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CpG oligodeoxynucleotide and double-stranded

RNA synergize to enhance nitric oxide production

and mRNA expression of inducible nitric oxide

synthase, pro-inflammatory cytokines and

chemokines in chicken monocytes

Haiqi He, Kathryn M. MacKinnon, Kenneth J. Genovese, Michael H. Kogut

Southern Plains Agricultural Research Center, ARS, USDA, College Station, Texas, USA

Toll-like receptors (TLRs) recognize microbial components and initiate the innate immune responses that control

microbial infections. The interaction between ligands of TLR3 and TLR9, poly I:C (an analog of viral double-stranded

RNA) and CpG-ODN (a CpG-motif containing oligodeoxydinucleotide) on the inflammatory immune responses,

including the production of nitric oxide (NO) and the expression of inducible NO synthase (iNOS), pro-inflammatory

cytokines interleukin (IL)-1b and IL-6, and chemokines IL-8 and macrophage inflammatory protein (MIP)-1b, were

investigated in chicken monocytes. The NO production was significantly higher when stimulated with a combination

of CpG-ODN and poly I:C than with either CpG-ODN or poly I:C alone. Similarly, a significant synergistic effect by

CpG-ODN and poly I:C was observed in the up-regulation of iNOS and IL-8 mRNA after 2 h and persisted up to 24 h.

Although the combinatory treatment of CpG-ODN and poly I:C enhanced the expression of IL-1b, IL-6, and MIP-1b
after 2 h stimulation, the synergism in the up-regulation of IL-1b and IL-6 mRNA was observed after 8-h and 24-h

stimulation, respectively, whereas there was no synergistic effect on MIP-1b. Our results demonstrate that CpG-ODN

synergizes with poly I:C to induce pro-inflammatory immune response in chicken monocytes.
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INTRODUCTION

Toll-like receptors (TLRs) are the most important

germ-line encoded pattern recognition receptors in the

innate immune system that recognize pathogen-

associated molecular patterns (PAMPs). As the surveil-

lance molecules of the innate immune system, TLRs

distinguish harmful invading pathogens and play a key

role in the host immune defense against microbial

infections.1,2 In general, TLRs recognize three classes

of structurally distinct PAMP ligands: (i) TLR3, TLR9,

and TLR7/TLR8 recognize microbial nucleic acids, such

as viral double-stranded (ds) RNA, unmethylated bacte-

rial/viral DNA, and viral single-stranded RNA, respec-

tively; (ii) TLR2 (in concert with TLR1 or TLR6) and

TLR4 interact with many lipid-based microbial struc-

tures, such as lipopeptide and lipoprotein of

Gram-positive bacteria and lipopolysaccharide (LPS)

from Gram-negative bacteria; and (iii) TLR5 and TLR11

are receptors for microbial protein structures, recogniz-

ing flagellin and profilin, respectively.3

Many chicken TLRs have been identified, including

homologues to human TLR1 (type b), TLR2 (types 1 and

2), TLR3, TLR4, TLR5, and TLR7; chicken specific

TLR16 and TLR15; and TLR21.4,5 Similar to mamma-

lian TLRs, chicken TLRs mediate innate immune

responses to microbial agonist stimulations and play an

important role in the control of infection.6–20 Although

analysis of the chicken genome has failed to identify a

chicken orthologue to mammalian TLR9,4,5 immune
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stimulatory activities of the TLR9 ligand, CpG oligo-

deoxynucleotides (CpG-ODN), has been demonstrated

in chicken immune cells.7–11,21,22 These results suggest

that a novel TLR structurally divergent from the typical

mammalian TLR9 may have evolved in avian species to

recognize microbial CpG-DNA. A recent study demon-

strated that, when ectopically expressed in human

HEK-293T cells, chicken TLR21 acts as a functional

homologue to mammalian TLR9 in the recognition of

CpG-ODN.23

Synthetic polyinosinic-polycytidylic acid (poly I:C) is

an analog of dsRNA.24,25 In mammals, TLR3 recognizes

poly I:C and mediates immune response including

production of cytokines, such as type I interferons

(IFNs), interleukin (IL)-12, IL-6 and tumor necrosis

factor (TNF)-a.24,26 Similarly, chicken TLR3 has also

been found to mediate the immune stimulatory activity

of poly I:C in avian immune cells.18,20,27

Toll-like receptors have been shown to mediate

overlapping and specific immune responses to microbial

agonists depending on TLR-associated adaptor proteins

and factors that mediate the downstream signaling

cascades.2 A complex immune responses can arise

upon microbial infection, in which different TLRs of

the host immune cells may simultaneously engage

multiple PAMPs. Emerging evidence indicates that

TLRs co-operate and cross-talk when engaging multiple

agonists and these interactions can result in either

suppressing or synergizing a particular immune

response. For example, co-stimulation of mouse perito-

neal macrophages (PECs) with the TLR2 and TLR4

ligands, MALP-2 and LPS, markedly increases TNF-a
production.28 Treatment of murine macrophages with a

combination of TLR9 and TLR3 agonists synergizes to

produce nitric oxide (NO), IL-12, TNF-a, and IL-6.29

Human TLR3 and TLR4 are also known to act in synergy

with TLR7, TLR8, and TLR9 in the induction of

IL-12p40 and IL-12p35 genes in dendritic cells

(DCs).30 Co-stimulation with CpG-ODN and flagellin

synergistically enhances the secretion of IL-10 and

IFN-g, but conversely inhibits IFN-a production in

human PBMCs, monocytes, and monocyte-derived

DCs.31 Toll-like receptors 2 and 3 act in concert to

induce inflammatory cytokines TNF-a, IL-6, and

IL-12p40 in mouse DCs, but down-regulate

TLR3-induced expression of IL-12p35.32 In human

monocyte-derived macrophages and DCs, combinatory

stimulation of the TLR8 ligand together with the TLR3

or TLR4 ligand lead to synergistic expression of IL-6,

IL-10, IL-12, and TNF-a mRNA.33 These observations

clearly underscore the importance of TLR synergy in

both the magnitude and the direction of the immune

response.

Thus far, little is known of the interaction between

TLR agonists on immune responses in avian immune

cells, with the exception of our previous study in which

we reported that CpG-ODN and poly I:C synergize in the

production of NO in chicken peripheral blood mono-

cytes.10 In the present study, we conducted experiments

to examine whether the interaction between CpG-ODN

and poly I:C would also influence other

pro-inflammatory immune response in chicken mono-

cytes, including the expression of inducible nitric oxide

synthase (iNOS), pro-inflammatory cytokines and

chemokines.

MATERIALS AND METHODS

Reagents

Synthetic ODNs were purchased from TriLink

BioTechnologies (San Diego, CA, USA). The sequences

of synthetic CpG-ODNs used in the present study were:

GTCGTTGTCGTTGTCGTT.21 The synthetic dsRNA

analog, poly I:C, was obtained from InvivoGen (San

Diego, CA, USA).

Cell isolation

Chicken peripheral blood mononuclear cells (PBMCs)

were isolated from peripheral blood collected from 2- or

3-day-old chickens as previously described.10 Briefly,

peripheral blood from approximately 50 chickens was

pooled, mixed with 1% methylcellulose (1 : 1, v/v), and

centrifuged at 25 g for 15 min. The supernatant was

collected and diluted with Ca2þ and Mg2þfree Hanks

balanced salt solution, carefully layered onto a discon-

tinuous Histopaque gradient (specific gravity 1.077/

1.119) in 50-ml conical centrifuge tubes, and centrifuged

at 250 g for 60 min. The PBMC layer at the 1.077/1.119

interface was collected, washed, and resuspended in

RPMI-1640 containing gentamicin (50 mg/ml). Cell

counts were performed and cells were diluted to appro-

priate concentrations for each assay.

Monocyte culture and stimulation

Aliquots of 2 ml of PBMCs (1� 107 cells/ml) were

dispensed into a 12-well plate and incubated at room

temperature (�22�C) for 2 h. After incubation,

non-adherent cells were removed by washing three

times with RPMI-1640. The adherent-enriched mono-

cytes were cultured for 18 h in a complete DMEM

medium (Dulbecco’s modified Eagle’s medium contain-

ing 10% chicken serum, antibiotics [100 U penicillin/ml

and 100 mg streptomycin/ml], and 1.5 mM L-glutamine).

Prior to stimulation, cells were washed once more with

fresh media. Cells were then stimulated with CpG-ODN,
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poly I:C, or a combination of two for the indicated period

(2, 4, 8, and 24 h) at 41�C in a 5% CO2 and 95%

humidity incubator. Thrombocytes were the significant

contaminating cell population in the isolated monocytes

after initial washings; however, the number of adherent

thrombocytes was drastically reduced (to less than 10%)

after overnight (18 h) culture and subsequent washing

with fresh media prior to stimulation. The reduction of

the thrombocyte population in monocyte cultures might

be due to the loss of adherence during culturing as

reported in a previous study.34

Nitrite assay

Nitrite, a stable metabolite of nitric oxide, produced by

activated monocytes was measured by the Griess

assay.35 Briefly, an aliquot of 100 ml culture supernatant

from each well was transferred to the wells of a new

96-well flat-bottom plate and combined with 50 ml of 1%

sulfanilamide and 50 ml of 0.1% naphthylenediamine

(both were prepared in 2.5% phosphoric acid solution).

After 10 min incubation at room temperature, the nitrite

concentration was determined by measuring optical

density (OD550) of each well using a SPECTRA MAX

microplate reader (Molecular Devices; Sunnyvale,

CA, USA). Sodium nitrite (Sigma) was used as a

standard to determine nitrite concentrations in the cell-

free medium.

Quantitative real-time reverse transcription PCR

(QRT-PCR) analysis of cytokine and iNOS gene

expression

Total RNA devoid of gDNA contamination was isolated

from chicken monocytes using the RNeasy Plus Mini Kit

(Qiagen, Valencia, CA, USA). Total RNA samples (1 mg

each reaction) were reverse transcribed to cDNA using

the ThermoScript RT-PCR System (Invitrogen;

Carlsbad, CA, USA). Expression levels of chicken

iNOS, pro-inflammatory cytokines IL-1b and IL-6,

chemokines IL-8 and MIP-1b, and a housekeeping gene,

glyceraldehyde 3-phosphate dehydrogenase (GAPDH),

were determined by QRT-PCR using MX3000P�

(Stratagene; La Jolla, CA, USA). Primers and probes

(Table 1) were obtained from Applied Biosystem

(Austin, TX, USA). Primer amplification efficiency

was verified for each gene using 2-fold serial dilutions

of cDNA. Analysis of QRT-PCR was performed for each

sample in duplicate in a total volume of 25 ml, consisting

of 12.5 ml Brilliant� II QPCR Master Mix (Stratagene),

0.5 ml ROX reference dye diluted 1 : 500, 1.25 ml primer/

probe mix (900 nM/250 nM final concentrations, respec-

tively), 5.75 ml RNase/DNase-free water, and 5 ml diluted

cDNA (25 ng RNA). All reaction plates were run under

identical cycle conditions, 95�C for 10 min, and 40

cycles of 95�C for 30 s, 60�C for 1 min, and 72�C for

1 min. The fluorescence threshold was set at 0.2 and the

resulting cycle threshold values (Ct), normalized to the

reference gene, were used for analysis.

Table 1. QRT-PCR primer and probe sequences

Name Sequence (50 ! 30)

ch-GAPDH Probe CTTGGCTGGTTTCTCC-(FAM)

F CCCCAATGTCTCTGTTGTTGAC

R CAGCCTTCACTACCCTCTTGAT

ch_iNOS Probe CCCAATAGCCACCTTCAG-(FAM)

F CCCTCCAGCTGATCAGACTATC

R GTGTGCAAGCCGGAATCTTTT

ch-IL-1b* Probe CCACACTGCAGCTGGAGGAAGCC-(FAM)

F GCTCTACATGTCGTGTGTGATGAG

R TGTCGATGTCCCGCATGA

ch-IL-6 Probe CTTGCACATCTCGTCCTGC-(FAM)

F ACCGCGCCGTCCAG

R TTCTCGCACACGGTGAACTT

ch-IL-8* Probe TCTTTACCAGCGTCCTACCTTGCGACA-(FAM)

F GCCCTCCTCCTGGTTTCAG

R TGGCACCGCAGCTCATT

ch-MIP-1b Probe ACCGGTGGGTTCTGAC-(FAM)

F CCTCATTGCCATCTGCTACCA

R CGGGAGATGTAGGTGAAGCA

F, forward; R, reverse.

*Primer and probe sequences were kindly provided by Dr Peter Kaiser, Institute for Animal Health,

Compton, UK.
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Data analysis

At least two independent experiments were conducted at

different times. Within each experiment, nitrite levels

from 3–5 replicate wells of cell culture were measured

for each treatment. For each gene, the threshold cycle

(Ct) values of different treatments at each time point

post-treatment were normalized to the respective endo-

genous control, GAPDH, to obtain the �Ct (dCt) values.

To assess differences between treatments at each time

point post-treatment, ddCt values (the difference of dCt

value between stimulated and unstimulated control)

were analyzed.36 For presentation purposes, results are

expressed as fold-changes (2–ddCt) in gene expression.

Data were analyzed by one-way ANOVA, followed

by multiple comparisons (Tukey test) using SigmaStat�

software (Jandel Scientific, San Rafael, CA, USA).

P-values of50.05 were considered to be significant.

RESULTS

Synergistic interaction of CpG-ODN and poly I:C on

iNOS gene expression and NO production in chicken

monocytes

The synthetic CpG-ODN itself was a potent immune

stimulant and induced significant production of NO in

chicken monocytes, while poly I:C did not induce NO

production (Fig. 1A). However, combined stimulation

with both CpG-ODN and poly I:C strongly synergized in

the production of NO in chicken monocytes. Similarly,

synergism between CpG-ODN and poly I:C was

observed in respect to iNOS gene expression in stimu-

lated chicken monocytes (Fig. 1B). During the 24-h

stimulation period, transient increase in iNOS mRNA

(between 2–8 h) was observed in the monocytes stimu-

lated with poly I:C alone, but this increase in iNOS

mRNA did not give rise to NO production. On the other

hand, CpG-ODN stimulation yielded both elevated iNOS

mRNA levels and a significant increase in NO production.

Furthermore, simultaneous stimulation with CpG-ODN

and poly I:C not only strongly up-regulated, but also prolo-

nged, iNOS gene expression, resulting in a significantly

higher iNOS mRNA level and NO production than

stimulation with either agonist alone. These results suggest

‘cross-talk’ between the TLR signaling pathways.

Differential and synergistic effect of CpG-ODN and poly

I:C on pro-inflammatory cytokines IL-1� and IL-6 gene

expressions in chicken monocytes

Pro-inflammatory cytokines, such as IL-1b and IL-6,

regulate the host immune response to infection and play

an important role in controlling and eliminating invading

pathogens. Recognition of mammalian TLR9 agonist

CpG-ODN by chicken blood monocytes has led to a

strong up-regulation of the expression of both IL-1b
(Fig. 2A) and IL-6 (Fig. 2B). In contrast, exposure to

poly I:C resulted in only a slight rise in IL-1b and IL-6

mRNA after 2 h and 4 h of stimulation and these mRNA

levels returned to control levels by 8 h. However, a

combinatory stimulation with CpG-ODN and poly I:C

brought enhanced expressions of IL-1b after 4 h and IL-6

after 8 h of stimulation. A strong synergistic effect on

mRNA expression was observed after 8 h of stimulation

for IL-1b and after 24 h of stimulation for IL-6.

Differential and synergistic effect of CpG-ODN and poly

I:C on chemokines IL-8 and MIP-1b gene expressions in

chicken monocytes

Chemokines mediate trafficking of leukocytes to the site

of infection by inducing chemotaxis and activation of

different types of inflammatory cells. Chemokines IL-8

and MIP-1b are members of the CXC and CC
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Fig. 1. NO induction and iNOS mRNA expression in chicken monocytes

stimulated by CpG-ODN, poly I:C, or a combination of the two. (A) NO

production after 72 h stimulation and (B) iNOS mRNA expression after

2, 4, 8, and 24 h stimulation. Data are mean values and SD from three

(NO production) or two (iNOS mRNA expression) independent

experiments. *Differences between treatments and the control are

statistically significant (P¼ 0.05). **Significant synergistic effect by a

combinatory treatment with CpG-ODN and poly I:C (P¼ 0.05).
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chemokine families, respectively, and their primary

function is to recruit granulocytes, such as heterophils

in chickens. Expression of the IL-8 gene in chicken

monocytes was highly inducible by either CpG-ODN or

poly I:C (Fig. 3A). The IL-8 mRNA responded rapidly,

and was the highest increase in each treatment after 2 h

of treatment. In the monocytes treated with a combina-

tion of CpG-ODN and poly I:C, a significantly larger

increase (2923-fold) in IL-8 mRNA expression was

observed than in cells treated with either CpG-ODN

(1193-fold) or poly I:C (84-fold) alone after 2 h of

stimulation. Furthermore, when stimulated with either

CpG-ODN alone or a combination of CpG-ODN and

poly I:C, the cells exhibited a prolonged strong

up-regulation of IL-8 gene expression, whereas the

IL-8 mRNA in poly I:C treated monocytes leveled

off after 8 h of stimulation. Treatments with CpG-ODN

or a combination of CpG-ODN and poly I:C also

induced increased MIP-1b mRNA expression in

chicken monocytes, while poly I:C alone showed only

a modest effect on MIP-1b gene expression after 4 h of

stimulation (Fig. 3B).

DISCUSSION

Monocytes and macrophages are mononuclear phago-

cytes that play a critical role in the innate immune

response and as antigen processing and presenting cells

in the acquired immune response. As a component of the

first-line immunological defense, monocytes and macro-

phages recognize infectious agents through the PAMP

recognition-receptors TLRs.37 Recognition of microbial

components by TLRs initiates signal cascades which

trigger expression of genes that produce reactive oxygen

and nitrogen intermediates (ROI and RNI),

pro-inflammatory cytokines, and co-stimulatory mole-

cules.38,39 Nitric oxide is an important pro-inflammatory

mediator, involved in macrophage antimicrobial and

tumoricidal activities.40 Nitric oxide mediates host

defense against intracellular pathogenic

micro-organisms such as Salmonella spp.40,41 and

against virus proliferation.41,42 Interleukin-1b and IL-6

are two major pro-inflammatory cytokines, regulating

host immune response to infection and play an important

role in controlling and eliminating invading pathogens.
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Fig. 3. The expression of IL-8 and MIP-1b mRNA in chicken monocytes

stimulated by CpG-ODN (5 mg/ml), poly I:C (25 mg/ml) or a combination

of the two after 2, 4, 8, and 24 h stimulation. (A) IL-8 and (B) MIP-1b.

Data are mean values and SD of two independent experiments.

*Differences between treatments and the control are statistically

significant (P¼ 0.05). **Significant synergistic effect by a combinatory

treatment with CpG-ODN and poly I:C (P¼ 0.05).
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Fig. 2. The expression of IL-1b and IL-6 mRNA in chicken monocytes

stimulated by CpG-ODN (5 mg/ml), poly I:C (25 mg/ml) or a combination

of the two after 2, 4, 8, and 24 h stimulation. (A) IL-1b and (B) IL-6.

Data are mean values and SD of two independent experiments.

*Differences between treatments and the control are statistically

significant (P¼ 0.05). **Significant synergistic effect by a combinatory

treatment with CpG-ODN and poly I:C (P¼ 0.05).
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Higher IL-1b and IL-6 mRNA expression levels in blood

leukocytes have been associated with better resistance to

Salmonella infection in broiler chicken lines.43

Chemokines IL-8 and MIP-1b, representatives of the

CXC and CC chemokine families respectively, are

produced mainly by macrophages to induce chemotaxis

and cell activation of different types of inflammatory

cells and inflammation at the site of infection. However,

information concerning TLR-mediated inflammatory

response in chicken monocytes is limited.

Many TLRs share largely common signaling cascades

which eventually converge at the NF-kB pathway.44

However, adaptor proteins that are recruited to, and

interact with, TLRs upon activation by engaging micro-

bial agonists can modulate the direction of the signaling

cascade to confer the specificity of TLR-mediated

immune response.45,46 Under physiological conditions,

host immune cells that encounter microbes may be

exposed to multiple PAMPs. Increasing evidence indi-

cates that, when engaging multiple agonists, TLRs

cross-talk through their downstream signaling compo-

nents, and such interaction can greatly influence the

outcome of the host immune response.29–33 In this study,

we demonstrated that this co-operative interaction

between CpG-ODN and poly I:C synergistically ampli-

fied the pro-inflammatory immune response in chicken

blood monocytes. Agonists CpG-ODN and poly I:C

demonstrated vast differences in their immune stimula-

tory effects on chicken monocytes. In general,

CpG-ODN exhibited much greater immune stimulatory

capacity for inducing pro-inflammatory responses,

including NO production and expression of iNOS,

pro-inflammatory cytokines IL-1b and IL-6, and che-

mokines IL-8 and MIP-1b mRNA; conversely, poly I:C

showed minimal effects on most of the immune response

measured in this study, except for a moderate, brief

up-regulation of iNOS and IL-8 mRNA expression after

8 h of stimulation. Compared to CpG-ODN which

induced both high level of iNOS mRNA and NO

production, poly I:C stimulation was limited to a shorter

period of up-regulation of iNOS mRNA expression. This

transient induction of iNOS mRNA, however, failed to

yield enough iNOS activity to produce measurable

amounts of NO. However, a combinatory stimulation

with CpG-ODN and poly I:C brought a strong synergis-

tic effect, dramatically increasing not only NO produc-

tion, but also the mRNA expression of iNOS in chicken

monocytes. Clearly, the synergistic increase of NO

production was a result of a strong and prolonged

up-regulation of iNOS gene expression in chicken

monocytes. In addition to iNOS, a combinatory stimu-

lation with CpG-ODN and poly I:C also synergistically

enhanced the expressions of IL-1b, IL-6, IL8, and

MIP-1b mRNA.

The mechanism for the synergy observed between

CpG-ODN and poly I:C on NO production and

pro-inflammatory cytokine and chemokine expression

cannot be readily explained. In mammalian cells, the

proximate intracellular location of both TLR3 and TLR9

in the endosomal compartment47,48 may result in a closer

interaction between these two pathways. Although their

signaling pathways are divergent, with TLR9 being

MyD88-dependent while TLR3 transduces signaling

through TRIF,46 their downstream signaling cascades

eventually converge at the NF-kB pathway. Blocking

NF-kB activation in macrophages attenuates both TLR3-

and TLR9-mediated inflammatory cytokine gene

expressions.49 Thus, the combination of CpG-ODN

and poly I:C may result in the activation of NF-kB by

two simultaneously activated signaling cascades of

chicken TLR3 and chicken TLR21, a functional homo-

log to mammalian TLR9.23

The innate immune response of producing inflamma-

tory cytokines and other pro-inflammatory mediators

such as NO is critical for controlling pathogenic

infections. It has been demonstrated that chickens with

increased innate immune responses, such as heterophil

oxidative burst, degranulation, and pro-inflammatory

cytokine expression have a greater resistance to infec-

tious pathogens.50 More specifically, higher IL-1b and

IL-6 mRNA expression levels in blood leukocytes upon

stimulation have been associated with better resistance

to Salmonella infection in broiler chicken lines.43

Previous studies have demonstrated that treatment with

immune stimulatory CpG-ODN enhances resistance to

bacterial infection9,51–54 in neonatal chickens and

suppresses infectious bronchitis virus replication in

chicken embryos.55 The results of this study show that

a combination of bacterial DNA and dsRNA induces a

markedly enhanced inflammatory immune response that

has both antiviral and antibacterial activity in primary

chicken monocytes. Whether the synergistic immune

stimulatory property of CpG-ODN and poly I:C in

combination can be further explored as an immunologi-

cal strategy for controlling viral and bacterial infections

in chickens remains to be investigated. In humans,

concomitant viral and bacterial co-infection causes a

‘lethal synergism’.56 The murine model reveals that viral

and bacterial co-infections induce excessive inflamma-

tory responses, which contribute to lethal immuno-

pathology and sepsis.56 Thus far, there is no indication

that viral and bacterial co-infection causes a ‘lethal

synergism’ in avian species. However, the synergistic

interaction between CpG-ODN and poly I:C, mimicking

bacterial DNA and viral ds-RNA respectively, on

the pro-inflammatory immune response described

in the present study is similar to that found in mamma-

lian cells.29
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CONCLUSIONS

Ligands of mammalian TLR9 and TLR3, CpG-ODN and

poly I:C, have been shown to exhibit vast differences in

their immune stimulatory properties on chicken mono-

cytes. Clearly, CpG-ODN exhibited a much greater

capacity to induce pro-inflammatory immune responses

in chicken monocytes, including NO production and

expression of iNOS, pro-inflammatory cytokines IL-1b
and IL-6, and chemokines IL-8 and MIP-1b mRNA, than

poly I:C. However, in combination, CpG-ODN and poly

I:C greatly synergized to stimulate NO production and

the expression of iNOS, pro-inflammatory cytokines

IL-1b and IL-6, and chemokines IL-8 and MIP-1b. The

synergistic properties of CpG-ODN and poly I:C in

combination may be important for the future develop-

ment of an immunological strategy for controlling

food-borne pathogens in poultry.
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