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ABSTRACT: The fundamental purpose of this research is to highlight the
spatial seasonality of tornado risk. This requires the use of objective methods to
determine the appropriate spatial extent of the bandwidth used to calculate
tornado density values (i.e., smoothing the raw tornado data). With the un-
derstanding that a smoothing radius depends partially upon the period of study,
the next step is to identify objectively ideal periods of tornado analysis. To
avoid decisions about spatial or temporal boundaries, this project makes use of
storm speed and tornado pathlength data, along with statistical cluster analysis,
to establish tornado seasons that display significantly different temporal and
spatial patterns. This method yields four seasons with unique characteristics of
storm speed and tornado pathlength.

The results show that the ideal bandwidth depends partially upon the tem-
poral analysis period and the lengths of the tornadoes studied. Hence, there is
not a ‘‘one size fits all,’’ but the bandwidth can be quantitatively chosen for a
given dataset. Results from this research, based upon tornado data for 1950–
2011, yield ideal bandwidths ranging from 55 to 180 km. The ideal smoothing
radii are then applied via a kernel density analysis of each new tornado season.
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1. Introduction
Tornado climatology research in the United States has shown that subjective and

sometimes arbitrary decisions must be made when deciding what types of temporal
and/or spatial bounds to apply to the data. Some studies include all events (Thom
1963; Kelly et al. 1978; Schaefer et al. 1986; Brooks et al. 2003; Dixon et al. 2011),
while others analyze only killer (Boruff et al. 2003; Ashley 2007) or strong/long-
track tornadoes (Concannon et al. 2000; Broyles and Crosbie 2004; Guyer et al.
2006; Kis and Straka 2009). Likewise, many studies are restricted to specific,
predetermined areas (Emery 1900; Hanstrum et al. 2002; Guyer et al. 2006; Gagan
et al. 2010) or times (Hanstrum et al. 2002; Guyer et al. 2006; Ashley et al. 2008;
Kis and Straka 2009).

These decisions to reduce the total sample size are made for good reasons that
are often associated with testing specific hypotheses but, even when the total
sample of recorded tornado events is used, there may not be enough statistical
power to draw many conclusions about temporal and spatial patterns (Doswell
2007). Most researchers employ spatial smoothing techniques to overcome some of
the problems associated with an incomplete and inconsistent dataset; however,
there is no clear ‘‘best’’ shape or size for smoothing methods (Dixon and Mercer
2012; Marsh and Brooks 2012).

The variety of decisions made by researchers suggests that there is also no
singular best method for identifying temporal or spatial delimiters of tornado data.
The idea of a ‘‘tornado season’’ is a good example of this problem. Figure 1 suggests
that the peak in tornado frequency is in late spring (i.e., late May) and that there are
as many tornadoes or perhaps more throughout the summer (June–August) as there
are in the spring (March–May). If we reproduce Figure 1 for smaller subsections of
the total sample (specific intensities, areas, times of day, etc.), the graph will likely
appear substantially different, as shown by Brooks et al. (2003).

Figure 1. Total number of U.S. tornadoes (1950–2011) by day of the year. The dark
red line is a 21-day moving average.
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The purpose of this study is to create seasonal tornado risk maps for the United
States. This goal requires the use of objective methods to identify the appropriate
distance parameter for depicting tornado frequency using a geographical infor-
mation system (GIS)-based kernel density analysis function and to apply this
function to objectively identified seasons of tornado activity. GIS density analysis
functions and similar smoothing techniques have been frequently used to illustrate
the density or probability of tornadoes and tornado-related variables (Thom 1963;
Kelly et al. 1978; Schaefer et al. 1986; Concannon et al. 2000; Brooks et al. 2003;
Ashley 2007; Dixon et al. 2011; Dixon and Mercer 2012; Marsh and Brooks 2012).
However, these analyses have typically been applied without quantitative evidence
for decision processes associated with selecting the appropriate spatial analysis
extent, temporal analysis period, and appropriate tornado pathlength.

1.1. Identifying appropriate radii for smoothing tornado data

Aggregation of tornado events into temporal and/or spatial groups suggests that
the events are related (correlated) in time and/or space. The term ‘‘spatial auto-
correlation’’ is derived from time series analysis and is most closely associated
with the univariate statistics notion of correlation (de Smith et al. 2007). Various
measures of spatial autocorrelation have been used to assess the presence of spatial
stability (i.e., consistent values across space) within a dataset. Spatial stability may
be common at some scales, but it is expected to diverge toward spatial heteroge-
neity (also referred to as spatial nonstationarity) at other scales (Anselin 1995;
Anselin 1996). The global Moran’s I index (referred to only as Moran’s I) is one
method for quantifying spatial stability, where the calculated index value I is most
commonly applied to measure spatial autocorrelation for areal units (e.g., tornado
pathlengths) that are numerical ratio or interval data (O’Sullivan and Unwin 2003).
Moran’s I is often used to explore spatial clustering upon the landscape, providing
indications of underlying spatial processes (Santamarı́a et al. 2007; Mitchell and
Powell 2008; Nelson and Boots 2008; Portnov et al. 2009; Willems and Hill 2009).
The kernel radius (commonly referred to as the bandwidth) that exhibits maximum
clustering, as measured by Moran’s I, is the distance where those spatial processes
are most pronounced (Fortin et al. 2006). Hence, Moran’s I was used as a bivariate
regression coefficient to determine the extent to which neighboring tornado
pathlengths vary together (i.e., are correlated) over a variety of distances to identify
the minimum (i.e., ideal) bandwidth necessary to maximize spatial stability.

1.2. Delineating tornado seasons

A simple count of tornado frequency across the study area is a common first step
in determining questions about seasonality, yet decisions must be made almost
immediately regarding spatial and temporal scales. Greater spatial resolution re-
duces the number of events within each spatial unit (i.e., a decreased sample size at
all locations), so a strong argument can be made in support of coarser spatial and
temporal resolutions. These types of coarse analyses have produced broad con-
clusions such as ‘‘tornadoes are most common in the spring’’ or ‘‘Texas experi-
ences the most tornadoes.’’ At some scale, these statements are true and valuable to

Earth Interactions d Volume 18 (2014) d Paper No. 2 d Page 3



the public, but they are certainly not applicable for all times or places in the United
States. Knowing when and where the most tornadoes occur is important, but such
counts can be misleading in efforts to understand risk, mitigate damage, and
prepare for impacts as numerous short-path tornadoes may not cover as much
cumulative ground or affect as many people as a few tornadoes with longer paths.
Therefore, the methods used here are focused on storm speed and tornado path-
lengths to effectively capture the seasonal risks to life and property.

Initial attempts to identify objectively the appropriate smoothing radius for
tornado density analyses yielded results suggesting that the ideal bandwidth de-
pends partially upon the temporal analysis period and the lengths of the tornadoes
in the sample. Therefore, various tornado seasons should be delineated according
to timing and tornado length characteristics. There are two primary factors that
determine the length of a tornado: the speed and duration. Previous research
suggests that strong tornadoes tend to last longer than weak tornadoes or at least be
associated with longer-lasting mesocyclones (Wood et al. 1996), so using duration
in our analyses would likely create a bias toward strong events. Conversely, storm
speed does not necessarily increase with tornado intensity (Wood et al. 1996), so
storm speed is included in our analysis along with tornado pathlength and day of
the year (DOY) to delineate separate seasons of tornado characteristics objectively.

2. Methods

2.1. Tornado path data

This project makes use of the complete available tornado record (1950–2011)
compiled by the National Weather Service Storm Prediction Center (SPC). Pre-
vious researchers have detailed the dataset (Schaefer and Edwards 1999; McCarthy
2003) and many of the issues associated with it (Doswell and Burgess 1988;
Brooks et al. 2003; Brooks 2004). One of the biggest concerns with this dataset, for
the purposes of this research, is the inconsistency between reported tornado lengths
and the path coordinates. Of the 56 0001 tornadoes in the dataset, only 119 have
reported lengths of zero and only 396 have reported lengths of 100m or less.
However, there are more than 35 000 tornadoes with identical starting and ending
coordinates (latitude, longitude). Point-touchdown records will result in expo-
nentially smaller density values than paths at small scales, so the coordinates must
be edited to provide an improved estimate of actual tornado pathlengths.

One possible way to assign realistic pathlengths to events without ending co-
ordinates is to assign an ending location that achieves a distance equivalent to the
distance reported by the ‘‘length’’ variable in the dataset. Unfortunately, there are
two significant problems with this strategy. First, there is no way to know the
direction of the path. Second, many of the reported length values are surprisingly
large (the largest is 129 km), so applying that length in an arbitrary direction would
likely create a false impact upon numerous communities. It is unlikely that a
tornado could travel that far and not have an official terminus, and it is more
probable that there is an error in the database in such cases.

For the justification of these methods, it is important to note that the tornado
database lists pathlengths in miles. Among the tornado records that lack official
ending locations, by far most of them (15 432) have lengths of 0.1mi or less. The
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next two most common values are 0.5 and 0.2mi, with 4333 and 4229 reports,
respectively. Approximately 80% of these records show lengths of 0.5mi or less, so
it is probable that all tornadoes without ending locations are short-path events and
it is very likely that length values of ‘‘0.1mi’’ have been approximated rather than
measured. Therefore, for the purpose of this study, all events without terminus
location coordinates are considered to have pathlengths of 0.1 km. Each of the
events in question will have an ending coordinate created that is 0.1 km due north
of the initial location, which can result in substantial density increases in a few
areas (Figure 2). Nearly 70% of the tornadoes with official termination points
displayed path directions of 08–608 (i.e., toward the north or northeast), but a
northward addition was chosen for simplicity. The direction is insignificant be-
cause of the very small length added and the smoothing of the kernel density
analysis applied later. Therefore, areas affected by this change will see increases in
density values regardless of the direction of the added pathlengths. The purpose of
this approximation is to ensure that the numerous tornado events with incomplete
path information are better represented in the analyses. As most previous studies
have ignored this issue, this method should yield a more favorable representation of
these events.

2.2. Tornado speed data

There is no official dataset that includes tornado speed. However, the text of
tornado warnings have been archived for several years, and nearly all tornado

Figure 2. Percent increase in annual tornado density (in km of tornado path within
40km of a point) resulting from the addition of 0.1 km of pathlength to
points without terminus coordinates. Areas were excluded from the cal-
culation if their original density was less than 0.1 to reduce ‘‘noise’’ in areas
with very low tornado path densities.
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warnings include an assessment of storm speed. Because one objective of this
project is to identify tornado seasons based on speed and pathlength, archived
tornado warnings were used as a proxy for actual tornado speed information. This
assumes that there is a seasonality to storm speed such that a sample of storm
speeds from archived warnings is reasonably representative of typical tornado
speeds for that time of year. Given the high probability of errors associated with
warning speeds and/or direction for any single tornado event, it is important to
understand that there are several limitations associated with using tornado warn-
ings as representations of actual tornado speeds. Nevertheless, the purpose of this
method is to approximate the typical speed of tornado-producing thunderstorms so
that differences can be delineated for various times of the year. This means that
accuracy is not as important as consistency, and the large number of warnings
(46 175) should provide a representative sample despite the errors likely to be
present in any individual records. Tornado warning text was acquired from the
National Climatic Data Center for April 2001 through August 2012 (the full period
of record).

2.3. Tornado seasons identification

Average pathlengths for each day of the year were determined using the SPC
tornado database. Storm speeds, based on warning data from 2001 to 2012, were
divided into categories of slow (10th percentile), intermediate (middle 80th per-
centile), and fast (90th percentile). These equated to values of less than 25 kmh21

(15mph), 25–80 kmh21 (15–50mph), and greater than 80 kmh21 (greater than
50mph), respectively. To account for differences in the number of total warnings
issued for each day, percentages of slow, intermediate, and fast storms were cal-
culated for each day of the year. A 21-day moving average was then applied to the
daily percentages. Daily average pathlength and the three daily percentages were
all included in a statistical K-means cluster analysis (Wilks 2006). A K-means
cluster analysis requires a rather subjective selection of the number of clusters to be
used in the analysis. Therefore, an initial test with three clusters was used to
identify seasons based on tornado characteristics. Another analysis was performed
using four clusters to determine whether more seasons would improve upon any
possible ambiguity present in the first analysis.

2.4. Global Moran’s I calculation

Spatial autocorrelation analysis was performed by segmenting the tornado data
(1950–2011) according to season, as established from the methods in section 2.3,
and then calculating global Moran’s I. To ensure that calculations are based on the
most tornado-prone regions of the United States, analyses were restricted to lo-
cations east of 1058W longitude (similar to Marzban and Schaefer 2001). A series
of Moran’s I calculations were run for multiple bandwidths to select those that
reflect maximum spatial autocorrelation in the tornado data. Moran’s I values near
1.0 are associated with clustering of like values (i.e., spatial autocorrelation),
values near 21.0 are associated with dispersion of like values, and values near 0
suggest no spatial autocorrelation (Sheppard et al. 2007).
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Two methods were used to determine which data were included in each calcu-
lation of Moran’s I. The first simply uses the tornado seasons established in the first
part of the research. Hence, all tornadoes east of 1058W were included if they
occurred during the season in question. This yields a different ‘‘ideal’’ bandwidth
for each season. This analysis was also performed using only tornado initiation
points for the purpose of future studies that are more interested in tornadogenesis
rather than tornado paths and impacts.

The second method restricts the spatial analysis of each season to those states
with the greatest tornado density. Moran’s I cannot be calculated at radii smaller
than the distance between any two points, so spatial outliers have the potential to
control the minimum acceptable bandwidth rather than characteristics of the most
tornado-prone regions. For each season, states were included in the analysis if
significant portions of the state displayed density values (calculated using radii in
the first method) similar to the core of greatest density. This was generally con-
sistent with any state that experienced continuous areas with at least 0.10 km of
tornado path per year within 40 km of a point. For winter, the density values are
much lower, so states were chosen if more than half of their area experienced at
least 0.05 km of tornado path per year within 40 km of a point.

To determine spatial autocorrelation (i.e., Moran’s I), there must be at least one
variable, in addition to location, that is compared to other locations. Otherwise, it is
an assessment of pure clustering rather than spatial autocorrelation (i.e., similar
events or features). For this study, spatial autocorrelation is determined by com-
paring all tornado paths that fall at least partially within the radius of analysis
according to their total lengths.

Z scores were calculated for each run of the analysis to provide a measure of
statistical significance such that values greater than 1.96 imply that locations
within the specified radius are expected to be statistically similar (a 5 0.05) to
nearby samples, a value less than 21.96 suggests statistically significant differ-
ences (a 5 0.05), and values between those represent a lack of statistical signifi-
cance in either direction (Zhang and McGrath 2004; Sheppard et al. 2007).
Ultimately, the minimum bandwidth is chosen by identifying the kernel radius at
which the Moran’s I value is maximized and the Z score is greater than 1.96.

3. Results
The K-means cluster analysis produced four days [day of year (DOY)] delin-

eating seasons that seem to represent the annual tornado patterns appropriately
(Table 1). Four seasons were produced with only three clusters because the fall and
spring seasons are part of the same cluster (i.e., similar characteristics), but they are

Table 1. Results of cluster analysis using pathlengths and percentages of storm-speed
categories for each day of the year.

Cluster periods (DOY) Season name Start date

26–72 Winter 26 Jan
73–127 Spring 14 Mar
128–288 Summer 8 May
289–25 Fall 16 Oct
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temporally separated by winter and summer (Figure 3). These delineation times
make for a rather long summer season, but allowing for a fourth cluster created two
more breaks on DOY 155 (4 June) and DOY 239 (27 August), which would have
created a ‘‘May season’’ and a ‘‘September season.’’ With no clear justification for
choosing one result over the other, the three-cluster method is used for the rest of
this study because of its simplicity (i.e., four seasons).

It should be noted that the season-defining cluster analysis was also performed
for the years 2001–10 simply to examine whether the historic activity of 2011 was
significantly altering the results. All periods were identical between the two
analyses with the exception of the spring–summer transition. The shorter analysis
period yielded a summer beginning of DOY 100 (10 April), but the addition of

Figure 3. Vertical black bars show seasonal breaks based upon the results of cluster
analysis. The green line is slow storms, the brown line is intermediate
storms, and the red line is fast storms. The gray shading shows the total
number of warnings per day of year for the study period.

Table 2. Moran’s I and Z-score values for various radii during the winter season using
the two methods described in the methods section. Bold values show the first sta-
tistically significant (Z score > 1.96) peak in Moran’s I.

East of 1058W Tornado-prone states

Radius (km) Moran’s I Z score Radius (km) Moran’s I Z score

160 0.0348 13.73 150 0.0035 1.20
170 0.0340 14.21 160 0.0052 1.74
180 0.0354 15.56 170 0.0055 1.94
190 0.0336 15.57 180 0.0080 2.81
200 0.0319 15.55 190 0.0070 2.65
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2011 and 2012 shifted that day to DOY 128 (8 May). This suggests that the
relatively short study period is not necessarily allowing for a clear delineation
between the consistently fast-moving storms during spring and consistently slow-
moving storms of summer. However, the consistency of the other seasons suggests
that the method is useful.

Moran’s I and Z-score values suggest varying ideal smoothing radii for each
season and method (Tables 2–6). Analyses of all U.S. locations east of 1058Wyield
larger radii, but this result is likely due to the limitation introduced by spatial
outliers. Nevertheless, the range of radii is rather small with values as low as 55 km
(spatially restricted method for the fall season) and as high as 180 km (both methods
for the winter season). Tornado path (and point) density maps were created using the
full period of tornado data (1950–2011) and an Epanechnikov (bounded normal
distribution) kernel (Dixon et al. 2011; Marsh and Brooks 2012; Smith et al. 2012)
with the various radii for each season (Figures 4–7). The two different methods for
including tornado paths (described in section 2.4) yielded different radii for all
seasons but winter (Tables 2–5). For the density calculation of annual tornado ini-
tiation points (Figure 8), only the first method was used (Table 6).

Figures 4–7 illustrate the times of the year when U.S. locations are most at risk
for tornadoes. This allows each location to establish its own annual period of
preparedness, which may not be consistent with the widely publicized spring
tornado season. In particular, many locations in the northern Great Plains and
Midwest are more likely to experience tornadoes during our summer season, and
some locations in the Deep South have a tornado season that runs continuously
from the fall through the spring.

4. Conclusions
Despite the colloquial use of the term ‘‘Dixie Alley,’’ Dixon et al. (Dixon et al.

2011) argue that the region of greatest tornado frequency and density in the United

Table 3. As in Table 2, but for the spring season.

East of 1058W Tornado-prone states

Radius (km) Moran’s I Z score Radius (km) Moran’s I Z score

150 0.0204 27.30 85 0.0225 16.95
160 0.0200 28.41 90 0.0227 18.04
170 0.0191 28.85 95 0.0224 18.74
180 0.0184 29.46 100 0.0225 19.79
190 0.0183 30.77 105 0.0221 20.42

Table 4. As in Table 2, but for the summer season.

East of 1058W Tornado-prone states

Radius (km) Moran’s I Z score Radius (km) Moran’s I Z score

150 0.0155 45.57 110 0.0143 29.44
160 0.0150 47.00 115 0.0142 30.49
170 0.0146 48.33 — — —
180 0.0144 50.39 — — —
190 0.0140 51.48 — — —
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States cannot be objectively separated into smaller ‘‘alleys.’’ It is understandable
that people want to make this separation for a number of reasons, including the real
and perceived differences in tornado speed, seasonality, diurnal timing, and fa-
talities across the country. Such spatial delimiters imply that certain locations tend
to be grouped with other locations regardless of the time of year, and this also has
the potential to lead the general public to overlook how tornado season varies with
space. The results of this study may provide some help with this goal as the
objective separation of the year into four tornado seasons allows locations to be
included in the elevated risk area multiple times throughout the year. Hence, while
one area may be considered ‘‘different’’ from another region during the fall or
winter, they may be relatively similar during spring. Further, it helps to illustrate
that one location may experience a significantly different ‘‘tornado year’’ than
other locations. Ideally, researchers would be able to calculate minimum
smoothing radii and tornado risk values separately for every day of the year, but
that would require several thousand years of observations, assuming similar tor-
nado frequencies to those over the past few decades. Therefore, the use of seasonal
risk regions should remain a useful tool in the foreseeable future. It is also im-
portant to note that every state has experienced tornadoes, so no location is totally
excluded from tornado risk, even if they are not highlighted by any of the maps
provided here.

The ideal kernel radii suggested by this research are mostly within the ranges
used by previous studies (Thom 1963; Kelly et al. 1978; Schaefer et al. 1986;
Brooks et al. 2003; Dixon et al. 2011). The spatially restricted method used in this
study produced a radius of 55 km for the fall season, and that yields a little less
smoothing than any of the methods applied in the studies cited above. However, an
argument can be made that a radius produced by our study acts more like a
‘‘minimum’’ rather than the universal ‘‘ideal’’ simply because even the maximum
Moran’s I values are quite low and Z-score values will remain statistically sig-
nificant with increasing radii. Seasonal differences using any radii are much more

Table 5. As in Table 2, but for the fall season.

East of 1058W Tornado-prone states

Radius (km) Moran’s I Z score Radius (km) Moran’s I Z score

150 0.0365 24.97 55 0.0180 3.64
160 0.0340 25.63 60 0.0173 3.79
170 0.0351 26.19 — — —
180 0.0328 26.77 — — —
190 0.0317 27.31 — — —

Table 6. Moran’s I and Z-score values for various radii using tornado initiation points
for the entire year. Bold values show the first statistically significant (Z score > 1.96)
peak in Moran’s I.

Radius (km) Moran’s I Z score

70 0.0366 88.31
75 0.0356 91.72
80 0.0353 96.52
85 0.0348 100.92
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obvious than those created with different kernel bandwidths for the same season.
Hence, spatial smoothing of tornado frequency or density maps may range widely,
depending upon the intended purpose of the research, but the results of this study
suggest that there are objective minima depending upon the characteristics of the

Figure 4. Kernel density estimations of annual winter tornado paths (km) within
40 km of a point using a 180-km bandwidth.

Figure 5. Kernel density estimations of annual spring tornado paths (km) within
40km of a point using bandwidths of (a) 90 and (b) 150 km.
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data being used to assess spatial autocorrelation [i.e., pathlength, enhanced Fujita
(EF) scale, time of day, etc.]. These minima are likely to vary most, depending upon
study period (both intra-annual and interannual), as there are clear differences in
tornado characteristics and distributions by season and the current tornado dataset is
not complete enough to ensure that samples from different periods are consistent.

While it may be argued that each season has a different minimum kernel
bandwidth, it is important to apply consistency between seasons for the purposes of
interpretation by nonexperts. Therefore, we recommend a radius of at least 150 km
be applied in most applications simply because three of the four seasons yielded
that bandwidth as the minimum when analyzing all data east of the Rocky
Mountains (1058W longitude). This is also recommended because there are no

Figure 6. Kernel density estimations of annual summer tornado paths (km) within
40 km of a point using bandwidths of (a) 110 and (b) 150km.

Figure 7. Kernel density estimations of annual fall tornado paths (km) within 40 km of
a point using bandwidths of (a) 55 and (b) 150 km.
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objective reasons to exclude the ‘‘spatial outliers’’ in most cases. Perhaps another
justified method is to use a ‘‘lowest common radius’’ of 180 km due to the mini-
mum winter bandwidth, but the differences between 150- and 180-km radii should
be minimal. Further, the ideal radii suggested here might be interpreted as the ideal
‘‘effective radius’’ for unbounded smoothing functions (e.g., Gaussian). For re-
gional studies with small spatial extents, large distances between spatial outliers
are less likely, so the smaller minimum radii may be applied. The opposite is true
for shorter study periods. While the spatial patterns should remain consistent, it is
important to note that various shapes of smoothing functions can yield different
density magnitudes (Dixon and Mercer 2012; Marsh and Brooks 2012).
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