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A novel hyperspectral image classification
approach based on multiresolution
segmentation with a few labeled samples

Binge Cui, Xiudan Ma, Faxi Zhao and Yanan Wu

Abstract
Hyperspectral remote sensing technology becomes more and more popular in recent years which can be applied to
satellite, plane, and flying robots. An important application of hyperspectral remote sensing is the classification of ground
objects. However, when the number of labeled samples is very small, the classification accuracy of pixelwise classifiers will
decline dramatically. In this article, a novel hyperspectral image classification approach is proposed based on multi-
resolution segmentation with a few labeled samples. The proposed method is motivated by the fact that pixels within a
homogenous region are very likely to have the same class label, which can be utilized to increase the number of labeled
samples. The proposed method consists of four steps. First, the hyperspectral image was segmented using the multi-
resolution image segmentation method. Second, the unlabeled neighbor pixels in the same region as the labeled pixels
were selected randomly to assign the class labels. Next, one pixelwise classifier, that is, support vector machine, is used to
classify the hyperspectral image with the new labeled sample set. Finally, edge-preserving filtering is performed on the
classification result to remove the salt-and-pepper noise and preserve edges of ground objects. Experimental results on
three real hyperspectral images demonstrate that the proposed method can improve the classification accuracy signifi-
cantly when the number of labeled samples is relatively small.
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Introduction

Hyperspectral remote sensing is a major breakthrough of

remote sensing technologies. Hyperspectral sensors can be

mounted on satellites or aircraft, including manned and

unmanned aerial vehicles (UAVs). High spectral resolution

images are available with hyperspectral sensors, such as the

airborne visible/infrared imaging spectrometer (AVIRIS).

Hyperspectral images provide detailed spectral information

regarding the physical nature of the materials and thus can be

used to distinguish different landscapes. Hyperspectral

remote sensing images have been applied in many fields, such

as environmental protection, precise agriculture, and so on.

However, the high dimensionality of hyperspectral data

may produce the Hughes phenomenon1 and have a bad

impact on the performance of classification methods. Thus,

it is necessary to reduce dimension of the hyperspectral
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image.2 During the last decade, a large number of feature

extraction3 techniques have been proposed to address the

high-dimensionality problem, for example, principle com-

ponent analysis (PCA),4,5 decision boundary feature

extraction,6 projection pursuit,7 and nonparametric

weighted feature extraction.8 PCA as a data reduction

dimension method has many advantages. For example, it

is a simple algorithm and has no parameter restrictions.

PCA can transform data into a lower dimensional feature

space, so it can help to improve the classifier performance.

In order to solve the problem of insufficient or poor

quality of the sample, people have studied various methods,

such as robust sample selection,9 semi-supervised learning,

and so on. Semi-supervised learning methods include the

self-training,10 the transductive support vector machine

(TSVM),11 the generative model,12,13 the graph-based

methods,14 and so on. All of these methods can be used

to predict the classes of unlabeled samples and improve the

classification accuracy of hyperspectral images to a certain

extent. There are some limitations for aforementioned

methods when the number of labeled samples is relatively

small, sometimes the classification results are completely

wrong in the region without labeled samples. For example,

self-training uses the previous classification results to train

the classifier iteratively but it suffes largely from the incor-

rect labels.

To solve these problems, we present a simple and easy

to implement method to generate new labeled samples.

Image segmentation is used to generate new labeled sample

for hyperspectral images classification. Image segmenta-

tion15 is the method of dividing the images into a number

of specific regions with unique properties. At present,

image segmentation has many different methods, for exam-

ple, watershed, random walk-based image segmentation,16

graph-based image segmentation,17 region growing

method,18 multiresolution segmentation method,19 and so

on. Those image segmentation methods will generate a lot

of homogeneous regions.20 The pixels in the same region

can be seen as belonging to the same classes. Based on this

principle, the proposed method uses PCA to select the first

principal component as the base image instead of the orig-

inal hyperspectral image. The selected principal compo-

nent is divided into a lot of regions by image

segmentation method that is based on multiresolution seg-

mentation. Several pixels were randomly selected and

labeled in the region which contains the labeled samples

which can generate new labeled samples. The purpose of

random selection in the homogenous region is to make the

selected unlabeled samples more representative.

The rest of this article is organized as follows. “Related

techniques” section introduces three widely used tech-

niques for hyperspectral image classification. “Proposed

approach” section describes the proposed classification

method. “Experiment results and discussions” section gives

the results and provides a discussion. The final section

draws the conclusion.

Related techniques

Principal component analysis

PCA tries to replace the original large number of correla-

tion indicators and recombine into a new set of independent

indicators. It can reduce the number of variables to a few

comprehensive variables. Each principal component of the

original variables is a linear combination, and the principal

components are independent to each other. So the selected

principal components can reflect the majority information

of the initial variables. The process of the PCA is as

follows.

First, construct a normalized matrix by normalizing the

raw data

Zij ¼ xij��xj

sj
(1)

where i and j represent the ith and jth pixels, �xj represents

the pixel mean, and sj represents the image pixel standard

deviation.

Second, the covariance matrix R is obtained from the

normalized matrix

R ¼ ½rij�pxp ¼ ZT Z
n�1

(2)

with rij ¼
P

zki � zkj

n�1
i; j ¼ 1; 2; :::p.

The eigenvalues of covariance matrix are calculated

and ranked in order of magnitude, that is,

l1 � l2 �; :::lp > 0. Then calculate the unit eigenvec-

tors �i according to li.

The standardized indicator variables are converted into

principal component Fi

Fi ¼ �iZ (3)

Image segmentation–multiresolution segmentation

Image segmentation method21 aims at dividing an

image into homogeneous regions. Multiresolution seg-

mentation is a segmentation method based on region

merging. The algorithm uses a bottom-up regional

growth strategy. This method consists of the following

steps:

1. The scale parameter T was defined as the decision

termination condition.

2. Calculate spectral heterogeneity hspectral

h spectral ¼
Xn

i¼1

oisi (4)

where si is the standard deviation of the ith band spectral

values in the region, oi is the weight of the ith band, and

n is the number of the band.
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3. The shape heterogeneity hshape is defined as follows

h shape ¼ wuuþ ð1� wuÞv

u ¼ Effiffiffiffi
N
p

v ¼ E

Ł

(5)

where u and v are the smoothness and compactness of the

region, respectively. wu is the weight of smoothness, E is

the actual boundary length of the region, N is the total

number of pixels in the region, and L is the total length

of the rectangular boundary in the region.

4. The regional heterogeneity is obtained by combin-

ing the spectral heterogeneity hspectral with the shape

heterogeneity hshape

f ¼ wsh spectral þ ð1� wsÞh shape (6)

where ws is the weight of spectrum.

5. The adjacent small regions are merged into larger

regions by comparing the regional heterogeneity f

with the predefined parameter T. If the two adjacent

regions have the smallest heterogeneity, they will

be merged.

Finally, when weighted heterogeneity in the merged

region is greater than the predefined scale parameter, the

merge process ends.

Bilateral filtering

Bilateral filtering22,23 can preserve edge and remove the

noise of images. The edge-preserving property of bilateral

filtering is mainly achieved by combining the spatial

domain function and the range kernel function in the

convolution process. A typical kernel function is a

Gaussian distribution function

�f ðxÞ ¼ ��1

ð
O

wss
ðyÞ�sr

�
f ðyÞ � f ðxÞ

�
dy (7)

with

� ¼
ð
O

wss
ðyÞ�sr

�
f ðyÞ � f ðxÞ

�
dy (8)

where ss is the standard deviation of the spatial Gaussian

function, sr is the standard deviation of the range Gaussian

function, and O denotes the domain of the convolution.

Proposed approach

As illustrated in Figure 1, the first principal component

obtained through PCA transform of the hyperspectral

image was segmented into many small regions. Unlabeled

samples in the same region as labeled samples are selected

randomly to assign them the class label, which increases

the number of labeled samples. The initial probability that a

pixel belongs to a specified class is estimated based on

SVM classifier. The final probabilities are obtained by

performing edge-preserving filtering on the classification

maps, with the first principal component serving as the

guidance image. The proposed classification method can

effectively generate new labeled samples and improve the

classification accuracy.

The proposed approach consists of four steps: (1) PCA

transform and segmentation of the hyperspectral image, (2)

generation of the new labeled samples, (3) classification of

hyperspectral image using SVM classifier, and (4) refine-

ment of the classification map using edge-preserving

filtering.

Step 1: Hyperspectral image segmentation. PCA trans-

form is conducted first on the original hyperspectral image,

and the first principal component was obtained which con-

tains most of the image information. One popular image

Figure 1. Schematic of the proposed semi-supervised classification method.
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segmentation method, that is, multiresolution segmentation,

is used to segment the first principal component, which is

segmented into many small regions. Specifically, in our

implementation, the scale is set to 10–100, and the proportion

of color and shape weight is set to 0.5 and 0.1, respectively.

Step 2: Generation of the new labeled samples. After the

image is segmented, those pixels in each region usually

have similar characteristics according to the homogeneity

criterion. Based on this, we can select some pixels from the

unlabeled samples to assign them labels of their neighbor

pixels in the same region.

For each sample (xi, yi) in the labeled samples set D, we

will generate some related labeled samples as follows:

1. Obtain the region number of the current sample xi.

2. All unlabeled samples within the same region as the

sample xi are extracted from the hyperspectral

image and arranged into a column vector V.

3. Randomly permute the column vector V and select

the first several unlabeled samples to form a set Z.

The samples in the set Z are labeled as yi. This step

is also called labeled samples generation process.

4. The new generated labeled samples set Z is added to

the final labeled samples set S

S ¼ S [ Z (9)

The above procedure will continue until all initial

labeled samples have been processed.

Step 3: Classification of the hyperspectral image with

the updated labeled sample set. An initial classification

map C can be obtained by a pixelwise classifier. In

this article, the pixelwise classification map C is repre-

sented using a group of probability maps, that is,

P ¼ (P1, . . . , Pn), where n is the number of classes. Each

probability map is a binary image. If the class label of one

pixel xi,j is equal to k in the initial classification map C, then

the corresponding pixel is set to 1 in Pk and 0 in other

probability maps. In other words, for each pixel of

the hyperspectral image, only one probability map can

have value 1 in its location.

The SVM classifier is adopted for pixelwise classifica-

tion since it is one of the most widely used pixelwise

classifiers and has been successfully used in other super-

vised or semi-supervised classification methods. The SVM

algorithm is implemented in the LIBSVM library.

Step 4: Filtering of the probability maps. Initially, all

probabilities are valued at either 0 or 1 in the probability

maps. Therefore, it appears noisy and not aligned with real

object boundaries. To solve this problem, the probability

maps are optimized by bilateral filtering. Specifically, the

optimized probabilities are modeled as a weighted average

of its neighborhood probabilities

Ṕi;k ¼
X

j

wi; jðIÞPj; k (10)

where Ṕj,k represents the value of jth pixel in the probability

map Pk, represents the value of the ith pixel in the opti-

mized probability map Pk, wi,j represents the weight of the

jth neighborhood pixel, which is computed using spatial

domain function and the range kernel function, and I rep-

resents the guidance image, which is the first principal

component of the hyperspectral image.

According to equation (7), once the probability maps are

filtered, the label at pixel i can be simply chosen in a max-

imization manner as follows

ci ¼ arg
max

k
Ṕi;k (11)

This step aims at transforming the probability maps Ṕi,k

into the final classification result.

Experiment results and discussions

Experimental setup

Data setup. Three remote sensing hyperspectral data sets,

that is, the Indian Pines image, the University of Pavia

image, and the Salinas image, are utilized in our

experiments.

The Indian Pines image was acquired by the AVIRIS

sensor. It captures the agricultural Indian Pine unlabeled

site of Northwest Indiana and contains 220 bands of 145 �
145. Twenty water absorption bands (nos. 104–108,

150–163, and 220) were removed before hyperspectral

image classification. Furthermore, the spatial resolution

of the Indian Pines image is 20-m per pixel, and the spectral

coverage is ranging from 0.4 mm to 2.5 mm. Figure 2 shows

the color composite of the Indian Pines image and the

corresponding ground truth data.

The University of Pavia image capturing the University

of Pavia, Italy, was recorded by the reflective optics system

imaging spectrometer. This image contains 115 bands of

size 610 � 340 with a spatial resolution of 1.3-m per pixel

and a spectral coverage ranging from 0.43 to 0.86. Before

the classification, 12 noisy channels were removed, which

is a standard preprocessing approach before hyperspectral

image classification. Nine classes of interest are considered

for this image. Figure 3 shows the color composite of the

University of Pavia image and the corresponding ground

truth data.

The Salinas image was captured by the AVIRIS sensor

over Salinas Valley, California, and it has a spatial resolu-

tion of 3.7-m per pixel. The Salinas image contains 224

bands of size 512 � 217, and 20 water absorption bands

(nos. 108–112, 154–167, and 224) were discarded before

classification. Figure 4 shows the color composite of the

Salinas image and the corresponding ground truth data.

Evaluation metrics. In order to evaluate the performance of

image classification, three objective quality indexes, that is,

the overall accuracy (OA), the average accuracy (AA), and

the k coefficient, are utilized for objective evaluation.
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Specifically, the OA index refers to the percentage of pixel

that is correctly labeled in the classification. The AA index

measures the mean of the percentage of correctly labeled

pixels for each class. Finally, the k coefficient calculates

the percentage of correctly classified pixels.

Classification results

Analysis of the influence of parameters. For the proposed

method, the number of generate new labeled samples in a

region and the size of scale parameter in the multiresolution

segmentation are influence to classification accuracies. The

number of labeled samples and principal components

obtained by the PCA and the size of the edge-preserving

filtering window will affect the classification results by the

proposed method in this article.

In the experiments, support vector machine(SVM), prin-

cipal component analysis(PCA), image fusion and recur-

sive filtering (IFRF), label propagation (LP) of based on

semi-supervised are processed the original data. The pro-

posed method PCA transform, Segmentation and Edge-

Preserving Filtering (PSEPF) selects the first principal

component and generates 10 labeled samples in a region.

Multiresolution segmentation method is used to segment

the first principal component. The guide image of EPF is

a classification result generated by SVM, and the bilateral

filtering is adopted. The size of region is 100 pixels.

In order to reduce the influence of the randomness of

labeled samples, the experiment was repeated 30 times.

The average of the 30 times experimental results as the

final classification result.

Comparison of different classification methods. In this section,

the proposed methods (PSEPF) are compared with the

SVM, PCA, EPF, LP, and IFRF methods.

The first and second experiments are performed on the

Indian Pines data sets. Figure 5 shows the classification

maps obtained by different methods associated with the cor-

responding OA scores. From this figure, it can be seen that

the classification accuracy obtained by the SVM and EPF

methods is not very satisfactory since some noisy estima-

tions are still visible. By contrast, the IFRF method and the

proposed method perform much better in removing “noisy

pixels.” Specifically, the proposed method increases the OA

compared to the SVM method by about 30%. Compared

with the recently proposed classification method (IFRF), the

proposed method also gives a higher classification accuracy.

Table 1 presents the number of labeled and unlabeled

samples (the labeled set which accounts for 2.5% of the

Figure 2. (a) Three-band color composite of the Indian Pines
image. (b) and (c) Ground truth data of the Indian Pines images.

Figure 3. (a) Three-band color composite of the University of
Pavia image. (b) and (c) Ground truth data of the University of
Pavia images.

Figure 4. (a) Three-band color composite of the Salina image.
(b) and (c) Ground truth data of the Salina images.
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ground truth was chosen randomly) and the classification

accuracies for different methods. From this table, it can be

observed that, using the proposed PSEPF method, the AA

of SVM is increased from 63% to 90% and the k accuracy

can also be increased significantly. The proposed PSEPF

method gives the best performance in terms of OA, AA,

and k. Table 2 presents the number of labeled and unla-

beled samples (the labeled set which accounts for 5% of the

ground truth was chosen randomly) and the classification

accuracies for different methods. From this table, it can be

seen that classification accuracy is significantly improved.

In short, SVM method accuracies are less than 80%, and

other methods are more than 80%, while accuracy of the

proposed method and the method IFRF is more than 90%.

At present, the supervised classification method has met the

bottleneck of accuracy improvement.

The second and third experiments were performed on

the University of Pavia image. Figures 6 and 7 show the

classification maps obtained by different methods

associated with the corresponding OA scores. Tables 3 and

4 present the number of labeled and unlabeled samples (for

the University of Pavia image, the labeled sets which,

respectively, account for 0.3 and 2% of the ground truth

were chosen randomly) and the classification accuracies for

different methods.

Figure 5. Classification results (Indian Pines image) obtained by
the (a) reference land-cover, (b) SVM method (OA¼73.1), (c) EPF
method (OA¼82.15), (d) LP method (OA¼88.42), (e) IFRF
method (OA¼93.10), and (f) the proposed method (OA¼95.17).
The value of OA is given in percentage. The number of labeled
samples is 5%. SVM: support vector machine; LP: label propagation;
IFRF: image fusion and recursive filtering; OA: overall accuracy.

Table 1. Classification accuracy (in percentage) of different
classification methods (the labeled set which accounts for 2.5%).

Class Labeled Unlabeled SVM EPF LP IFRF PSEPF

Alfalfa 16 30 32.1 61.7 68.83 96.8 100
Corn_N 16 1412 59.5 78.1 80.05 93.4 85.7
Corn_M 16 814 34.8 39.5 65.77 73.8 82.5
Corn 16 221 31.6 35.6 69.6 86.6 67.6
Grass_M 18 465 67.4 80.6 93.57 72.1 87.9
Grass_T 16 714 88.7 93 96.42 99.1 97
Grass_P 14 14 85.7 100 84.09 30.4 100
Hay_W 17 461 97.6 99.3 99.04 100 100
Oats 10 10 26.3 45.5 79.44 90.9 76.9
Soybean_N 17 955 55 65.3 70.48 83.2 84.8
Soybean_M 18 2437 77.4 86.1 84.58 90.7 97.6
Soybean_C 16 577 33.2 38.3 71.35 87.3 82.7
Wheat 16 189 92.6 100 99.51 95.9 100
Woods 16 1249 91 93.5 98.02 95.9 99.3
Buildings 16 370 54.6 76 58.69 86.7 92.8
Stone 18 75 82.8 89 72.57 98.7 91.7
OA — — 63.35 73.32 80.91 88.89 90.88
AA — — 63.16 73.84 80.75 86.35 90.4
k — — 58.92 62.17 78.51 68.89 87.37

SVM: support vector machine; LP: label propagation; IFRF: image fusion
and recursive filtering; OA: overall accuracy; AA: average accuracy. The
signification of the italic value is the method has the highest classification
accuracy for a certain feature.

Table 2. Classification accuracy (in percentage) of different
classification methods (the labeled set which accounts for 5%).

Class Labeled Unlabeled SVM EPF LP IFRF PSEPF

Alfalfa 23 23 73.91 91.3 86.91 95.65 100
Corn_N 42 1386 67.68 85.42 84.575 89.65 93.12
Corn_M 34 796 69.29 82.52 82.985 88.04 94.96
Corn 33 204 37.06 42.71 67.89 88.11 67.01
Grass_M 34 449 89.88 97.8 95.56 97.07 95.73
Grass_T 38 692 93.51 98.5 98.53 97.88 99
Grass_P 14 14 81.25 93.33 98.215 82.35 100
Hay_W 35 443 98.42 99.78 99.375 100 100
Oats 10 10 45 71.43 95.455 90.91 90.91
Soybean_N 38 934 60.19 66.04 77.855 83.93 90.29
Soybean_M 44 2411 79.4 87.83 90.815 97.23 98.58
Soybean_C 33 560 58.87 73.42 80.07 83.75 88.58
Wheat 33 172 88.3 97.16 99.755 99.42 100
Woods 36 1229 95.67 97.82 97.305 100 99.92
Buildings 32 354 41.98 55.1 77.095 90.18 96.41
Stone 33 60 87.69 88.06 92.16 98.36 93.75
OA — — 73.10 82.15 87.96 93.10 95.17
AA — — 73.01 83.01 89.035 92.66 94.27
k — — 69.53 79.75 86.365 92.13 94.48

SVM: support vector machine; LP: label propagation; IFRF: image fusion
and recursive filtering; OA: overall accuracy; AA: average accuracy.
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Figure 6 shows the classification maps obtained by the

labeled set which accounts for 0.3% of the ground truth. Fig-

ure 7 shows the classification maps obtained by the labeled set

which accounts for 2% of the ground truth. The proposed

method has the better classification accuracies of OA.

From Figures 6 and 7, it can be seen that the classifica-

tion accuracies obtained by the proposed methods are

always the highest. It is observed that SVM and EPF

method accuracies are less than 80%, and other methods

are more than 80% when the number of labeled samples is

0.3%. By contrast, when the number of labeled samples is

2%, the OA of all of the method increase widely, espe-

cially, the proposed method is up to 98%.

Table 3 presents the number of labeled and unlabeled

samples (the labeled set which accounts for 0.3% of the

ground truth was chosen randomly) and the classification

accuracies for different methods. From this table, it can be

seen that the proposed method always outperforms the

SVM, EPF, LP, and IFRF. In addition to the classification

accuracies of the sheets and soil class less than IFRF, other

classification accuracies of other class are better than the

other method.

Table 4 presents the number of labeled and unlabeled

samples (the labeled set which accounts for 2% of the

ground truth was chosen randomly) and the classification

accuracies for different methods. From this table, it can be

seen that the classification accuracy of every classification

method is improved. Especially, the classification accuracy

of SVM, EPF, and LP is improved drastically.

The fifth experiment is performed on the Salinas image

data sets. Table 5 presents the number of labeled and unla-

beled samples (the labeled set which accounts for 0.1% of

Figure 6. Classification results (University of Pavia image)
obtained by the (a) reference land-cover, (b) SVM method
(OA¼69.46), (c) EPF method (OA¼74.42), (d) LP method
(OA¼80.52), (e) IFRF method (OA¼82.73), and (f) the proposed
method (OA¼93.32). The value of OA is given in percentage. The
number of labeled samples is 0.3%. SVM: support vector machine;
LP: label propagation; IFRF: image fusion and recursive filtering;
OA: overall accuracy.

Figure 7. Classification results (University of Pavia image)
obtained by the (a) reference land-cover, (b) SVM method
(OA¼87.40), (c) EPF method (OA¼93.52), (d) LP method
(OA¼92.28), (e) IFRF method (OA¼96.43), and (f) the proposed
method (OA¼98.51). The value of OA is given in percentage. The
number of labeled samples is 2%. SVM: support vector machine;
LP: label propagation; IFRF: image fusion and recursive filtering;
OA: overall accuracy.

Table 3. Classification accuracy (in percentage) of different
classification methods (the labeled set which accounts for 0.3%).

Class Labeled Unlabeled SVM EPF LP IFRF PSPEF

Asphalt 15 6616 97.84 98.65 97.78 82.7 99.41
Meadows 15 18,634 89.08 90.8 96.82 97.48 98.59
Gravel 14 2085 51.86 65.87 73.54 75.5 95.53
Trees 14 3050 48.11 48.3 63.24 43.86 81.15
Sheets 14 1331 94.42 94.38 98.88 100 93.38
Soil 14 5015 58.83 73.39 66.28 84.34 81.6
Bitumen 14 1316 47.79 58.5 53.32 70.08 80.9
Bricks 14 3668 76.03 80.8 80.5 79.74 88.81
Shadows 14 933 100 99.25 94.96 48.28 99.57
OA 69.21 73.76 80.06 82.10 90.55
AA 71.21 76.24 80.59 76.10 88.88
k 61.63 67.16 78.48 76.94 87.81

SVM: support vector machine; LP: label propagation; IFRF: image fusion
and recursive filtering; OA: overall accuracy; AA: average accuracy.

Cui et al. 7



the ground truth was chosen randomly) and the classifica-

tion accuracies for different methods. From Table 5, it can

be found that the proposed method is generally higher than

SVM, EPF, LP, and IFRF methods. When the number of

labeled sample is 0.1% of the reference data, the proposed

method percentage of the classification average accuracies

is up to 94%.

Figure 8 shows the classification maps obtained by dif-

ferent methods of the Salinas image associated with the

corresponding OA value. Compared with the SVM method,

the proposed method can improve the classification accura-

cies significantly. For example, in Figure 8, the classifica-

tion accuracy of the proposed method is 93.02%.

From those experiments, the proposed method has

attained the highest value in k, OA, and AA. It can be seen

that this method is not only excellent in the case of a few

labeled samples but also has some advantages when the

number of samples is adequate.

Classification results with different labeled and unlabeled
samples set. In this section, the influence of different labeled

and unlabeled sets to the performance of the proposed

method is analyzed. Experiments are performed on three

images, that is, the Indian Pines image, the University of

Pavia image, and the Salinas image. The classification

result obtained by the proposed method is presented.

Figure 9 shows the classification results of the proposed

method with the number of labeled samples (in percent)

increased from 0.0625% to 5% for the Indian Pines

image, 0.1% to 0.5% for the University of Pavia image,

and 0.05% to 0.25% for the Salinas image.

From this figure, it can be seen that the proposed method

can always improve the classification accuracy signifi-

cantly with a different number of labeled samples. For

example, regarding the Indian Pines image, when the OA

of SVM is about 70% (3.75% ground truth samples are used

as labeled samples), the proposed method can obtain a

classification accuracy near 94%. For the University of

Table 4. Classification accuracy (in percentage) of different
classification methods (the labeled set which accounts for 2%).

Class Labeled Unlabeled SVM EPF LP IFRF PSPEF

Asphalt 95 6536 98.52 99.33 97.12 93.81 99.57
Meadows 95 18,554 96.73 98.88 98.74 99.65 99.73
Gravel 95 2004 68.61 82.80 82.59 93.40 97.09
Trees 95 2969 76.26 83.68 91.91 93.36 96.02
Sheets 95 1250 98.89 99.52 99.76 100 99.92
Soil 95 4934 70.77 82.22 79.37 95.71 98.56
Bitumen 95 1235 60.56 78.54 78.27 93.48 97.07
Bricks 95 3587 83.93 89.20 89.67 87.77 94.12
Shadows 95 852 99.88 99.07 91.74 87.87 97.15
OA 87.40 93.52 92.65 96.43 98.54
AA 84.48 91.62 89.91 94.01 97.89
k 83.57 91.47 90.41 95.26 98.05

SVM: support vector machine; LP: label propagation; IFRF: image fusion
and recursive filtering; OA: overall accuracy; AA: average accuracy.

Table 5. Classification accuracy (in percentage) of different
classification methods (the labeled set which accounts for 0.1%).

Class Labeled Unlabeled SVM EPF LP IFRF PSEPF

Weeds_1 3 2006 96.68 99.50 99.87 100 100
Weeds_2 3 3723 99.34 99.86 99.03 100 99.52
Fallow 3 1973 100 0 83.16 99.80 92.40
Fallow_p 3 1391 97.62 98.10 97.17 76.85 95
Fallow_s 3 2675 74.31 74.16 99.27 99.96 99.42
Stubble 3 3956 99.39 100 94.27 100 100
Celery 4 3575 96.60 96.57 91.67 96.12 97.72
Grapes 6 11,265 58.81 58.57 64.5 89.08 88.47
Soil 3 6200 99.23 99.55 98.87 99.94 99.37
Corn 3 3275 76.89 83.56 81.7 99.96 97.91
Lettuce_4 4 1064 96.41 98.94 89.08 97.72 86.19
Lettuce_5 4 1923 75.22 75.33 95.59 93.97 96.10
Lettuce_6 3 913 96.94 99.78 92.35 85.49 99.22
Lettuce_7 3 1067 0 0 90.34 46.27 66.92
Vinyard_U 3 7265 21.08 3.25 48.49 89.34 96.90
Vinyard_T 3 1804 9.84 6.84 92.48 100 99.65
OA 70.40 72.00 80.96 83.57 93.02
AA 77.21 78.81 88.62 84.49 94.18
k 67.18 68.92 78.85 81.73 92.23

SVM: support vector machine; LP: label propagation; IFRF: image fusion
and recursive filtering; OA: overall accuracy; AA: average accuracy.

Figure 8. Classification results (Salinas image) obtained by the
(a) reference land-cover, (b) SVM method (OA¼70.40), (c) EPF
method (OA¼72.0), (d) LP method (OA¼80.88), (e) IFRF
method (OA¼83.57), and (f) the proposed method (OA¼93.02).
The value of OA is given in percentage. The number of labeled
samples is 0.1%. SVM: support vector machine; LP: label propa-
gation; IFRF: image fusion and recursive filtering; OA: overall
accuracy.
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Pavia image, it can be seen that, with relatively limited

labeled samples (0.5% of the ground truth), the proposed

method can obtain an OA up to 95%. A similar conclusion

can be obtained when analyzing the experimental results of

the Salinas image, when relatively limited labeled samples

(0.05% of the ground truth), the proposed method can

obtain a classification accuracy near 84% and other

methods have lower than the proposed method; the classi-

fication accuracy of IFRF method is only 31%.

The experimental results show that the proposed method

shows very good classification performances for three

widely used real hyperspectral data sets even when the num-

ber of training samples is extremely small. Meanwhile, there

is a need to pay for more cost of computational complexity

when the number of samples is very large.

Conclusion

This article presents a semi-supervised segment-based

hyperspectral image classification method with a few

labeled samples. The key idea of the article is that the

pixels within the same region are homogenous, so they

should have similar labels. Those new labeled samples are

generated by label of the unlabeled samples in the segmen-

ted region. The major advantage of the proposed method is

that it is able to increase the number of labeled samples for

label of SVM classifier. Experimental results demonstrate

that the proposed method achieves higher classification

accuracy than other out-of-date methods.

The contribution of this article is that it proposed a new,

simple, and effective method to improve the classification

accuracy by increasing the number of training samples.

This method solves the problem of low classification accu-

racy which is caused by the insufficient sample.
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