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Abstract In this paper, we focus on distributed fault 
detection and isolation (FDI) for a multi-robot system where 
multiple robots execute a flocking task. Firstly, we propose a 
fault detection method based on the local-information-
exchange and sensor-measurement technologies to cover 
cases of both perfect communication and imperfect 
communication. The two detection technologies can be 
adaptively selected according to the packet loss rate 
(PLR). Secondly, we design a fault isolation method, 
considering a situation in which faulty robots still 
influence the behaviours of other robots. Finally, a 
complete FDI scheme, based on the proposed detection 
and isolation methods, is simulated in various scenarios. 
The results demonstrate that our FDI scheme is effective. 

Keywords Multi-Robot, Flocking, Fault Detection, 
Isolation 

1. Introduction 

Flocking behaviours exist widely in nature in the form of 
the flocking of birds, the schooling of fish and the 

swarming of bacteria [1, 2]. Motivated by observations of 
these flocking behaviours in their environments, multi-
robot systems are expected to be applied in a wide set of 
situations, such as exploration, search-and-rescue, 
unmanned aerial vehicles (UAV), and so on [3]. Recently, 
the flocking of multi-robot systems has attracted much 
attention [4, 5]. As the size and complexity of multi-robot 
systems rapidly increase, the fault detection and isolation 
(FDI) method in flocking is becoming more and more 
important. For example, a faulty UAV in a UAV 
formation can significantly jeopardize the performance of 
its nearby UAVs, or even destroy the whole formation.  

There exist many works on the design of FDI schemes [6-
16]. Some of these works concentrate on FDI schemes 
with a centralized control structure [6-10]. Robust model-
based fault diagnosis methods for dynamic systems are 
proposed in [6], but they focus on fundamental issues, 
such as basic definitions, residual generation methods 
and the importance of robustness in model-based fault 
diagnosis approaches. A Hinf-based structured fault 
detection and isolation (Hinf-SFDI) method is introduced 
in [7]. For Hinf-SFDI, all the information is sent to a 
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central FDI unit through wireless channels, which 
increases the communication burden on the FDI unit. 
Based on the centralized structure, many FDI approaches 
that utilize observers have been proposed in [8-10]. 
However, observers increase the computational burden 
on robots. Thus, it is not wise to solve the FDI problem 
with a centralized structure due to the limitations of the 
communication and computation capabilities of FDI units 
and robots [11]. Distributed FDI approaches for multi-
robot systems have been studied in [12-16]. In [12], by 
using a bank of decentralized observers, a scheme for 
fault tolerant distributed network control systems is 
proposed. In [13], the FDI problem in multi-robot systems 
is considered as a double integrator dynamics system and 
each robot uses decentralized observers to estimate 
system input (e.g., control command signal, noise, 
interference, etc.). The FDI schemes proposed by [12] and 
[13] belong to the schemes of state estimation. However, 
the computational complexity of the state-estimation-
based schemes will increase with the increase of the 
number of robots in a system. The research into 
distributed FDI schemes is just beginning and there still 
exist many problems. When performing fault detection,
most existing works assume that the communication 
between robots is always perfect [14-16]. In practice, it is 
common to find that some robots cannot communicate 
with other robots. Although in [7] the author has 
studied an FDI scheme with an imperfect 
communication channel, it is based on a centralized 
control structure. When performing fault isolation, the 
existing works simply remove the robots that present 
misbehaviour from their connected-graph models. 
However, these robots still exist in practice and may 
influence the performance of the system.  

In this paper, to tackle these problems, we focus on 
developing a distributed FDI scheme for the flocking of 
multi-robot systems. In the proposed scheme, we design a 
detection method that consists of the local-information-
exchange-based detection technology and the sensor-
measurement-based detection technology to cover both 
cases of perfect and imperfect communication, 
respectively. According to the PLR, the two detection 
technologies are adaptively selected. By considering a 
situation in which faulty robots still influence the 
behaviours of other robots, a fault isolation solution for 
faulty robots is proposed. Finally, a complete FDI scheme 
based on the proposed detection and isolation methods is 
simulated in various scenarios. The results demonstrate 
that our FDI scheme is effective. 

The remainder of this paper is organized as follows. The 
system model is described in Section 2. The detection and 
isolation methods are discussed in Section 3 and Section 
4, respectively. The simulation results are presented in 
Section 5. The conclusion is introduced in Section 6. 

2. System Model 

In this section, we firstly model a multi-robot system as a 
graph. Then, we introduce the residual generator of the 
multi-robot system. 

2.1 Topology of Flocks: Proximity Nets 

The topology of a multi-robot system can be regarded as 
a graph ( ),G V E , which consists of a set of vertices 

{1,2,..., }V n= and edges ( ){ }, : , ,E i j i j V j i⊆ ∈ ≠ . The 

graph G is undirected, i.e., the edges of satisfying the 
condition of ( ) ( ), ,i j V j i V∈ ⇔ ∈ .

The adjacency matrix [ ]ija=A  of the graph is a nonzero 

matrix satisfying the property 0 ( , )ija i j E≠ ⇔ ∈ . Here, 

graph G is a weighted graph with position dependent 
adjacency elements. For undirected graph G, the 
adjacency matrix A is symmetric (or T =Α A ). The set of 
neighbours of node i  is defined by 

{ : 0} { : ( , ) }i ijN j V a j V i j E= ∈ ≠ = ∈ ∈ .            (1) 

We consider a group of dynamic robots with the motion 
equation

( 1) ( ) ( )
( 1) ( ) ( )

i i i

i i i

k k k
k k k

+ = +
 + = +

p p v
v v u

                         (2) 

where ( ), ( ), ( ) m
i i ik k k ∈p v u  0k ≥ , m is the dimension of 

the system. Additionally, ( )i kp  denotes the position of 
robot i . ( )i kv  and ( )i ku  are the velocity of robot i  and 
the excitation input of robot i , respectively. We set that 
the sample time T is between 1k +  and k .

Figure 1. A robot and its spatial neighbours 

Let 0r > denote the communication range between two 
robots. An open ball with radius r  determines the set of 
the spatial neighbours of robot i , which is denoted by 

{ :|| ( ) ( ) || }i j iN j V k k r= ∈ − <p p                (3) 
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where   is the Euclidean norm in m . A robot with its 

spatial neighbours is shown in Figure 1. Let 0d >  denote 
the measured range between two robots, which is twice 
that of the communication range r , i.e. 2d r= .

Flocks: A group of robots is called a flock if all the robots 
are connected over the time interval , , 
have the same velocity and keep the lattice or shape.  

normσ − : The non-negative map is called normσ − ,
which is used to construct a smooth collective potential of 
a flock and the spatial adjacency matrix of the proximity 
net.     

The normσ − of a vector is a map 0
m

≥→  that can be 
defined as  

21 1 1z zσ ε
ε
 = + −  

                      (4) 

With a parameter 0ε > , the map z σ is differentiable 

everywhere, while z  is not differentiable at 0z = . Thus, 
z σ will be used in this paper. 

According to [17], each robot in the free flocking applies a 
control input that consists of two terms 

1

2

( ) (|| ( ) ( ) || )

( ( ))( ( ) ( ))
i

i

i j i i, j
j N

ij i j i
j N

k c k k

c a k k k

α

α

α α
α σ

α

ϕ
∈

∈

= −

+ −





u p p n

p v v
        (5) 

1 1 2( ) ( ( ) ( )) ( ( ) ( ))i i i rk c k k c k kγ γ γ
γσ= − − − −u p p v v     (6) 

where ( )i kαu  and ( )i kγu  are the inputs based on 
neighbours and the virtual leader of robot i . Thus, the 
control input of each robot is 

( ) ( ) ( )t
i i ik k kα γ= +u u u                          (7) 

Based on the control input of the multi-robot systems, we 
can generate the residual for the FDI. 

2.2 Residual Generator of the Multi-Robot System 

In multi-robot systems, every robot has its own 
individual FDI system. And the residual of every robot is 
defined as 

( ) || ( ) ( ) ||t m
i i ir k k k= −u u                         (8) 

where ( )ir k  is the residual signal, ( )t
i ku  is the theoretical 

value and ( )m
i ku  is the measurement value of the control 

input. In this paper, we assume that ( )i kγu  in ( )t
i ku  and 

( )m
i ku  are equal and do not participate in the calculation 

process.

Since an attempt to evaluate the residual signal over the 
entire time would usually be unrealistic, the evaluation 
function in this article is computed as the average energy 
of the residual signal over a given time interval ( )1,k kτ

1

1( ) E ( ) ( )
k

T
r

k k
J r k r k

τ

τ
τ =

  =  
  

                     (9) 

where 1k denotes the initial evaluation time instant and 
kτ stands for the evaluation time. The detection logic unit 
is based on the works proposed in [18]. 

Thus, the threshold used to detect faults is defined as 

2( ) L , 0
sup

E
th r

d k f
J J

∈ =
=                              (10) 

Based on equation (10), the occurrence of faults can be 
detected by comparing ( )rJ τ  and thJ

( ) ,
( ) .

r th

r th

J J alarm
J J no fault

τ
τ

> 
≤ 

                       (11) 

By comparing the residual with its threshold, we can 
obtain the definition of the faulty robots.  

Faulty robot: the robot i  is faulty if ( )rJ τ  satisfies the 
constraint that 

( )r thJ Jτ >                                (12) 

3. Fault Detection 

When performing fault detection, most existing works 
assume that the communication between robots is always 
perfect. In practice, it is a common for some of the robots 
not to be able to communicate with the other robots. So it 
is very relevant to research distribute fault detection 
methods, considering whether communication between 
robots is perfect or imperfect. 

3.1 Perfect Communication  

If communication between different robots is perfect, we 
propose a fault detection method, which requires that 
robot j  broadcast its own position information ( )j kp

and its neighbours’ position information ( ) ( )
js N k k∈p . In 

this case, robot j  firstly collects ( ) ( )
js N k k∈p . Then, robot 

j  puts every short data packet ( ) ( )
js N k k∈p  into a length 

data packet. We call this procedure data packet 
reconstruction [19]. The data packet reconstruction 
increases the transmission efficiency compared with 
transmitting multiple short packets. 

0[ , ]ft t t∈ 0ft ≥
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When robot i  receives ( )j kp  and ( ) ( )
js N k k∈p  from j , the 

robot i  can construct ( ) ( )
i

t
j N k k∈u  precisely using equations 

(5)-(7).

The measurement value of ( )m
j ku  according to equation 

(2) can be calculated as follows  

( ) ( )
( ) ( ( 1), ( ), ( 1))

( 1) ( ) ( ) ( 1)

m
j j j j

j j j j

k f k k k

k k k k
T T

= + −

+ − − −
= −

u p p p

p p p p         (13) 

Then, according to equation (8), robot i  can generate the 
residual signal of robot ( )ij N k∈ using the follow 
equation

( ) || ( ) ( ) ||

|| ( ) ( ( 1), ( ), ( 1)) ||

t m
j j j

t
j j j j

r k k k

k f k k k

= −

= − + −

u u

u p p p
    (14) 

Based on the threshold thJ , robot i  can identify whether 
the robot ( )ij N k∈ is faulty or not. 

If robot i  cannot receive the data packet correctly, it 
means that the communication channel is imperfect. In 
this case, sensor-measurement-based detection 
technology is used.  

3.2 Imperfect Communication 

 When the communication between the different robots is 
imperfect, we consider using on-board sensors (e.g., laser 
scanning rangefinder) to measure the distance ( )ijd k

between two robots and the relative angle ( )ij kβ of these 

two robots’ direction at the time step k.

For the sensor, we assume that the measurable range of 
the distance is twice the range of communication. Thus, if 
the robot i has a neighbour j at the time step k, the 
robot i  can measure all the neighbours of robot j
because they are within the communication range of 
robot j . To generate the residual signal, we need to 
calculate ( )t

j ku  and ( )m
j ku .

( )t
j ku is calculated using equations (5)-(7), where  

( )cos ( )
( ) ( ) ( )

( )sin ( )
ij ij

ij i j
ij ij

d k k
k k k

d k k
β
β

 
= − =  

  
d p p            (15) 

and

( 1) ( 1) ( ( ) ( ))
( )

( 1) ( )

j i j i
j

ij ij

k k k k
k

T
k k

T

+ − + − −
=

+ −
=

p p p p
v

d d
        (16) 

Then, we calculate ( )m
j ku  according to (13), measuring all 

the neighbours of robot j. The position information 
( +1)j kp  can be calculated by 

( )( 1) ( 1) ( 1) ( 1)

( 1) ( 1)
j i i j

i ij

k k k k

k k

+ = + − + − +

= + − +

p p p p

p d
        (17) 

After predicting ( )t
j ku and measuring ( )m

j ku , we can 

generate the residual signal ( )jr k  for each ( )ij N k∈ .

Then, the threshold thJ  used to indicate faulty robots is 
calculated according to ( )jr k .

3.3 Estimating Communication Quality 

The Gaussian Mixture Model (GMM) can be used to 
approximate any distribution [20]. In this paper, we 
utilize the GMM to build the distribution of PLR. 

Essentially, the GMM is a kind of multidimensional 
probability density function and can be expressed by a 
linear combination of the Gaussian density function. 
Therefore, the distribution of PLR can expressed as 
follows 

1

( | ) ( | )
M

i i
i

p pρ
=

=x Θ x Θ                       (18) 

where x  is the real variable set of PLR, M  is the mixture 
degree of GMM. The variable Θ  is the parameter set and 
can be represented by { , , }i i iρ=Θ μ λ 1,...,i M∀ = . The 
variable iρ  is the weight of the i-th Gaussian component 

which satisfies the condition that 
1

1
k

i
i

ρ
=

= . The variables iμ

and iλ  represent mean and covariance, respectively. 
( | )ip x Θ represents the i-th Gaussian density of the GMM. It 

is given as 1/ 2 11
2( | ) 2 | | exp{ ( ) ( )}T

i i i i ip π − −= − − −x Θ λ x μ λ x μ .

We utilize the Expectation Maximization (EM) algorithm 
to estimate the parameter set of GMM [21, 22]. It is 
an iterative method for finding parameters in statistical 
models. The EM algorithm involves two steps: the E step 
and M step. It repeats the E step and M step to obtain the 
parameter set Θ .

Let 1 2{ , ,... ... }j Dx x x x=x 1...j D∀ = be the data set of the 

measurements of PLR with the a total number of D . The 
detailed process of the E step and M step is as follows. 

The E step computes the conditional probabilities 

1

( | , )
( | , )

( | , )
i j i i

j M
i j i ii

p x
p i x

p x

ρ
ρ

=

=


ε λ
Θ

ε λ
.               (19) 
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The M step updates the parameter set Θ

1

1ˆ ( | , )D p
i jj

p i x
D

ρ
=

=  Θ ,                     (20) 

1

1

( | , )
ˆ

( | , )

D p
j jj

i D p
jj

x p i x

p i x
=

=

=



Θ
ε

Θ
,                      (21) 

1

1

ˆ ˆ( | , )( )( )ˆ
( | , )

D p T
j j i j ij

i D p
jj

p i x x x

p i x
=

=

− −
=



Θ ε ε

λ
Θ

,           (22) 

where pΘ  is the parameter set acquired from the 
previous iteration.  

According to the GMM and EM algorithm, we can obtain 
the prior distribution of the PLR. To estimate the PLR, a 
few probe packets are sent. The details of the estimation 
process are described as follows. 

Consider a scenario where robot A sends packets to robot 
B. If A sends sendD  packets and B receives recvD  packets 
during time , { , 1}t t k k∈ + , we can calculate the PLR of 
the communication link from robot A to robot B by 

( ) 1 recv

send

D
Dx t = − . Then, we can use the empirical data of the 

PLR to estimate ( 1)x k +  at time step 1k +  by the method 
of maximum a posteriori (MAP) probability estimation.  

We want to estimate unobserved PLR ( 1)x k +   on the 
basis of observations ( )x t . Let p  be the sampling 
distribution of ( )x t . Assuming that a prior 
distribution g  over ( 1)x k +  exists, the posterior 
distribution of ( 1)x k + is 

( ( ) | ( 1)) ( ( 1))( ( ) | ( 1))
( ( ) | ( 1) ) ( ( 1) ) ( 1)

p x t x k g x kp x t x k
p x t x k g x k dx k

+ ++ =
′ ′ ′+ + +

 (23) 

The estimated value of ( 1)x k + is 

( 1)

1

( ( )) ( ( 1))( 1) ( ( )) arg max
( ( ) | ( 1)) ( ( 1))

MAP D
x k

j

p x t g x kx k x t
p x t x k g x k+

=

++ =
+ +

 (24) 

The threshold of PLR determines whether the 
communication is perfect or not and guides robots to 
select the suitable detection method. We define the 
threshold of PLR as m . If the estimated value of PLR is 
larger than the threshold m , it means that the 
communication is imperfect. 

4. Fault Isolation 

In this section, we propose a fault isolation scheme by 
considering a situation in which faulty robots still 
influence the behaviours of other robots. 

We define the dangerous distance of a non-faulty robot as 
dr . We define the security distance between a non-faulty 

robot and a faulty robot as sr . We assume that the 
dangerous distance dr  is smaller than the communication 
range r and the sensing distance d , i.e., d0 r r d< < < .
The ball with the faulty robot’s position as a spherical 
centre and dr  as the radius is called the dangerous zone. 
Figure 2 shows how a robot isolates the dangerous zone 
of a faulty robot. In Figure 2, the vector from the non-
faulty robot to the faulty robot is defined as dp , and 1dt
and 2dt are defined as the tangent vectors from the non-
faulty robot to the dangerous zone. The vector from the 
non-faulty robot to the lead robot is γd .

After a non-faulty robot detects the faulty robot, the non-
faulty robot will judge whether the orientation of its 
velocity is between 1dt and 2dt , and will start to perform 
the faulty robot isolation. The judgment rule is 

1 2det[ , ( )] 0 det[ , ( )] 0i ik k< ∧ >dt v dt v             (25) 

If the orientation of the velocity does not satisfy the rule, 
the non-faulty robot does not need to change its 
trajectory. The reason is that the faulty robot cannot 
influence the non-faulty robot in this situation. If the 
orientation of the velocity satisfies the above rule, then 
we start to perform the isolation solution. The solution is 
designed to cover cases whether flocks are formed or not.  

ky

( , )i ip v

dp
1dt

2dt

dr

dr

γd

γd

Figure 2. Faulty robot isolation 

4.1. Not Forming Flocks  

If the flocks have not been formed, every robot does not 
have the same velocity as its neighbours. All the non-
faulty robots’ final movement goals are the leader’s 
position. As a result, the faulty robot isolation should 
regard the leader as the reference. 
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As shown in Figure 2, when the leader’s position is in the 
zone 1Z (i.e., behind the faulty robots) and the non-faulty 
robot satisfies the following rule 

1det[ , ( )] 0 det[ , ( )] 0k kγ γ< ∧ >dt d dp d      (26) 

Then, the non-faulty robot i adjusts the orientation of its 
velocity to the tangent of the dangerous zone to isolate 
the faulty robot and make the least deviation possible 
from the leader at the same time. To achieve this, the new 
velocity of this non-faulty robot can be defined as 

1

1

s 1

2

2

s

2

( ) ,

{ } {det[ , ( )] 0

det[ , ( )] 0}
( 1)

( ) ,

{ } {det[ , ( )] 0

det[ , ( )] 0}

i

i

i
i

i

i

i

k

r k
k

k
k

r k
k

σ
σ

σ

σ
σ

σ




 ≤ ∩ <

 ∧ >+ = 



 ≤ ∩ <


∧ >

dtv
dt

dp dt v
dp v

v
dtv
dt

dp dp v
dt v

    (27) 

Sometimes, the lead robot is in 2Z  (i.e., it is not behind 
the faulty robot) and the non-faulty robot satisfies the 
rule

1det[ , ( )] 0 det[ , ( )] 0k kγ γ> ∧ <dt d dp d        (28) 

In such a case, the faulty robot will not influence the non-
faulty robot. The robot i  will turn the orientation of its 
velocity to the leader’s orientation and the new velocity 
of this non-faulty robot is defined as 

s 1

2

( ( ) ( ))
( ) ,

( ( ) ( ))

( 1) { } {det[ , ( )] 0

det[ , ( )] 0}

i
i

i

i i

i

k k
k

k k

k r k

k

γ
σ

γ σ

σ

−
 −
+ = ≤ ∩ <
 ∧ >



p p
v

p p

v dp dt v
dt v

       (29) 

4.2. Having Formed Flocks 

If flocks have been formed, the non-faulty robot i  has the 
same velocity as all its neighbours. In this case, the non-
faulty robot should guarantee the same velocity as all its 
neighbours as much as it can. It does not need to consider 
the position of the leader. When the faulty robot is 
detected by the non-faulty robot, the non-faulty robot i
adjusts the orientation of its velocity to the tangent of the 
dangerous zone. The new velocity of this non-faulty robot 
is the same as (27). 

5. Experimental Results  

In this section, we apply our FDI scheme to the multi-
robot system that performs the flocking task. The system 

has double integrator dynamics. Robots move to flock in 
the 2D space with the aforementioned control law as 
depicted in (5)-(7). The initial x and y axes of the robots 
are randomly generated between [0, 50]. Furthermore, 
their initial velocity is set to zero. The leader of these 
robots always moves at a speed of 16m/s in the 
simulation procedures. Each robot has a communication 
range of 8.4m, and correspondingly, their measureable 
distance is 16.8m. When the robots form the flocks, the 
distance between any two neighbour robots is set to 7m. 
The dangerous distance is set to 6m. Unless specified, we 
consider practical conditions in our simulation situation, 
i.e., that the communication may be perfect or imperfect.  

5.1 FDI in Multi-robot System 

In this subsection, we show the effectiveness of the 
proposed FDI scheme by observing the flocking of the 
system. We configure 10 robots in our simulations.  

Figure 3. Velocities of the robots without FDI 

Figure 3 demonstrates a scenario where two faulty robots 
occur at time 3750ms in the multi-robot system that has 
formed the flocking. Each curve in this figure shows the 
velocity of the robot with time. We assume that the 
communication between the robots is perfect and no FDI 
scheme is used. We can observe that the velocities of all 
the robots are not identical anymore after 4000ms, i.e., the 
flocking has been broken. The reason is that the faulty 
robots that are not isolated have a bad influence on the 
behaviours of the other robots in the system.  

Figure 4. Velocities of the robots with FDI 
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Figure 4 demonstrates the velocities of the robots when 
the faulty robots are detected and isolated by the 
proposed FDI scheme. In this figure, two faulty robots 
occur at time 750ms. It can be observed that the robots 
reach a similar velocity again after a short confusion 
time caused by the faulty robots, i.e., the multi-robot 
system forms the flocking again. This phenomenon 
indicates that the proposed FDI scheme, which isolates 
the faulty robots, is effective. It is necessary to avoid 
faulty robots instead of just ignoring them as in the 
conventional isolation schemes (e.g., the schemes in [7] 
and [8]). 

5.2 Benefit of the Proposed FDI Scheme 

The benefits of using our FDI scheme for multi-robot 
systems are investigated in this subsection. We compare 
our FDI scheme with two typical methods in [7] and [13]. 
A Hinf-based structured FDI method (Hinf-SFDI) is 
introduced in [7]. Hinf-SFDI is a centralized FDI 
architecture. For the method introduced in [13], a scheme 
based on the unknown input observer (UIO) was used to 
detect faulty robots. Each robot has one observer 
corresponding to a neighbour. As in other conventional 
works, the isolation methods in [7] and [13] simply ignore 
the faulty robots.  

In the simulation, we configure {2, ,10}n ∈  robots and 
one faulty robot. All the robots have the same initial x 
and y axes, and their initial velocity is set to zero. Each 
simulation runs 20 times to determine the mean and 
standard deviation of the time of the FDI. 

Figure 5. Time efficiency vs. the number of robots 

In Figure 5, we present the time efficiency of the fault 
detection varying with the number of robots involved 
in the task of flocking in a multi-robot system. From 
this figure, we find that the proposed FDI method 
based on a local information exchange takes less time 
to implement the fault detection than the other two 
approaches based on a large number of statistics, the 
results of which are above. It indicates that the 
proposed FDI scheme is more efficient than the other 
two schemes.  

Then we configure 10 robots and {1, ,3}q ∈  faulty
robots. Each simulation will run 50 times to determine the 
correct rate of fault detection.

Figure 6. Rate of correction detection vs. the number of robots 

Figure 6 shows the correct rate of fault detection varying 
with the number of faulty robots involved in the task of 
flocking in a multi-robot system. The correct rate of 
detection is defined as 100%s

t

f
correct fr = × . Where sf  is 

defined as the number of successful fault detections and 
tf  is the total number of fault detections, including 

successful and failed. In this figure, it can be observed 
that the rate of correct detections of the proposed 
detection method is larger than the two other approaches. 
It indicates that the proposed fault detection scheme is 
more effective than the other two schemes.  

6. Conclusions 

In this paper, we considered the problem of faulty robots 
in multi-robot systems with double integrator dynamics. 
We proposed a distributed FDI scheme to resolve this 
problem. A detection method based on the local-
information-exchange and sensor-measurement 
technologies was proposed to cover cases of both perfect 
communication and imperfect communication. 
Considering the fact that faulty robots still exert a bad 
influence on the system, we designed an isolation method 
that allows the non-faulty robots to avoid the faulty 
robots. The simulation results demonstrate that the 
application of the proposed FDI scheme is effective.  
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