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Abstract

Let £ be a Banach space and A an m-accretive operator with a zero. Consider the
iterative method that generates the sequence {x,} by the algorithm

Xns1 = Y @ (xn) + (I — anF)Jr, xy, where {a,} and {r,} are two sequences satisfying
certain conditions, J,, denotes the resolvent (/ + r,A)" for r, > 0, F be a strongly
positive bounded linear operator on £is 0 < ¥ < ¥, and ¢ be a MKC on E. Strong
convergence of the algorithm {x,} is proved assuming £ either has a weakly
continuous duality map or is uniformly smooth.
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1 Introduction

Let E be a real Banach space, C a nonempty closed convex subset of E, and 7: C —» C
a mapping. Recall that T is nonexpansive if |7x - Ty|| < |lx - y|| for all x, y e C. A
point x € C is a fixed point of T provided Tx = x. Denote by F(T) the set of fixed
points of 7, that is, F(T) = {x € C, Tx = x}.

It is assumed throughout the paper that 7T is a nonexpansive mapping such that
F(t) # 0. The normalized duality mapping / from a Banach space E into 2E* is given
by J(x) = {fe E*: (x, f = |x|I* = |fI*}, x € E, where E* denotes the dual space of E and
(.,.y denotes the generalized duality pairing.

Theorem 1.1. (Banach [1]). Let (X, d) be a complete metric space and let f be a contrac-
tion on X, that is, there exists r € (0, 1) such that d(fix), fy)) < rd(x, y) for all x, y € X.
Then f has a unique fixed point.

Theorem 1.2. (Meir and Keeler [2]). Let (X, d) be a complete metric space and let ¢
be a Meir-Keeler contraction (MKC, for short) on X, that is, for every ¢ > 0, there
exists 0 > 0 such that d(x, y) <¢ + J implies d(¢p(x), ¢(y)) <¢ for all x, y € X. Then ¢
has a unique fixed point.

This theorem is one of generalizations of Theorem 1.1, because contractions are
Meir-Keeler contractions.

Let F be a strongly positive bounded linear operator on E, that is, there exists a con-

stant y > 0 such that
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(Fx,J(x)) = 7llxII*, llal — bF|| = sup {|{(al — bF)x,J(x))| :a € [0,1],b € [0,1]},

lxll=<1

where [ is the identity mapping and J is the normalized duality mapping.

Let D be a subset of C. Then Q : C — D is called a retraction from C onto D if Q(x) = x
for all x € D. A retraction Q : C — D is said to be sunny if Q(x + £(x - Q(x))) = Q(x) for all
x€ Candt = 0 whenever x + £(x - Q(x)) € C. A subset D of C is said to be a sunny non-
expansive retract of C if there exists a sunny nonexpansive retraction of C onto D. In a
smooth Banach space E, it is known (cf. [[3], p. 48]) that Q : C — D is a sunny nonexpan-
sive retraction if and only if the following condition holds:

(x—Q).J(z—Q(x))) <0, xeC, zeD. (1.1)

Recall that an operator A with domain D(A) and range R(A) in E is said to be accre-
tive, if for each x; € D(A) and y; € Ax;, i = 1, 2, there is aj € J(x, - 1) such that

{y2 —yuj) = 0.

An accretive operator A is m-accretive if R(I + AA) = E for all A > 0. Denote by N(A)

the zero set of A; i.e.,
N(A):=A"'0={x e D(A) : Ax = 0}

Throughout the rest of this paper it is always assumed that A is m-accretive and N

(A) is nonempty. Denote by J, the resolvent of A for r > 0:
Jr=(I+7A)7"

Note that if A is m-accretive, then J, : E — E is nonexpansive and F(J,) = N(A) for all
r > 0. We also denote by A, the Yosida approximation of A4, i.e., A, = i(I —J). Itis

well known that J, is a nonexpansive mapping from E to C := D(A).

Recall that a gauge is a continuous strictly increasing function ¢ : [0, «) — [0, )
such that ¢(0) = 0 and ¢(f) — « as ¢ — 0. Associated to a gauge ¢ is the duality map-
ping J, : E — E* defined by

Jo(x) = {x* € E*: (x,x") = [Ix] ¢ (lIx)),

| =@dxlD}, xe€E.

Following Browder [4], we say that a Banach space E has a weakly continuous duality
map if there exists a gauge ¢ for which the duality map J; is single-valued and weak-
to-weak* sequentially continuous(i.e., if {x,} is a sequence in E weakly convergent to a
point x, then the sequence Jy(x,) converges weakly* to /,(x)). It is known that # has a
weakly continuous duality map for all 1 <p < o, with gauge ¢(f) = #*. Set

d(1) = /(p(f)dr, t>0. (1.2)
0

Then

Jo(x) =0®(llxll), x€E,

where 0 denotes the subdifferential in the sense of convex analysis.



Wen and Hu Fixed Point Theory and Applications 2012, 2012:98 Page 3 of 13
http://www fixedpointtheoryandapplications.com/content/2012/1/98

Recently, Hong-Kun Xu [5] introduced the following iterative scheme: for x; = x € C,

Xne1 = ot + (1 + o)X, Yn>1, (1.3)

where {a,} and {r,} are two sequences satisfying certain conditions, and J;, denotes
the resolvent (I + r,A)" for r, > 0. He proved the strong convergence of the algorithm
{x,,} assuming E either has a weakly continuous duality map or is uniformly smooth.

Motivated and inspired by the results of Hong-Kun Xu, we introduce the following
iterative scheme: for any xy € E,

Xne1 = oy @(xn) + (I — @nF)lr %0, YN >0, (1.4)

where {a,} and {r,} are two sequences satisfying certain conditions, J,, denotes the
resolvent (I + r,A)* for r, > 0, F be a strongly positive bounded linear operator on E
is 0 <y <y, and ¢ be a MKC on E. Strong convergence of the algorithm {x,} is
proved assuming E either has a weakly continuous duality map or is uniformly smooth.
Our results extend and improve the corresponding results of Hong-Kun Xu [5] and
many others.

2 Preliminaries
In order to prove our main results, we need the following lemmas.

Lemma 2.1. [5]. Assume that E has a weakly continuous duality map ], with gauge

®,

(i) For all x, y € E, there holds the inequality

© ([ +y]) < @ el + (. Iy (x +)).

(if) Assume a sequence {x,} in E is weakly convergent to a point x, then there holds
the equality

limsup @ (|x, —y|) = limsup @ (Ilx, —xI) + @ (|y—x[), xyeE.
n— 00 n— 00

Lemma 2.2. [6,7]. Let {s,;} be a sequence of nonnegative real numbers satisfying
Spel = (1 - )Ln)sn +Anbp+¥Yn, n=>0,

where {1,}, {0,} and {y,} satisfy the following conditions:

() G} € (01) and Y~ =00,

(ii) lim sup, se 6, < 0 0r Y pog Andn < 00 (iii) yn > 0(n>0),> 12 vu < 00. Then

lim,_,. s, = 0.

Lemma 2.3. (The Resolvent Identity [8,9]). For A > 0 and v > 0 and x € E,

Lax =1, (; + (1 - ;)L\x>.
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Lemma 2.4. (see [ [10], Lemma 2.3]). Assume that F is a strongly positive linear
bounded operator on a smooth Banach space E with coefficient ¥ > 0and 0 <p < ||F||".
Then,

= pFl < 1 - p7.

Lemma 2.5. (see [ [11], Lemma 2.3]). Let ¢ be a MKC on a convex subset C of a
Banach space E. Then for each ¢ > 0, there exists r € (0,1) such that

|x—y|| = e implies |[¢x—¢y| <7|x—y| VxyeC.

Lemma 2.6. Let E be a reflexive Banach space which admits a weakly continuous
duality map ], with gauge ¢. Let T : E — E be a nonexpansive mapping. Now given ¢ :
E — E be a MKC, F be a strongly positive linear bounded operator with coefficient
y > 0. Assume that 0 <y < y, the sequence {x;} defined by x, = typ(x,) + (I - tF)Tx,.
Then T has a fixed point if and only if {x;} remains bounded as t — 0", and in this
case, {x;} converges as t — 0" strongly to a fixed point of T. If X := lim,_,ox;, then
X uniquely solves the variational inequality

(F—y¢)%J(—p)) <0, PeFT).

Proof. The definition of {x;} is well defined. Indeed, from the definition of MKC, we
can see MKC is also a nonexpansive mapping. Consider a mapping S, on E defined by
Si(x) = tyop(x) + (I —tF)Tx, x € E.
It is easy to see that S, is a contraction. Indeed, by Lemma 2.4, we have
|Sx =Sy = tv [@(x) — oW + | (1 — tF)(Tx — Ty)|
<ty|x—y|+Q—tp)|Tx— T
<[1—ty—)]|c—v

’

for all x, y € E. Hence S, has a unique fixed point, denoted as x,, which uniquely

solves the fixed point equation

Xt = t)/(,b(xt) + (I — tF)Txt, Xt € E. (21)

We next show the sequence {x,} is bounded. Indeed, we may assume F(t) # ¥ and
with no loss of generality ¢ < |[F||". Take p € F(T) to deduce that, for t € (0, 1),

”xz - P” = ”W‘?(’Q) + (I — tF)Tx, — P”
= [ty (x) — Fp) + (I — tF)(Tx; — p) |
< (=) |x—p|+ty |x—p|+t]|re®) —Fp|
<M=ty =) |x—p|+t|yep) —Fo|.

Hence
1
e —=pl < _ " |ve) —Fo|
Yy —v

and {x,} is bounded.
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Next assume that {x;} is bounded as ¢ — 0*. Assume £, — 0" and {x,} is bounded.
Since E is reflexive, we may assume that X;, — z for some z € E. Since ], is weakly

continuous, we have by Lemma 2.1,

lim sup @ (| x, —z|)+®(lx—zl), VxeE.
n—oo

%y, — |} = lim sup @ (|

Put

f(x) =limsup @ (||x,, —x|), «x€E.
n—o0

It follows that
fx)=f(z)+®(lx—zll), xeE.
Since

we obtain

— 0,

x, — Txy, | =t |y (x,) — FTx,,

f(Tz) = limsup,_, @ (||x;, — Tz|) = limsup,_, @ (| Tx;, — Tz||)

. (2.2)
<limsup,_, P (| Xy, — z||) = f(z).
On the other hand, however,
f(Tz) = f(=) + @ (|| Tz — z)) (2.3)

Combining Equations (2.2) and (2.3) yields

@ (ITz—z||) < 0.

Hence, Tz = z and z € F(T).

Finally, we prove that {x,} converges strongly to a fixed point of T provided it
remains bounded when ¢ — 0.

Let {£,} be a sequence in (0, 1) such that £, — 0 and X;, — 2 as n — oo. Then the
argument above shows that z € F(T). We next show that X, = z. By contradiction,

there is a number ¢y > 0 such that ||xtn — zH > g9. Then by Lemma 2.8, there is a num-

ber r € (0, 1) such that

lo(x) —¢@)| < 1%, —z],
x, = 2| ¢ (|x, —2) = (%, — 2T, (5, —2))
= (tu(yd(x;,) — F2) + (I — taF)(Tx,, — 2),Jy (x;, — 2))
< tu(yo(x,) — Bz Jp(xn — 2)) + ||(I — taF)(Txe, — 2) | @ (||, — 2])
< (1= tp) |, — 2] @ (|x, —z|]) + ta(yo(xs,) — Fz Jp (xa — 2)).

It follows that

IA

{ro(x,) — Fz,Jy(x, —2))

x, =)

x, =2 ¢ (|

SRR PR =

[(yo(x,) — y¢(2),Jp(xi, — 2)) + (v d(2) — Fz. )y (x;, —2))]

IA

(v () — Fe.Jy (xi, — z))] .

x, —z|) +

1
. ~2l o :
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Therefore,

v=lo (v -l = L (et el - 2).

yr

Now observing that X, = z implies Jy(x;, —2) = 0, we conclude from the last

inequality that

0.

lim th,, —Z|| @ (|xtn _ZH)

n—o0

It contradicts |

x, —z| @ (|x, —z|) = eo@(g0) > 0. Hence xi, — z.

We finally prove that the entire net {x,} converges strongly. Towards this end, we
assume that two null sequences {t,} and {s,} in (0, 1) are such that

th > 0, x, >z and s, —> 0, x;, > Z.
We have to show z = z. Indeed, for p € F(T). Since
x =ty d(x) + (I — tf)Tx,,

we derive that
1
(F — )/(,‘b)xt = — . (I - tF)(I — T)xl. (2.4)
Notice

((I = Txe — (I = T)p, Jp (x: — P)) = ||xz - P” 2 (Hxl - P”) + (TP = Ty, Jp (20 — P)>
= |lx—pll e (|x —pl) = [Tp = Txc[| )y (xc = p)|

= |xe=pl[ Lo (Ix = pl) = ¢ (lx = »[)]
=0.

It follows that,

((F —vo)xe, Jo (% — P)> = —1 ((1 — tF)(I — T)xe. Jo (% — P))

2.5
= ((FU = T)xe, J (e — P)> (2.5)

Now replacing ¢ in (2.5) with ¢, and letting n — o, noticing
(I—T)x, - (I—T)z=0 for ze F(T), we obtain {(F - y9)z, J,(z - p)) < 0. In the same
way, we have ((F — y$)z,J,(2 — p)) < 0.

Thus, we have

(F—y¢)zJ,(z—2)) <0 and ((F—y¢)iJ,(2—2))<0. (2.6)

Adding up (2.6) gets

(F—y)z— (F—yo)i Jo(z—2))<0.

On the other hand, without loss of generality, we may assume there is a number &

such that ||z—é|| > ¢, then by Lemma 2.5 there is a number r; such that

|#(z) — ¢(2)| <11 |z —Z|. Noticing that
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Jo = (@ (IxI/ Ix1) J(x) x #0,

(F=y9)z— (F=y9)aly(z—2) = (Fz = 2).Jy(z = D)) — [r¢z — v 92 ), (2 - 2))
=7 |e=2| Voe = A -y |e = 2] Iz - 2)|
= (7 —ym)z=2[ e (|=-2])
> 0.

Hence z =z and {x,} converges strongly. Thus we may assume x, — X. Since we
have proved that, for all £e (0, 1) and p € F(T),

((F = y#)xu Ty (xc — p)) < ((FU = T)xe, Jp (% — p))
lettil’lg t — 0, we obtain that

(F=y¢)%J,(x —p)) < 0.
This implies that

((F — y$)5 G — p)) < 0.

Lemma 2.7. (see [12]). Assume that C, > C; > 0. Then ||]C]x — x|| <2 ||]C2x — x||f0r
all x € E.

Lemma 2.8. [13]. Let C be a nonempty closed convex subset of a reflexive Banach
space E which satisfies Opial’s condition, and suppose T : C — E is a nonexpansive
mapping. Then the mapping I - T is demiclosed at zero, that is x,, —~ x and |x,, - Tx,|
— 0, then x = Tx.

Lemma 2.9. In a smooth Banach space E there holds the inequality

Jx+y]® < +2(nJ(x+y)), xyeE.

3 Main result

Theorem 3.1. Suppose that E is reflexive which admits a weakly continuous duality
map Js with gauge ¢ and A is an m-accretive operator in E such that F* = N(A) # 0.
Now given ¢ : E — E be a MKC, and let F be a strongly positive linear bounded opera-
tor on E with coefficient y > 0,0 <y < y. Assume

(i) limy, 000ty = O, ZZZO Oy = 005

(ii) 7, = oo.

Then {x,; defined by (1.4) converges strongly to a point in F*.
Proof. First notice that {x,} is bounded. Indeed, take p € F* to get

|1 = p|| = [letnd (xn) + (I — ctuF)y, %0 — |
= ||any¢(xn) — onFp + anFp + (I — anF)Jp, xn — P”
= lotn(yd(xn) — Ep) + (I = aaF) Uy, %0 — P) |
< (1—an?) %0 — | +any %0 —p| +en [yo(p) — Fp|
< [1 - O‘n(J7 - V)] ”xn —P” +ap ||V¢(p) - Fp”
< 1= a7 = s =] ez ) 7O 1
Yy —Vv
lye(p) — Fp|

= max ”xn_p 7—y

n> 0.
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By induction, we have

x, — p| < max{ |xo—p|, e , n>=0.
Yy =V
This implies that {x,} is bounded and hence
”xn+1 —Jr%n ” = Hanyd’(xn) + (I = anF) %0 — J1 %0 ”

=0Op Hyff’(xn) — FJy, xn ” — 0.

We next prove that

lim sup, ,.(yp(p) - Fp, Jg(x, - p)) < 0, where p = lim,,, x, with
xe =ty (x) + (I — tF)r,x;.

Since {x,} is bounded, take a subsequence {x,,} of {x,} such that

lim sup (y $(p) — Fp, Jy (xa — p)) = lim {y¢(p) — Fp.Jo (xn, = P)).- (3.1)

n— 00
Since E is reflexive, we may further assume that x,, — x. Moreover, since
“xn+1 _]rnxnn — 0,

we obtain

]Tnk—lxn;, 1=k
Taking the limit as k — oo in the relation
I:]rnk—lxnk—lernk—lxnk - 1:| €A,

we get [X,0] € A. That is, ¥ € F*. Hence by (3.1) and Lemma 2.6 we have

lim sup (y @(p) — Fp.Jy (¥n = p)) = im {y $(p) = Fp. Jo (xn. = p)) = (y#(p) = Fp.J( = p)) < 0.

Finally to prove that x,, — p, we apply Lemma 2.1 to get

@ ([ w1 —pl) = @ (letny d(n) + (I = ctuF)r, 20 — p])
=@ (||(I = ewF) Uy, 20 — p) + (¥ d(xa) — Fp) )
= (” (I = anF)(Jr,xn — p) + an(yd(xn) — v (p)) + an(vd(p) — Fp)”)
< @ (|(I— aaF)Ur,xn — p) + an(v$(xn) — yd(0))])) + otn (¥ &(0) — Fp, Jy (o1 — P))
<[t —an(7 =) (|20 = p])) + an (yd(p) = Fp.Jy (01 — ).

An application of Lemma 2.2 yields that ®(||x,, - p|) — 0. That is, ||x, - p|| = 0, i.e.,
x,, = p. The proof is complete.

Theorem 3.2. Suppose that E is reflexive which admits a weakly continuous duality
map J, with gauge ¢ and A is an m-accretive operator in E such that F* = N(A) # 0.
Now given ¢ : E — E be a MKC, and let F be a strongly positive linear bounded opera-

tor on E with coefficient y > 0,0 <y < y. Assume

(i) limy 000t = 0, ) 02 an = 00, and Y 32, |apsy — ol < 00(eg. an = 1);

(i) 7, = & for all n and Y32 |rps1 — 1al < 00(e.g., 1 =1+ ).

Page 8 of 13
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Then {x,} defined by (1.4) converges strongly to a point in F*.
Proof. We only include the differences. We have

Xne1 = oY P(xn) + (I — anF)]r,,xn/ Xn = op_1YP(xn_1) + (I — an—lF)]rn,lxn—l-
Thus,
Xn+1—Xp = (I_anF)Urnxn_]r,,,lxnfl)+anV¢(xn)+O‘n71V¢(xn—l)+(Oln_an—l)F]rn,1xn—1- (32)

If r,.1 < r,, using the resolvent identity

Tn—1 Tn—1
Jrxn =T, ( Xn + (1 - )]r,,xn> ,
Tn Tn

we obtain

IA

]rnxn - ]rn,lxn—l ” an? ”xn — Xn—1 ” + (1 - rnr;l) ’]r,,xn — Xn—1 H

oo = ol () |
Tn

< llxn — xp—1ll + l [Tn—1 — Tal |

IA

]rnxn — Xn—1 ” (3.2a)

JruXn — Xn—1 ” .
It follows from (3.2) that
l%ns1 — xnll < (1 - an(? - V)) oy — 2p—1ll + M (loty — ap—1| + Irp—1 —1l), (3.3)

where M > 0 is some appropriate constant. Similarly we can prove (3.3) if r,.; > r,,.
By assumptions (i) and (ii) and Lemma 2.2, we conclude that

%51 — xall — O.
This implies that

”xn _]r”xn” < %1 — xnll + ||xn+1 — Jr %n ” — 0, (3.4)

since ||xn+1 — ]rnan =, ||y¢(xn) — F]rnan — 0. It follows that

1 1
L R P e e M A )
Tn €
Now if {x,,} is a subsequence of {x,} converging weakly to a point ¥, then taking the

limit as kK — o in the relation

[]T”k Xny,r Ar,,k xn] € A,

we get [x,0] € A; ie., x € F*. We therefore conclude that all weak limit points of
{x,} are zeros of A.

The rest of the proof follows that of Theorem 3.1.

Finally, we consider the framework of uniformly smooth Banach spaces. Assume r, >
¢ for some ¢ > 0 (not necessarily r,, — o), A is an m-accretive operator in E. Moreover
let ¢ : E — E be a MKC and F be a strongly positive linear bounded operator on E.
Since J;, is nonexpansive, the map S:x € E— ty¢(x) + (I — tF)],,x is a contraction

and for each integer # > 1 it has a unique fixed z,, € E. Hence the scheme

Zin =ty d(zen) + (I — tF));,zen (3.5)
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is well defined.

Note that {z,,} is uniformly bounded; indeed, ||z;n —p || =< );ly HV¢(P) - FP” for all

te (0,1),n>1and p e F. A key component of the proof of the next theorem is the
following lemma.

Lemma 3.1. The limit zZ = lim,_, 0z, is uniform for all n > 1.

Proof. 1t suffices to show that for any positive integer #, (which may depend on ¢ €

(0, 1)), if 2, € E is the unique point in E that satisfies the property
Zn =ty P(zn) + (I — tF)]rnt 2t (3.6)
then {z;,,} converges as t — 0 to a point in F*. For simplicity put
w =2z, and Vi=]J, .
It follows that
wy = tydp(wy) + (I — tF)Viwy. (3.7)

Note that Fix(V;) = F* for all ¢. Note also that {w,} is bounded; indeed, we have
|we —p| < };1]/ ly#(p) — Fp| for all t e (0, 1) and p € F*. Since {V, w,} is bounded,

it is easy to see that
lwe — Vvl =t |y ¢(w;) — FVaw,| - 0, as t— 0.
Since r, = ¢ for all n, by Lemma 2.7, we have
lwe = Jewll < 2 |lwy = Ji,, we|| = 2 llwy — Viwy || — 0. (3.8)

Let {t;} be a sequence in (0,1) such that £ — 0 as kK — . Define a function fon E
by

1
f(w) = LIMk2 ||wtk —w 2, w € E,

where LIM denotes a Banach limit on [”. Let
K:={weE:f(w)=min{f(y) : y € E}}.

Then K is a nonempty closed convex bounded subset of E. We claim that K is also

invariant under the nonexpansive mapping /.. Indeed, noting (3.8), we have for w € K,
1 2 1 2
fUew) = LMy lwy, — Jew|” = LIMy, 5 |Tewy, — Jew||
1 2
= LM, |ws, —w|” = f(w).

Since a uniformly smooth Banach space has the fixed point property for nonexpan-
sive mappings and since J, is a nonexpansive self-mapping of E, J, has a fixed point in
K, say w'. Now since w’ is also a minimizer of f over E, it follows that, for w € E,

0 W +a(w—w)) —f(w)
- A
|wy, — w' + A(w —w)H2 = 3w, —w/||2

1
= LIM,, 2 N

Page 10 of 13
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Since E is uniformly smooth, the duality map J is uniformly continuous on bounded
sets, letting A — 0" in the last equation yields

0 < LIM; (W' — w,J(w,, —w')), weE. (3.9)
Since

wy, —w' = (I — 4F)(Vywy, —w) + te(yo(wy,) — Fu'),
we obtain

1w, —w|)* = i (yp(awy,) — Fwl, J(wy, — ) + (I = 6F) (Viwy, — w'), J(wy, — ')
< te{yd(wy) — B, J(w,, — w'))+ (1 — t7) |wy, — w’||2
< te(y(wy) — yd ), J(wy, —w)) + te [y (') — Fu/, J(wy, —w)) + (1 + 67) |y, — w'||*
<11 =07 = P)wy, —w|? + 6 (yp(w) — Fl, J(uwy, —w')).

It follows that
/ 2 1 / / /
e, —w'||” < 5y (v ') — Fw,J(w, —w')). (3.10)
Upon letting w = yp(w’) - Fw’ + w’ in (3.9), we see that the last equation implies
LIMy |w,, — /|| < 0. (3.11)

Therefore, {w;,} contains a subsequence, still denoted {w;,}, converging strongly to
wy (say). By virtue of (3.8), w; is a fixed point of J; i.e., a point in F*.

To prove that the entire net {w,} converges strongly, assume {s;} is another null sub-
sequence in (0, 1) such that Wy, = w2 strongly. Then w, € F*

Repeating the argument of (3.10) we obtain

|we—w/|? < ; ! yo(w') — Fw', J(w, —w')), Vuw e F*.

o
In particular,
1
lwy —ws* < 5y (y¢(w1) — Fwy,J(wy — wy)) (3.12)
and

lwy, —w |l

A

_ ! (yo(wz) — Fws, J(wy — w)). (3.13)
Y=V

Adding up the last two equations gives
lwy — wy||* < 0.

That is, w; = w,. This concludes the proof.

Theorem 3.3. Suppose that E is a uniformly smooth Banach space and A is an m-
accretive operator in E such that F* = N(A) # @. Now given ¢ : E — E be a MKC, and
let F be a strongly positive linear bounded operator on E with coefficient
y >0,0<y <vy.Assume
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(i) limy ottn = 0, Y20 an = 00, and Y2 latnsy — otn| < 00(e.8., 00 = });

(i) lim,,e = r, = rr € R', r, = € for all n and

© 1
Zn:l ITne1 —1nl < 00(egmn=1+,).

Then {x,} defined by (1.4) converges strongly to a point in F*.

Proof. Since
r r
Jr ( Xn + (1 - )]r,,xn> — Jrxn
Tn Tn

IA

]rnxn - ]rxn”

T T
< ( Xp + (1 — )]rnxn) — Xy (3.14)
Tn Tn
T
<|1- . ’|]rnxn—x,,|| — 0as (n— o).
n
Thus
%0 — Jrxnll < ”xn _]rnxn” + |]rnxn _]rxn” — 0. (3.15)

We next claim that limsup,_, . (y¢(2) — FZ,J(x, —2)) < 0, where 2 = lim_ 0z,

with z,,, = typ(z,,) + (I - tF)],z; -
For this purpose, let {x,} be a subsequence chosen in such a way that

limsup,_, o (y#(2) — Fz,J(%y — 2)) = limj— 0 (y #(2) — F2,J(%n, —2)) and  x,, —X.
Moreover, since |x,, - Jx,|| = 0, using Lemma 2.8, we know X € F(J;). Hence by

Lemma 2.6, we have

lim sup (y $(2) — F2, (s, —2)) = Jim (y9(2) — F2.J(x, —2)) = (r9(2) ~F2 ¥ %) 0. (3.16)

Finally to prove that x, — Z strongly, we write
X1 — 2 = (I — ouF)(Jr, %0 — 2) + an(y @ (xn) — FZ).
Apply Lemma 2.9 to get
Ftosr = 217 < (1 = 07?0 — 2] + 20 [y $(r) — F2, I (21 — )

< (1= aw?)?[xn — &|° + 20 (y $(x) — y$(2), ) (xns1 — 2))
+ 20 (y§(2) — FZ,J(%n1 — 2))
)

< (1= PPl — 2" ey (o — 2" + s — 2

+ 20, (y¢(2) — Fz, J(xps1 — 2))

It follows that

-2
2 < (I —any) +any Hxn _2”2 20y

[ %01 — 2 |-y ) ey (yo(2) — F2.)(xna1 — 2))
< <1 _ 20;71()’ - V)) “xn _3 2 . 204(y —v) |: . 1 (]/(]5(2) _ F2,](x,,+1 _2))
— oy l—ony Lv-—v
=2
any
M|,
27 -v) 1]

where M; = SUP,=; ||xn — 2”2. By Lemma 2.2 and (3.16), we see that x, — Z.
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Remark 3.4. If v = 1, F is the identity operator and ¢(x,) = u in our results, we can

obtain Theorems 3.1, 4.1, 4.2, 4.4 and Lemma 4.3 of Hong-Kun Xu [5].
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