for the cell shrinkage. This experiment demonstrated
that Cl-permeability increased within the first minute af-
ter cell swelling and decreased again after about 10 min.
In isotonic steady state, the EATC membrane conduct-
ances were estimated to be 10.4 uS/cm? for K* and 0.6
uS/cm? for CI™ [9]. Upon cell swelling, it was shown that
the CI" conductance increased around 60-fold, which was
significantly greater than the change in K conductance
[9]. In EATC, [CI], is much higher than predicted from
thermodynamic equilibrium; therefore, this large increase
in CI- conductance results in a depolarization of the cell
membrane during RVD [9]. Cellular Cl- homeostasis in
EATC was previously described in [21]. A more general
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description of cellular Cl- homeostasis is found in [22]

Characteristics of swelling -activated CI- currents

The biophysical characteristics of swelling -activated
CI" channels (a.k.a. the volume regulated anion current,
VRAC) in EATC [23] and in ELA cells [24] were similar
to those found in other cells. These characteristics in-
cluded moderate outward rectification (Fig. 2C), time-
and depolarization-induced inactivation, and an Eisenman
I permeability sequence of SNC~>1">NO3~>Br > CI
>F-[7, 15, 25]. Depolarization-induced inactivation was
not very strong in EATC [23] compared to the massive
response in rat C6 glioma cells [26] and the more or less
lack of inactivation in Jurkat lymphocytes [27] and mouse
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Fig. 3. Repetitive cell swelling activated an outwardly rectify-
ing current. The isotonic bath solution was a modified Krebs
solution that contained mannitol with [Ca*"], buffered at 25 nM
with 10 mM BAPTA. The 27% hypotonic solution was ob-
tained by omitting the appropriate amount of mannitol to re-
duce osmolarity by 27%. (A) Time course of the volume acti-
vated current. The horizontal bars indicate periods of hypot-
onic exposure. Currents were measured during a small time
window at around + 95 mV and -80 mV. (B) The current-voltage
(I-V) relationship was measured in the cell shown in (A) with
voltage ramps applied at various time points (indicated by let-
ters that correspond to those shown in A). The figure is repre-
sentative of 5 independent experiments. [Data from [23]].

BALB/c-3T3 fibroblasts [28]. Figure 3 shows the time
course of the current measured at +95 and -80 mV, re-
spectively, in an Ehrlich cell that was repetitively exposed
to a 27% hypotonic solution. Panel B shows the current-
voltage (I-V) relationship. It is clear that there is a very
fast activation and deactivation of the current, when the
cells are transferred to hypotonic solution and back to
isotonic solution respectively.

In EATCs, VRAC was Ca’" independent, insensi-
tive to niflumic acid, and relatively insensitive to DIDS,
but inhibited by tamoxifen [23]. In ELA cells, an acidic
di—aryl-urea, NS3728, inhibited VRAC (Fig. 4) with an

IC, of around 0.4 uM [29]. The single channel conduct-
ance of VRAC was 3-7 pS in EATC, measured in cell
attached patches [30]

Molecular identity

Despite intensive research, the molecular identity
of VRAC remains unknown. We have investigated some
candidates for VRAC by testing their expression in ELA
cells. In the CIC family, C1C-2, but not CIC-1 or CIC-3,
appeared to be present in ELA cells. The recently cloned
CI- channels, CLIC1 and TMEM16A, were both present
in ELA cells. To investigate whether these channels, like
VRAC (see below), were differentially expressed dur-
ing the cell cycle, plasma membrane proteins were iso-
lated by biotinylation. We found that CLIC1 and CIC-2
were down-regulated in the S phase in ELA cells. This
was in contrast to observations of VRAC, which was
strongly upregulated in the S phase [29, 31]. Moreover,
expression of the Ca®" activated Cl” channel, TMEM16A,
did not change in the S phase.

TMEMI16 F

The mammalian TMEM16 family consists of
10 members, and the TMEM16-A and —B isoforms have
been identified as calcium-activated chloride channels
(CaCCs). These are responsible for the CaCC current
(I, ) measured in numerous cells [32]. Our group
is presently investigating the role of the highly expressed
TMEMI16F isoform in EATC. The stable knock-down
of endogenous mTMEMI16F in EATC with micro
RNAI resulted in a significant inhibition of the RVD
response. However, the contribution of TMEMI16F to
RVD essentially disappeared when an increase in
intracellular Ca** during RVD was prevented with
BAPTA-AM (Holm et al.,unpublished results). Surpris-
ingly, a knock-down of TMEM16F in EATC actually re-
sulted in 2-3 fold increases in VRAC (Holm et al., un-
published results). Together these observations suggested
that TMEM16F was not VRAC; however, nTMEM16F
may be part of a macro-molecular complex that is in-
volved in VRAC regulation.

Mechanisms of VRAC activation by cell
swelling in EATC and ELA cells

The swelling -activated CI~ current in EATC is a
characteristic VRAC, and it is essentially Ca** independ-
ent (unaffected by strong [Ca**] buffering with 10 mM
EGTA). This current is clearly biophysically different from
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Fig. 4. Effect of the anion channel
inhibitor, NS3728, on VRAC in ELA
cells. Formula for NS3728 and
dose-response curves for the in-
hibitory effect of NS3728 on VRAC
at-55mV and +40 mV, as indicated. CFs
Currents were measured under hy-
potonic (190 mOsm) conditions
with the fast ramp protocol; inhibi-
tion was calculated with the Hill
equation (n=3-4 independent ex-
periments at each concentration).
[Data from [29]].
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CaCC [23]. In agreement with this, niflumic acid, which
is an inhibitor of CaCC_, did not inhibit RVD, but
tamoxifen, an inhibitor of VRAC, completely blocked RVD
[33]. Furthermore, no increase in [Ca*], was observed
after cell swelling in the majority of EATC [34]. VRAC
in ELA cells and/or in EATC was shown to be controlled
by several other factors. These included reactive oxygen
species [35] the cytoskeleton [36], and the membrane
lipid composition; i.e., the cholesterol content [24, 37] and
the polyunsaturated fatty acid content [38].

Cholesterol modulates the volume-regulated

anion current in ELA cells via effects on Rho and

F-actin

Reduction in cellular cholesterol content (44%) re-
sulted in a significant potentiation of VRAC in ELA cells
(Fig. 5) after a modest (15%), but not after a severe
(36%) reduction in extracellular osmolarity [24]. Levitan
and coworkers [37] pointed out that this was consistent
with the notion that cholesterol depletion caused an in-
crease in the fraction of open channels, rather than an
effect on the single channel conductance. Conversely,
an increase in cellular cholesterol content (~47%) had no
effect on VRAC in ELA cells. This suggested that the
cholesterol effect on VRAC was maximal in ELA cells
with physiological cholesterol content. Cholesterol deple-
tion also activated a VRAC-like current in the absence
of cell swelling [24]. This suggested that changes in cho-
lesterol content somehow affected the volume signal per
se; perhaps by increasing the number of open VRAC
channels. The identity of this putative volume- and cho-
lesterol-sensitive parameter is unknown, but we found
that the cholesterol-induced increases in maximal VRAC
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Fig. 5. Effect of cholesterol depletion on VRAC in ELA cells
under hypotonic conditions. Cells were cholesterol-depleted
by prexposure to empty Methyl-B-cyclodextrin (MBCD). At
time=1 min, the medium was shifted to a hypotonic medium
(225 mOsm). The VRAC was recorded with the whole cell patch
clamp technique at voltages of -55 mV and +40 mV with a fast
ramp-protocol. [Data from [24]].

current and activation rate were dependent on F-actin
and ROK, respectively. In contrast, changes in cellular
PtdIns(4,5)P, had no effect on VRAC [24].

Therefore, a candidate volume- and cholesterol-sen-
sitive parameter might be membrane stiffness, which is
known to be dependent on cortical F-actin. This hypoth-
esis would be consistent with the observation that cho-
lesterol depletion eliminated the swelling-induced decrease
in cortical and stress fibre-associated F-actin in ELA cells.

Ion Channels in Regulatory Volume Decrease in Ehrlich Cells
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In other words, cell stiffness was increased after choles-
terol depletion. F-actin disruption by latrunculin B (LB)
in ELA cells potentiated the isotonic VRAC current in-
duced by cholesterol depletion; however, it prevented the
cholesterol depletion-induced increase in maximal cur-
rent magnitude after cell swelling. This suggested that F-
actin integrity was required for the cholesterol-depletion-
induced increase in VRAC magnitude under hypotonic
conditions, but also for limiting isotonic VRAC activity in
cholesterol-depleted cells [24]. This scenario resembles
the shrinkage-induced activation of the Na*-K*-2Cl~
cotransporter, NKCC1. There, F-actin integrity was re-
quired both to maintain NKCCI1 silence, under isotonic
steady-state conditions, and for shrinkage-induced acti-
vation of NKCC1 [39]. Rho activity was decreased in
osmotically swollen cells, and this reduction was prevented
by cholesterol depletion. Cholesterol depletion also in-
creased Rho activity under isotonic conditions.

Taken together, these results suggested that, in ELA
cells, F-actin and the Rho-Rho kinase pathway might
modulate VRAC activity. Cholesterol depletion thus in-
creased VRAC currents, at least in part, by preventing
the hypotonicity-induced decrease in Rho activity and
promoting F-actin polymerization [24]. In this context, it
should be mentioned that VRAC did not appear to be
activated by membrane stretch in EATC [30] or in other
cell types [15]

Other changes in lipids

Membrane fluidity can be altered by changes in lipids
other than cholesterol; for example, by changes in the
saturation of fatty acids. Two weeks of dietary n-3-rich
fish oil (7.5%, wt/wt) increased the ratio of
eicosapentaenoic acid to arachidonic acid in EATC
phospholipids compared with an olive oil control diet [38].
We showed that an increase in the membrane content of
eicopentaenoic acid with dietary fish oil accelerated RVD
(Fig. 6) and increased swelling -activated CI- and K*
permeabilities [38].

ROS

In various cell types, ROS production is increased
within the first minute following hypotonic exposure [7].
ROS are also involved in the swelling-induced activation
of VRAC; e.g., in liver cells [40], HeLa cells [41], and
rabbit ventricular myocytes [42]. A ROS-induced anion
current has been related to osmotic stretching of B -
integrin in, e.g., rabbit ventricular myocytes [42] ). Thus,
we raised the question of whether ROS might play an
equivalent role in adherent/nonadherent cells.
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Fig. 6. Effect of lipid modification on the RVD response in
EATCs. The effect of dietary fish oil/olive oil on RVD in EATCs
was estimated. EATCs were isolated from mice after two weeks
on a diet supplemented with n-3 fish oil (MaxEPA) or virgin
olive oil as a control. The cell volume was followed over time
under hypotonic conditions (150 mOsm) with the Coulter coun-
ter technique. [Data from [38]].

Addition of H,0, (0.5 mM) to nonadherent EATCs
resulted in a substantial (22 + 1%) reduction in cell vol-
ume within 25 min. However, in EATC, H,O, activates
electroneutral KCI cotransport, not K* and CI- channels
[35]. Addition of H,O, to hypotonically swollen EATC
accelerated the RVD, but there was no additional increase
in K" and CI conductances. In contrast, addition of H,0,
to adherent ELA cells increased the K" and CI' conduct-
ances after hypotonic cell swelling (Fig. 7). Hence, H,0,
could induce KCI cotransport and activate K and CI
channels in nonadherent and adherent cells, respectively
[35]. It should be noted that the preferential reliance on
KCI cotransport versus K™ and CI- channels in
nonadherent EATC and adherent ELA cells does not re-
flect a down regulation of the expression of KClin ELA
cells or of TASK-2 in EATC as nonadherent as well as
adherent cells express mRNA coding for the
cotransporters KCC1, 3 and 4 as well as mRNA for
TASK-2 [35]. As a ROS-induced anion current as men-
tioned above has been related to osmotic stretching of
B -integrin [42] we are at the moment focusing on the
differences in integrins between EATC and ELA cells .
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Fig. 7. Effect of H O, on ion currents in ELA cells. The I, and
I, were measured with the whole cell patch-clamp technique
on ELA cells adhered to glass coverslips in the presence or
absence (control) of H,0, (0.5 mM). The bath solution con-
tained 28 mM NaCl, 62 mM Na-gluconate, and it was adjusted
to 300 mOsm with d-mannitol. At the times indicated by the bar,
hypotonic conditions were applied by omitting d-mannitol from
the bath solution. The membrane potential was clamped at
either the Cl- (-6 mV) or the K* (-68 mV) equilibrium potential to
isolate the K* or CI” current, respectively. [Data from [35]].

Swelling -activated K* channels

Cell swelling-induced activation of a K* leak path-
way was first described in lymphocytes and EATC [19,
43]. Later, different K* channels in different cell types
have been shown to be implicated in RVD [6, 7]. The
volume-sensitive K* channel in EATC is the TWIK-re-
lated, acid-sensitive K* channel-2 (TASK-2), which be-
longs to the two-pore domain channel family [44]. TASK-
2 is a ChTX- insensitive, clofilium sensitive, Ca*" inde-
pendent channel [45], with a permeability sequence of:
K* > Rb" >> Cs*, NH*, Na*, Li* [46-48]. In EATC,
TASK-2 is highly sensitive to external pH [48]. In addi-
tion, TASK-2 has been associated with apoptotic volume
decreases in EATC following cisplatin exposure [49].
Recently, TASK-2 has been ascribed a role in T-cell ac-
tivation [50]; we have found that TASK-2 was up-regu-
lated in activated T-cells, on both the protein and mRNA
levels. Thus, we are using siRNA to study the potential
role of TASK -2 in proliferation and in volume regulation
of CD3/CD28-activated T cells (Stroem et al., unpub-
lished results) .

Mechanisms of TASK-2 activation by cell
swelling

The TASK-2 channel is not directly stretch activated
[30]. In a series of papers, we have shown that its acti-
vation involved the cysteinyl leukotriene D, (LTD,) [51-
53], tyrosine phosphorylation [54] and GTP binding pro-
teins [55].

LTD4

A role for leukotriene D4 (LTD,) in the activation
of TASK-2 after cell swelling in EATC was evidenced
by the following observations. (i) In Ca**- free media, 3
nM LTD, accelerated the RVD response in the absence
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Fig. 8. LTD, plays a role in RVD that is not correlated with
increases in [Ca*], (A) The effect of low (3 nM) and high (100
nM) doses of LTD, on [Ca*]. in EATC was investigated with
FURAZ2-fluorescence. [Data from [51]]. (B) Effect of low dose
LTD, (3 nM) on RVD in EATC was assessed by the Coulter
technique. [Data from [51]].
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of anincrease in [Ca*']. [51] (Fig. 8 A, B). (ii) Cell swell-
ing activated phospholipase cPLA, [56] (Fig. 9) and stimu-
lated synthesis of LTC,/LTD, [57]. (iii) Under isotonic
conditions, LTD, activated two K" effluxes; one was a
ChTX-sensitive, Ca’*-activated K* efflux and the other,
similar toTASK-2, was ChTX-insensitive [52]. (iv) LTD,
(5 nM) activated a whole cell K* current that was similar
to TASK-2 in conductance, I/V relation, and pharmaco-
logical profile [53]. Finally, (v) addition of LTD, reduced
the activation time of TASK-2 after cell swelling [53].
These observations could be explained in tentative model
(Fig.10) proposed for the role of LTD4 in the RVD of
EATC [10]. This hypothesis holds that cell swelling re-
sults in activation and translocation of cPLA a to the
nucleus (Fig. 9A), where it mobilizes AA from the sn-2
position of the inner nuclear membrane phospholipids (Fig.
9B). With the involvement of the Five Lipoxygenase Ac-
tivating Protein (FLAP), 5-Lipoxygenase (5-LOX), and
LTC, synthase, AA is converted to LTC,, which is trans-
ported out of the cell; there, it is converted to LTD, by y-
glutamyl transpeptidase. LTD, binds with an EC, value
of 2 nM to a putative, MK-571 insensitive CysLT
receptor [52] and activates I, [53] (see Fig 10). In
contrast to the volume sensitive K channel, the volume-
sensitive Cl” channel is independent of LTD, in EATC
[53].

Ca’*-potentiation

At concentrations above 10-20 nM, LTD, binding
to the cloned CysLT, receptor [58] activated the Ca*
signalling pathway. This will activate the Ca**-dependent
I, channel [30] and the Ca**-dependent CI~ channel
(CaCC) [23], which will potentiate the RVD response
(Fig. 10).

External ATP

ATPreleased to the extracellular medium during cell
swelling can similarly contribute to activation of both Ca**-
dependent K* channels and CACCs. Thus, ATP also
potentiated the RVD response, as shown in rat hepatoma
cells [59]. In EATC, we found that ATP stimulated PY
receptors [60], which resulted in an increase in [Ca**]
and activation of charybtotoxin-sensitive K* channels.

i

Tyrosine phosphorylation

Figure 11 shows that tyrosine phosphorylation plays
a central role in the activation of TASK-2 during cell
swelling and RVD. In EATC, RVD is rate limited by /.

This indicates that the inhibition of RVD reflected inhibi-
tion of TASK-2. We found that Genistein (a tyrosine ki-

A EATC
CPLA,,

B 3H-arachidonic acid fraction in the nucleus
0.25
L
0.20
0.15 1
0.10 A
Hypotonic medium
Hypotonic medium
0.05 T T T T
0 2 4 6 8
Time, min

Fig. 9. Cell swelling activates cytoplasmic phospholipase A2c
(cPLA,)) in EATC. EAT cells (panel A) were exposed to
isoosmotic (left) or hypotonic solution (150 mOsm; right) for 1
minute and fixed for confocal laser scanning microscopy
(CLSM). The cell were labeled with rabbit anti-cPLA,  and
visualized using a FITC-conjugated antibody (green), The
plasmamembrane was visualized using tetramethyl-rhodamine-
conjugated agglutinin (red). B. EAT cells were preloaded for 2
hours with *H-AA washed and exposed to isoosmotic or
hyposmotic (150 mOsm) solutions. The fraction of *H-AA in
the nucleus was estimated as *H-activity in the nuclear fraction
divided by the activity in the nuclear plus cytosolic fraction.
The nuclei were purified (Sigma NUC-201 nuclei isolation kit).
Data from [56]

nase inhibitor) inhibited the rate of RVD by almost 90%
prolonging the osmotic phase a lot (Fig 11A), and the
tyrosine phosphatase inhibitor monoperoxo(picolinato)-
oxo-vanadate (mpV(pic)) shifted the volume set point to
alower cell volume for re-closing the channel [54]. When
the tyrosine phosphatase inhibitor was added together with
the tyrosine kinase inhibitor, channel activation was not
inhibited (Fig. 11B).
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Fig. 10. Proposed model for intracellular signaling involved in activation of TASK-2 after hypotonic swelling of EATC. Upon
cell swelling, cPLA o translocates to the inner nuclear membrane and becomes activated by phosphorylation. Arachidonic acid
released by cPLA a is converted to LTC, by the combined action of 5-LOX and the LTC, synthase. LTC, is released to the
extracellular space and converted to LTD,. At low concentrations LTD, activates the clofilium- and volume-sensitive TASK-2
channel. This effect might be via a receptor and a G-protein coupled process. At higher concentrations LTD, binds to the CysLT,
receptor (R,) and activates the Ca®* signaling pathway. The increase in [Ca*'] induced by CysLT, receptor activation activates

ChTX-sensitive K* channels and CACCs . See text for further details. Reproduced from [104] with permission.

In agreement with this, swelling -activated K* ef-
flux was impaired by genistein and enhanced by mpV(pic)
[54]. Thus, tyrosine kinases appeared to be involved in
the activation of TASK-2 during cell swelling, and tyro-
sine phosphatases appeared to be involved in inactivation
of the channel. Overexpressing TASK-2 in human em-
bryonic kidney (HEK)-293 cells resulted in an accelera-
tion of RVD and a lower volume set point compared to
wild type cells. The Janus kinase inhibitor cucurbitacin
inhibited RVD by 60% (Fig. 11B). This suggested that
the JAK/STAT pathway was upstream from the swell-
ing-induced phosphorylation of TASK-2 [54]. Finally, a

cell swelling-induced, time-dependent, tyrosine phospho-
rylation of TASK-2 in HEK-293 cells overexpressing
TASK-2 channels was observed with anti-phosphotyrosine
immunoblotting (Fig. 11C) [54]. The tyrosin phosphor-
ylation of the channel was evident within the period 1 to
10 min after hypotonic treatment suggesting that TASK-
2 is activated for at least that period of time. This is in
agreement with the observation that the rate constant
calculated from K* efflux data was high and unaltered in
the time period 1 to 10 min after hypotonic exposure.
When tyrosin dephosphorylation will again close the chan-
nel cannot be estimated from the present experiment.
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Fig. 11. Role of tyrosine kinases in swell-activation of TASK-
2 and RVD. EATCs were preincubated with or without the tyro-
sine kinase inhibitor genistein (371 uM) for 45 min. (A) Cells
were transferred (time = 0) to hypotonic medium (150 mOsm),
with or without genistein (371 uM). Cell volume was followed
over time in a Coulter Counter. (B) RVD was estimated with the
Coulter counter after a 45 min preincubation in genistein (371
uM) with or without the tyrosine phosphatase inhibitor (mpV;
10 uM), or after a 4 h preincubation with the JAK2 inhibitor
cucurbitacin (Cucur., 10 uM). The initial rate of RVD was meas-
ured following hypotonic exposure (150 mOsm), and the rates
are expressed relative to control. All inhibitors were present
during RVD estimation. The results represent the mean of 6
(control), 4 (genistein), 3 (genistein plus mpV), or 3
(cucurbitacin) experiments. *Significantly different from the
control value. (C) Tyrosine-phosphorylation of TASK-2 was
measured in cells subjected to either isotonic or hypotonic
conditions. HEK-293 cells were transfected with a pcDNA3.1/
myc-His vector that carried the TASK-2 sequence. At various
incubation times (1, 5, 10 min), cells were lysed, TASK-2 chan-
nels were precipitated, then separated by SDS-PAGE, and
Western blotted. TASK-2 expression and the level of tyrosine-
phosphorylation (pY100) was visualized with the appropriate
labelled antibodies. The specific activity for tyrosine-phos-
phorylated TASK-2 was the ratio between the pY 100 band in-
tensity and the TASK-2 band intensity. The ratio derived un-
der hypotonic conditions is shown relative to the ratio derived
under isotonic conditions. Values are means from 8, 9, and 6
sets of experiments taken at times 1, 5, and 10 min, respectively.
*significant increase compared to isotonic conditions (t-test,
p<0.05). [Data from [54]]. Figure reproduced from [105] with
permission.

The volume sensor(s)

A central question, which we recently reviewed in
detail (see [7, 61]), is how cells sense volume changes,
and how this sensing is transduced; e.g., to the volume
regulatory K" and CI" channels. The potential mechanisms
for cellular volume sensing can be grouped into four cat-
egories, including (/) macromolecular crowding [62, 63],
(if) changes in cellular ionic strength [64], (iii) changes
in concentrations of specific ions [65], and (iv) mechani-
cal changes in the plasma membrane lipid bilayer and/or
the cytoskeleton, partly via the interactions between
receptors and adhesion proteins [7]. The first three
points have not been investigated in EATC or ELA cells;
for the last point, the most current knowledge was
discussed above in the activation of VRAC and
TASK-2. Thus, I shall now briefly discuss changes in
the cytoskeleton.
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The cytoskeleton in osmosensing

In most cells, osmotic swelling results in a net de-
crease in actin polymerization. We also found this in non-
adherent EATC with a quantitative F-actin assay and
confocal laser scanning microscopy of rhodamine-phal-
loidin labelled cells [66]. In EATC, F-actin was localized
to the cortical region, and it appeared to form a ring.
Hypotonic cell swelling reduced this cortical F-actin ring
within the first min after osmotic challenge (Fig. 12),
moreover, during cell swelling, the cellular content of
F-actin was significantly reduced [66].

The swelling-induced decrease in F-actin may be
regulated by MLCK in EATC [67, 68]. In EATC, we
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Fig. 12. Osmotic shrinkage and swelling effects on F-actin organization and myosin IIB distribution. At time = 0, Ehrlich ascites
tumor cells were diluted to a cytocrit of 2% under isotonic, hypertonic, or hypotonic conditions, and 1-ml aliquots were removed
for fixation. Cells were permeabilized in 0.1% saponin and incubated with the anti-myosin II antibody, CMII23 (1:200). Next, a
FITC-conjugated goat antimouse secondary antibody (1:100) was added. To visualize F—actin, Rhodamine phalloidin (2 U/ml)
was included in the incubation buffer with the secondary antibody, The cells were viewed with a confocal laser scanning
microscope. Images are representative cells from at least three independent experiments for each condition, at time = 0 (isotonic)
or time = 1 min (1°). For each situation, myosin II labelling is shown in green and rhodamine phalloidin labelling of F-actin is shown

in red. [Data from [67]].

showed that myosin II was rapidly translocated to the
Golgi/perinuclear region upon hypotonic swelling and to
the cortical ring during hypertonic shrinkage [67] (Fig.
12). Moreover, G proteins of the Rho family are highly
sensitive to cell volume changes and are involved in
cytoskeletal rearrangements that occur during volume
regulation. Thus, similar to F-actin, Rho activity rapidly
increased after hypertonic cell shrinkage in ELA cells
[69-71] and decreased in osmotically swollen ELA cells
[36].

To determine whether changes in F-actin during cell
swelling played a functional role in the RVD response of
EATC, we pre-treated cells with F-actin-disrupting agents,
cytochalasin and latrunculin. It should be noted that
cytochalasin has highly variable effects on F-actin in in-
tact cells; the effects depend on the cytochalasin con-
centration, the isoform used, and the cell type tested [66,
72]. For example, in EATC, we found that low concen-
trations (0.5 uM) of the cytochalasins tested (CB, CD,
CE, and chaetoglobosin C [CGC]) resulted in significant
F-actin depolymerization; however, a high concentration
(10 uM) did not depolymerize F-actin. The addition of
0.5 uM CB inhibited RVD in EATCs, but none of the
other cytochalasins tested had an effect. It was suggested
that the CB effect was related to its known activity of

severing F-actin, which could lead to an increase in the
cellular pool of “short” actin filaments [73]. Data that
involves cytochalasin treatment must, in general, be in-
terpreted with caution; specifically, because at least some
of the cytochalasins have effects that are unrelated to
cytoskeletal integrity [66, 72].

It has been suggested that the actin-based cytoskel-
eton regulates nearly all the transporters and channels
that mediate RVD or RVI in EATC and ELA cells. This
includes swelling —activated Cl-channels [36], swelling -
activated K* channels [74], and the shrinkage activated
NKCCI1 [39, 75, 76]

Volume-sensitive ion channels in cell pro-
liferation, migration, and apoptosis

Cell proliferation

It is well known that cell proliferation is stimulated
by cell swelling and inhibited by shrinkage [77]. We found
that, during the S phase, ELA cells swell by taking up
ions and water [31]. Actually, prior to the S phase, in the
G(0)-G(1) phase transition, the cellular content of Na*
and CI" is reduced; then, in the S phase, cells increase
their uptake of both ions and water concomitantly. In fact,

Ion Channels in Regulatory Volume Decrease in Ehrlich Cells

Cell Physiol Biochem 2011;28:1061-1078 1071



Fig. 13. VRAC an-
tagonists inhibit cell
proliferation. The
anion channel inhibi-
tors, (A) DIDS, (B)
niflumic acid, (C)
NS3728, and (D)
tamoxifen were tested
for effects on cell pro-
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Fig. 14. Cell cycle-dependent changes in maximal VRAC ac- pA/pF

tivity in ELA cells. Whole-cell patch-clamp measurements of
the maximal CI current activated by cell swelling in ELA cells
during the GO, G1, or S phase of the cell cycle. Currents were
measured after exposure to hypotonic extracellular solution
(190 mOsm) in nominally zero [Ca*'], (no added Ca*, and 10
mM EGTA in the pipette solution). The voltage was held at 0
mV, and voltage ramps were applied from -50 to +150 mV. In the
ramps, voltage steps were applied at 15 s intervals and held for
2.6 s. Data represent the I-V relationships based on the mean
current density obtained from six to nine different cells in each
cell cycle phase; error bars are SEMs. Current densities in the
GO0 and S phases are significantly different from that in G1 phase;
*P < 0.05; ***P<0.001. Current densities in S phase are also
significantly different from those in GO phase (P < 0.05, not
illustrated). [Data from [29]]

cell proliferation can be inhibited by substituting Na* with
NMDG", substituting Cl~ with an impermeable anion, or
by inhibiting either CI" channels or NHE1[31].

Channels involved

Ion channels and transporters are important for cell
proliferation in several cell types [78]; furthermore, Na*,
K", and CI" channels are dysregulated in many cancer
cells [79]. In ELA cells, we have mainly studied the role

120 7

-20 7

of CI~ channels [29, 80]. The role of CI~ channels in cell
cycle control was demonstrated by the fact that Cl~ chan-
nel blockers inhibited cell proliferation in several cell types,
including ELA cells [29, 81, 82]. In ELA cells we found
that the high-affinity anion channel inhibitor, NS3728 (an
acidic di-aryl-urea), which blocks VRAC and CaCC chan-
nels in ELA cells (30), inhibited BrdU incorporation with
an IC_ value of 41 £ 2 uM (n,,, = 4, Fig. 13C).
Tamoxifen, which blocks VRAC in ELA cells potently
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Fig. 15. Typical Apoptotic volume decrease (AVD) after addition of a chemotherapeutic drug. Wild type EATC were incubated
with 5 uM cisplatin, and samples were taken at different times for estimations of cell water content. (A) Cisplatin-induced
apoptosis was divided into three distinguishable stages (AVD , AVD, (transition), and AVD,) based on time-dependent changes
in the cell water and volume. Cell water measurements are presented as ml/g dry weight, normalized to values obtained at time =
0, and expressed as the mean values + SEM of 8 independent experiments. *indicates significantly different from the initial value
obtained at time = 0, based on ANOVA with the Tukey-Kramer multiple comparison test. (B) Cell volume (in fL) was measured by
electronic cell sizing (Coulter Counter) under the same conditions as those shown in (A). Values are given relative to the initial cell
volume and represents mean values + SEM of 11 experiments. *indicates significantly different from the initial value obtained at
time = 0; *indicates significantly different from AVD,. Data were tested for significance with a repeated measures ANOVA and the
Tukey-Kramer multiple comparison test. This figure is reproduced from [49] with permission from the American Physiological

Society.

inhibited proliferation with an IC, value of 5.8 + 0.8 uM
(n,,= 1.3, Fig. 13D). Notably, both compounds inhibited
progression of the cell cycle almost 100% [31]. The broad
spectrum CI channel inhibitor DIDS did not affect prolif-
eration (Fig. 13A) and the ELA cell CaCC inhibitor
niflumic acid only had minor effects at very high concen-
trations (Fig. 13B). We further evaluated the role of CI-
channels in ELA cell cycle progression by measuring three
types of Cl™ currents in the GO, G1, and S phases. (i)
Swelling -activated Cl- currents were measured after
osmotic swelling (i.e., VRAC); (ii) Ca*-activated CI-
currents were measured after an increase in the free
intracellular Ca?* concentration (i.e., the CaCC); and (iii)
CI" currents were measured under isotonic steady-state
conditions. The maximal VRAC current decreased from
GO0 to G1 and increased in early S phase [29] (Fig. 14).
The isotonic steady-state current (predominantly VRAC),
also decreased in G1 and increased in early S phase. In
contrast, the maximal CaCC current (500 nM Ca*" in the
patch pipette) was unchanged from GO to G1 and de-
creased in early S phase. Also, other studies showed that
CLICI and CIC-2 were down regulated in the S phase in
ELA cells, in contrast to VRAC [31]. It was suggested

Caspase-3 activity
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Fig. 16. Caspase-3 activity in non-adherent EATC and adher-
ent ELA cells following cisplatin exposure. EATC and ELA cells
were exposed to 10 pM cisplatin for 18 h. Caspase-3 activity
was estimated with a colorimetric assay. Values for cisplatin
treated cells (black bars) are expressed relative to untreated
control cells (open bars). The values are means + SEM of 7
(EATC) and 3 (ELA) independent experiments. ** indicates
significantly increased compared to untreated control (p<0.01).
[Data from [106]].
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that, in ELA cells, entrance into the S phase requires an
increase in VRAC activity and/or an increased potential
for RVD, and a concurrent membrane hyperpolarization,
and alteration in Ca** signalling through down regulation
of CaCC, CLIC1, and CIC-2 [29].

Programmed cell death

An important aspect of apoptosis is a change in the
ion gradient across the plasma membrane, followed by
cell shrinkage; this is called an “apoptotic volume de-
crease” (AVD) [83]. The shrinkage seems to be required
for apoptosis, and it starts early after the apoptotic stimuli
[49, 83-85]. Okada and co-workers [86]) were the first
to show that cell shrinkage during AVD triggered the
apoptotic process; Bortner and Cidlowsky proposed the
concept of an early AVD followed by a late AVD [87].
We have investigated the AVD process and ion content
changes in wild-type (WT) and multidrug-resistant
(MDR) EATC [49]. Exposure of WT EATC to 5 uM
cisplatin resulted in dynamic changes in cell water con-
tent and cell volume. As shown in Figure 15, these changes
fell into three sub-stages: an early AVD(1) stage, cou-
pled with a 30% loss of cell water; a recovery transition
stage AVD(T), and a late AVD(2) stage, where cell vol-
ume (water) was further reduced. AVD(1) and AVD(2)
were coupled to a cellular loss of Cl-, K*, Na*, and amino
acids (ninhydrin-positive substances); the recovery phase
was coupled to an uptake of Na*, K*, and CI" [49]. The
loss of cations exceeded the loss of anions during AVD(1)
in EATC [49], as was previously demonstrated during
the RVD process [88]. This resulted from Cl~ exchanged
for HCO,™ via the anion exchanger. This caused cyto-
plasmic acidification, which is a general phenomenon
during AVD [78]. Inclusion of the anion channel inhibitor
NS3728 in the incubation media caused a dose-depend-
ent inhibition of cisplatin-stimulated caspase 3 activity in
WT EATC. At 17 uM free NS3728, no caspase 3 activa-
tion remained. Thus, early-phase, channel-mediated loss
of K*, CI, and cell water was essential for capase acti-
vation [49]. Reductions in the concentrations of intracel-
lular ions, specifically K*, was previously suggested to
promote caspase activation [89]. In WT EATC, caspase
3 activity was induced during AVD(1) (4-12 h after
cisplatin), when the K* concentration was reduced by
only 23 mM [49]; therefore, it was unlikely that a de-
crease in K™ was the differentiating factor. However,
caspase activity was further augmented during AVD(2)
concomitant to a major decrease in K* concentration.

Thus, it remains likely that a decrease in K* concentra-
tion plays a role in caspase activation.

MDR EATC were resistant to the chemotherapeu-
tic drug cisplatin. Upon addition of cisplatin, these cells
showed significantly decreased caspase 3 activation. This
was correlated with a less pronounced AVD(1), an aug-
mented AVD(T), and a delayed and inhibited AVD(2)
compared to WT EATC. These changes in AVD in MDR
EATC could be explained by an inhibition of CI- efflux
during AVD(1) and AVD(2) and an increase in NaCl up-
take during AVD(T). The differences in AVD, ionic move-
ments, and caspase 3 activation between WT and MDR
EATC were abolished in the presence of the anion chan-
nel inhibitor NS3728. This suggested that part of the
multidrug resistance mechanism was the inhibition of
AVD, primarily via inhibition of CI- movement.

To our surprise, we found that ELA cells also showed
aresistance to cisplatin treatment, similar to that observed
in MDR EATC (Fig. 16). Because the ELA cells were
adherent and EATCs were non-adherent, the cell-lines
were expected to have different compositions of the ex-
tracellular matrix-binding proteins, integrins, which are
essential cell adhesion receptors. Integrins have been
proposed to be primary volume sensors, but this remains
to be confirmed [61]. Moreover, they have been shown
to play a role in apoptosis [90, 91]. Thus, blocking integrin
B1 or a3 decreased adhesion and increased apoptosis in
fetal islet cells [91]. We are presently investigating these
integrins in EATC and ELA cells to determine whether
the difference in adherence is important for cell volume
regulation and apoptosis induction (Broberg et al., un-
published results).

Shrinkage as a signal for apoptosis

To determine whether cell shrinkage alone can in-
duce apoptosis, potential links between apoptosis and
hypertonic cell shrinkage have been studied in several
cell types, including ELA cells [92-94]. It was found that
hypertonic cell shrinkage did result in apoptosis [7].

Shrinkage-induced cell death has been shown to in-
volve various signalling events, including two that were
studied in our group. The first was that, in NIH3T3 cells,
as in many other cell types, cell shrinkage activates the
small, monomeric, GTP binding protein, Rac, and the MAP
kinase, p38. This is followed by phosphorylation and nu-
clear translocation of the transcription factor p53, which
results in caspase 3 activation. Caspase 3 was suggested
to cause altered transcription of proapoptotic proteins,
including Bax and Bid [93] (Fig. 17A). Overexpression
of constitutively active Rac potentiated the shrinkage-
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Fig. 17. Two proposed mechanisms for cell shrinkage causing apoptosis. (A) Cell shrinkage activates the monomeric GTP
binding protein, Rac, and the MAP kinase, p38, followed by phosphorylation and nuclear translocation of the transcription
factor, p53. This results in caspase-3 activation, probably via transcription of proapoptotic proteins. Green indicates stimulatory
pathways supported by experimental evidence. The model is based on [93]. (B) Cell shrinkage inhibits PDGF receptor-mediated
signalling. Red indicates inhibited pathways that are supported by experimental evidence. Inhibition of PDGF receptor signal-
ling reduces Akt/PKB activity, which results in reduced BAD phosphorylation; this increases BAD-mediated programmed cell
death. In addition, reductions in MEK1/2 and ERK 1/2 activities are known to result in reduced cell survival. Based on results from
[96]. Models are slightly modified from [7]; reproduced with permission from The American Physiological Society.

induced activation of p38 MAPK, p53, and caspase-3;
this suggested that Rac was upstream of these events
[93]. The second signalling event was that cell shrinkage
inhibits the growth-factor receptor, PDGF ; this results
in reduced Akt, MEK, and ERK activities [95, 96] (Fig.
17B). Thus, the phosphorylation of ERK1/2 was
transiently decreased in NIH3T3 cells [93, 96] and ELA
cells [94] after osmotic shrinkage in parallel with the ac-
tivation of p38 MAPK.

Cell motility

Many cell volume regulatory channels and trans-
port proteins play essential roles in cell motility [97, 98],
[7,99]. The Schwab group [99] suggested a model where
shrinkage-activated transporters were expressed at the
leading edge of the cell; there, they mediated local ion
uptake and cell swelling, which contributed to leading edge
protrusion. CI" and K* channels at the lagging edge then
mediated ion efflux and cell shrinkage, which contributed
to lagging edge retraction. Thus, swelling -activated CI-
channels modulated cell migration [100] and invasion [101,

102]. Moreover, in H-Ras transformed fibroblasts, swelling
-activated Cl” channel upregulation accounted for the in-
creased migratory capacity of these cells [103]. Finally, I
shall only briefly outline preliminary findings in ELA cells,
which showed that various TMEM 16 channels played a
role in cell migration. Stable knock downs of TMEM16F
and TMEM16K channels were constructed in ELA cell
lines. Then, wound healing assays were performed to
measure the rate of cell migration. We found that the
migration process had slowed down in both knocked down
cell lines; this indicated that these CI” channels played an
important role in migration (Jacobsen et al., unpublished
results).

Concluding remarks

Some of the most essential questions for future stud-
ies in EATC and ELA cells are the molecular identity of
VRAC and the precise molecular mechanisms that un-
derlie the swell-induced activation of channels involved
in RVD. These investigations will require studies of ion
transport dynamics and structure-function analyses of
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membrane proteins. In addition, we lack knowledge on

the contribution of cell volume regulatory mechanisms to

the mechanisms involved in cell migration, proliferation,
and apoptosis. Further experimental effort is needed to
define fully the role of cell volume regulatory mecha-

nisms in these processes.
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