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1 Introduction
We consider the initial value problem (IVP) for the following Stokes equation with small

parameter:
ou
E—Agu +Au+Ve=f(xt), xeR"te(0,T), (1.1)
divu =0, u(x, 0) = a(x), (1.2)

where A,u=)"}_, sk‘g%, A is a linear operator in a Banach space E and ¢ are a small pos-
itive parameters. Here 11(4 = (u (%, 8), uz (%, 8), ..., up(x, £)), ¢ = (x,t) are E-valued unknown
solutions, f = (fi(x,t),/2(x,8),...,fa(x, £)) is a given function and a = (a1 (x), a2 (%), ..., a.(x))
is an initial date. This problem is characterized by the presence of an abstract operator A
and small terms & which correspond to the inverse of Reynolds number Re very large. We
prove that problem (1.1)-(1.2) has a unique strong maximal regular solution # on a time
interval [0, T'] independent of &;. For x =1, E = C, A = b, problem (1.1)-(1.2) is reduced to
the Stokes problem

0
a—z —Au+bu+Vo=f(x1), divu =0, (1.3)
u(x,0)=alx), xeR',te(0,T), (1.4)

where C is the set of complex numbers and b is a positive constant.
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Note that the existence of weak or strong solutions and regularity properties for the
classical Stokes problems has been extensively studied, e.g., in [1-10]. There is an extensive
literature on the solvability of the IVPs for the Stokes equation (see, e.g., [1, 3, 10] and
further papers cited there). Solonnikov [8] proved that for every f € I#( x (0, T); R?) =
B(p), p € (1,00), the time-dependent Stokes problem

Bl
a—L: —Au+Vo=f(x,1t), divu =0, Ulzo =0, (1.5)

ux,0)=0, xe€L,te(0,7)

has a unique solution (u#, V) so that

Then Giga and Sohr [3] improved the result of Solonnikov for spaces with different expo-
nents in space and time, i.e., they proved that for f € L?(0, T; (L7(2))") = B(p, q) there is a
unique solution (&, Vg) of problem (1.5) so that

Moreover, the estimate obtained was global in time, i.e., the constant C = C(2,p, q) is
independent of T and f. To derive global L” — L7 estimates (1.6), Giga and Sohr used the
abstract parabolic semigroup theory in UMD-type Banach spaces. Estimate (1.6) allows

u
ot

+ [ V20 ) + 190 50 < CIf -
B(p)

ou
ot

son [V2ul 4,0 + 1V0U500 < Clf lspa 224 € (1,00). (1.6)
g

to study the existence of a solution and regularity properties of the corresponding Navier-
Stokes problem (see, e.g., [5]).
In this paper, first we consider the following differential operator equation (DOE) with

small parameters:
“Au+(A+Mu=f(x), xeR", (1.7)

where A is a linear operator in a Banach space E, e are positive and X is a complex pa-
rameter.
We show that for f € W™4(R"; E), A € Sy, problem (1.7) has a unique solution « belong-

ing to W2*"4(R"; E(A), E) and the uniform coercive estimate holds

n m+2

i
2D e

k=1 i=0

+ [[Aull Laney < ClIf | wmarn;e),
L1(R™;E)

i
0x;,

where C(g) is independent of &1, €5,...,&,, A and f.
We consider, then, the stationary abstract Stokes problem with small parameters

—Asu+Au+ Vo =f(x), divu=0, xeR", (1.8)

where f = (fi(x),f2(%), ..., fu(x)) is data and u = (41 (x), ua(x), ..., u,(x)) is a solution. By ap-
plying the projection transformation P, equation (1.8) can be reduced to the following
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problem:
-PAu+Au=f(x), x€eR" (1.9)

Let O, , denote the operator generated by problem (1.9), i.e., O, , is a Stokes operator in
solenoidal space L (R"; E) defined by

D(Os,q) = (W2U(R"; E(A),E))" = {u e (W*(R";E(A),E))", divu = 0},

Ogqu = —-PA;u + Au.

We prove that the operator O, , is uniformly positive and also is a generator of an analytic
semigroup in LZ(R"; E). Finally, the instationary Stokes problem (1.1)-(1.3) is considered
and the well-posedness of this problem is derived. In application we show the separability
properties of the anisotropic stationary Stokes operator in mixed LP spaces and maximal
regularity properties of infinity system of instationary Stokes equations in L? spaces.

2 Notations and background
Let E be a Banach space and let L?(2; E) denote the space of strongly measurable E-valued
functions that are defined on the measurable subset 2 C R” with the norm

1
p
i = Wien = [ r@lids)" 12p<cc
Q
The Banach space E is called a UMD-space if the Hilbert operator

=t [ 124
=0 Jixyle X =Y
is bounded in L, (R, E), p € (1,00) (see, e.g., [11]). UMD spaces include, e.g.,, L,, }, spaces
and Lorentz spaces L, p,q € (1,00).

Let E; and E; be two Banach spaces. B(E;, E,) denotes the space of bounded linear oper-
ators from E; into E; endowed with the usual uniform operator topology. For E; = E; = E,
it is denoted by B(E). Now (E1,E3)g, 0 <6 <1, 1 < p < 00, denotes interpolation spaces
defined by the K method [12, §1.3.1].

Let

Sy={reC,largh| <pU{0},0 <y <7}
A linear operator A is said to be ¥ -positive in a Banach space E with bound M > 0 if the
domain D(A) is dense on E and [[(A + AD) ! ||ge) < M(L+|A]) forany A €Sy, 0 <y <,

where I is the identity operator in E. It is known [12, §1.15.1] that there exist the fractional
powers A? of the positive operator A. Let E(A?) denote the space D(A?) with the norm

lleell peasy = (Ilull” + ||A9qu)1l’, 1<p<00,0<6 <o0.

N denotes the set of natural numbers. A set G C B(E;, E,) is called R-bounded (see, e.g.,
[11]) if there is a positive constant C such that for all 71, T5, ..., T), € G and uy,u, ..., Uy, €
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El,meN,
[ romu) a=c[|>nom o
el j=1 E 21l j=1 B

where {7} is a sequence of independent symmetric {-1,1}-valued random variables on .
The smallest C, for which the estimate above holds, is called an R-bound of the collection
G and denoted by R(G).

A set G, C B(E;,E;) depending of parameter & € Q is called uniform R-bounded
with respect to % if there is a constant C, independent of & € Q such that for all
T1(h), To(h),..., Ty(h) € Gy, and uy uy, ..., u, € B, m €N,

[ nomoms| ar=c [|Y 0w a.
el j=1 E 2l =1 E

It implies that sup,.q R(Gy) < C.

The ¥ -positive operator A is said to be R-positive in a Banach space E if the set L4 =
{E(A+&)1:£€8,},0 <y <m,is R-bounded.

The operator A(t) is said to be r-positive in E uniformly with respect to ¢ with bound
M > 0if D(A(t)) is independent of t, D(A(t)) is dense in E and ||(A(£) + )™} || < M(1 + |A])!
forall A € Sy, 0 <y <m, where M does not depend of £ and A.

Let Ey and E be two Banach spaces and let Ey be continuously and densely embedded
into E. Let Q2 be a measurable set in R” and m be a positive integer. W™ (2; Ey, E) denotes
the class of all functions u € L?(2; Ey) that have the generalized derivatives ‘gﬁ—km” € IP(%E)

with the norm

n

Nl wom@uzoe) = 1l oeee) + Y
k=1

0"u

< 00.
oy

LP(QUE)

Forn=1, Q =(a,b), a,b € R, the space WP (Q;Ey,E) is denoted by W?»"(a, b; Ey, E).
For Ey = E the space W?"(2; Ey, E) is denoted by W»"(2; E).
Let H?*(R"; E), —00 < s < 0o denote an E-valued Liouville space of order s, i.e.,

HO(R5E) = € LR E), Nl = [ (U 162)EFu g < 0},

where F and F~! denote the Fourier and inverse Fourier transforms, respectively.
Let H?*(R"; Ey, E) be a Liouville-Lions type space, i.e.,

H?(R"%Ey,E) = {u € H”*(R";E) N LY(R"; E,),
2e|| pras @m;E0,E) = Nletll Laqrrgg) + Nl Has () < 00}-

For ¢ = (e1,8,...,¢&,) we define the parameter-dependent norm in H%*(R"; Ey, E) such
that

< Q.
L4(R™E)

”u”Hg‘S(R”;EO,E) = ”u”L‘I(R”;Eo) +

n b
F1 (1 + Z skf;,f) Fu
k=1
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Sometimes we use one and the same symbol C without distinction to denote positive
constants which may differ from each other even in a single context. When we want to

specify the dependence of such a constant on a parameter, say «, we write C,,.

3 Boundary value problems for abstract elliptic equations
In this section, we derive the maximal regularity properties of problem (1.7).
BVPs for DOEs were studied, e.g., in [9, 11, 13-19]. For references, see, e.g., [19]. From

[18, Theorem 4.1] we have the following result.

Theorem 3.1 Let E be a UMD space and let A be an R-positive operatorin E for0 < < 7.
Then problem (1.7) has a unique solution u € W%*(R"; E(A),E) for f € LY(R";E) and A € Sy.
Moreover, the following uniform coercive estimate holds:

n 2 ; )
Loli
2D el

k=1 i=0

du
0y,

+ |1Aullzaey < Cllf llzamE) (3.1
L1(R";E)

with C(q) independent of €1,¢€,...,&4, A and f.
Consider the differential operator Q, = Q,, in LY(R"; E) generated by problem (3.1), i.e.,
D(Q,) = W%*(R"), Q. = —Apu + Au.
Let B, = B(LY(R"; E)). From Theorem 3.1 we obtain the following.
Result 3.1 For A € Sy, there is a resolvent (Q, + 1)~ satisfying the uniform estimate

ai
daxl,

(Qe + A1)

n 2 L
1-5 2
D2 IMEe

k=1 i=0

+ | AQe + 1) ||Bq <C.

Bq
Next we show the smoothness of problem (3.1). The main result is the following.

Theorem 3.2 Assume that E is a UMD space, A is an R-positive operator in E, q € (1, 00)
and m is a positive integer.

Then, for all f € W (R";E), A € Sy, problem (3.1) has a unique solution u that belongs
to WM (R"; E(A), E) and the following uniform coercive estimate holds:

n m+2

i .
2D el

k=1 i=0

+ [|Aul|zawrey < CIf llwam@ng) (3.2)
W™ (R"E)

8xf(
with C = C(q,A) independent of €1,€3,...,&4, L and f.

Proof A solution of equation (1.7) is given by

o) = UL e, OF = o [ P 60,

Page 5 of 17
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where L(A,6,6) =A + > 1, skélf + A andf(f) = Ff. It follows from the expression above

that

n m+2 ; )

Yo &M e o + [|Aull zarriE)

k=1 i=0 X 1 La(R7;E)
n m+2 ; )

= Z Zé‘]:ﬂz Az F‘léliL‘l()\r8’5)f||muen;5)

k=1 i=0
+ [FAL 0, 6,8)F | La@E) (3.3)

It is sufficient to show that the operator-functions

" -1
wa(s)=AL-1<A,s,s)<1+Z|sk|’") ,

k=1
i

n m+2 ) n -1
m(s):ZZE,:“M|1W5;<1+Z|&|M) L7 (ne,8)

k=1 i=0 k=1

are uniform Fourier multipliers in L4(R"; E). Actually, due to positivity of A, we have

" -1
L7 0 e, 8)| 5M<1+Zeksk2+|k|) ,

= (3.4)

n -1 n -1
| (&) = AL 0 8,8) (1+Z|sk|'“) sC<1+Z|sk|V") :
k=1

k=1

It is clear to observe that

0
Ex—— Ve (€) = 26 EFAL (0, &)
0&k

= [2e87L7 (M6, 6)]JAL (M 6,8), k=1,2,...,n.

Due to R-positivity of the operator A, the sets
{[-2ex60L7 (e, 8)] 6 e RN{0}},  {AL (A 6,6):§ € R)\{[0}]

are R-bounded. So, in view of Kahane’s contraction principle and from the product prop-
erties of the collection of R-bounded operators (see, e.g., [11], Lemma 3.5, Proposition 3.4),
we obtain

0
R{fka—a(‘l’a)\(é)ié GRH\{O}} < Cr.

Namely, the R-bounds of sets {Ek% W, (€): & € R"\{0}} are independent of ¢ and A. Next,
let us consider o, (). It is clear to see that

n m+2 1

n -1
@ <SS LY (10 3 10l
k=1

k=1 i=0
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By using the well-known inequality

n n
[ < C<1 + Zy’k>, oy = 0, la| <1
k=1

k=1

1
for y = (g¢ |k|‘% |&x]) and [ = m + 2, we get the uniform estimate

n m+2 ;

S e el ix ]

k=1 i=0

n n -1
sC|x|<1+Z|sk|’")(1+|A|-IZek|sk|*"+2) . 35

k=1 k=1

From (3.4) and (3.5) we have the uniform estimate

n n -1
|0 )] ey < CIAL L+ IATY el™? | (14 ) 1el™ ) L7 08 6)] < C.
(E)
k=1

k=1

Due to R-positivity of the operator A, the set

: (m + Zsksi)Ll(A,s,s) 23 eR"\{O}}
k=1

is R-bounded. By using this fact, in view of (3.4) and Kahane’s contraction principle, we
obtain the R-boundedness of the set {0:,(£) : £ € R\{0}}. In a similar way, we obtain the
uniform estimates

W (%‘) <(C,.

B(E)

a
= Cl: HB_&O‘EA(%‘)

|
&k B(E)

Let

0
oker(§) = {Ska—sk%x(é) s € R"\{O}},

Wi 6) = {0 ©):6 e R0
&k

By the aid of the estimates above, due to R-positivity of the operator A, in view of esti-

mate (3.4), by virtue of Kahane’s contraction principle, from the additional and product

properties of the collection of R-bounded operators, for &,&,...,&, € R, uyuy,...,u, € E

and independent symmetric {—1,1}-valued random variables rj(y), j = 1,2,..., 4, 4 € N, we

obtain the uniform estimate

%
/ > 1o (87w dy
o) (e -
n In ’
SCZ[ Y 0 (V)| dy
k=1 Y| j=1 E
3 -
< CS;}PR<{Sk¥Gk£A(S)3E GR\{O}})/Q ;V;O’)M/ Edyi Ck.
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The same estimates are obtained for Wy,; (§) in a similar way. Hence, by virtue of [11, The-
orem 3.4] it follows that W, ;(£) and o, (§) are the uniform collection of multipliers in
L?(R"™;E). Then, by using equality (3.3), we obtain the assertion. d

4 The stationary Stokes system with small parameters
In this section we derive the maximal regularity properties of the stationary abstract
Stokes problem (1.8).

Let H?*(R";E), —o0 < s < oo denote the E-valued Liouville space of order s such that
H®(R", E) = L1(R"; E). It is known that if E is a LMD space, then H*"(R"; E) = W%"(R"; E)
for a positive integer m (see, e.g., [20, §15]). For g € (1,00) let X, = (LY(R"; E))” denote the
space of an E-valued system of functions f = (fi(x), f2(x),...,f.(x)) with the norm

1
q

n
|mm=(2]w@wﬂ).
i=1

Xgo = LL(R";E) denotes the E-valued solenoidal space, i.e., closure of (CS2(R";E))" in
(L1(R"; E))", where

Coo (RE) = {u e CF(R";E), divu = 0}.
Let
Xgs= (H¥(RSE))",  Xgs(A) = (H(R";E(A),E))".
Let E be a Banach space. Consider the space

Y, = {u € X, divu eLq(R";E)},

Q-

q : q
llly, = (el + 11 div el g o) -

Y, becomes a Banach space with this norm.

It is known that (see, e.g., Fujiwara and Morimoto [4]) the vector field u € (L7(R"))" has
a Helmholtz decomposition. In the following theorem we generalize this result for an E-
valued function space X;.

Theorem 4.1 Let E be a UMD space and q € (1,00). Then u € X; has a Helmholtz decom-
position, i.e., there exists a bounded linear projection operator P, from X, onto Xy, with
the null space N(P;) ={Vp e X;: ¢ € L! (R E)}. In particular, all u € X, has the unique

loc
decomposition u = ug + Vo with ug € X5, o = Pyu so that

IVllase + lluollx, < Cllullx, (4.1)
Sfor any open ball B C R". Moreover, (Xy5)* = ero, é + 7= 1.

To prove Theorem 4.1, we need some lemmas. Consider the problem

“Acu+(A+Mu=f(x), xeR" (4.2)
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Lemma 4.1 Let E be a UMD space, let A be an R-positive operator in E, q € (1,00)
and -2 < s < 0o. Then, for f € H¥*(R;E), . € Sy, problem (4.2) has a unique solution
u € H?*5(R"; E(A), E) and the following uniform coercive estimate holds:

Netll 502 gy ) + AN La@nse) + M|l La@ney < CllFllras(ene)- (4.3)

Proof By using the Fourier transform, we see that estimate (4.3) is equivalent to the fol-

lowing estimate:

s+2

n 2
F <1+ Ze;ﬁ,f) L0, 8,6)f
k=1

 VEAL G, 6 gy + L7000 s

LA(R";E)

<C|E 1+ EP)2F (4.4)

L9(R™E)
To prove (4.4) it is sufficient to show that the operator functions
n s s
(1+Zeksk2>L1(x,s,s), A+IEP) L e 8), M+ IEP) L (06, 8)
k=1

are multipliers in L4(R"; E) uniformly in X and ¢. This fact is derived as the step in the proof
of Theorem 3.2. 0

Now consider the system of equations
-Au+Au+ru=f(x), xeR’, (4.5)

where f = (fi(x), 2(x),...,fu(x)) € Xy and u = (u1(x), u2(x), ..., u,(x)) is a solution of (4.5).
We define in X, the following parameter-dependent norm:

lullx,,, = < 00,

" 3
F*! (1 + Z 8/(5]?) Fu
k=1

Xq

Lemma 4.2 Let E be a UMD space, let A be an R-positive operator in E, -2 < s < 00 and
q € (1,00). Then, for f € Xy, A € Sy, problem (4.5) has a unique solution u € Xy, and the
following coercive uniform estimate holds:

lotllx, 500 + Al x, + M llx, < Cllf llxg- (4.6)
Proof Problem (4.5) can be expressed as the following system:
—Aouj+Auj+duj=f;, xe€R'j=12,...,n (4.7)

By Lemma 4.1 we obtain that for fj € H*(R"; E), A € Sy, equation (4.7) has a unique so-
lution u = (u1, 4y, ..., u,) € (Xy5:2(A))" and the following uniform coercive estimate holds:

letilx, 0000 + A%l x, + 11 511x, < Clflx,e-
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Hence, we get that u = (u3,u,...,u,) is a unique solution of problem (4.5) and (4.3)
implies (4.6). d

By reasoning as in [6, Lemma 2], we get the following lemma.
Lemma 4.3 C*(R%E) is dense in Y.
Consider the problem
-Ap +Ap +rp =divf(x), xeR". (4.8)
From Lemma 4.2 we obtain the following results.
Result 4.1 Let E be a UMD space, let A be an R-positive operator in E and g € (1, 00).

Then, for f € L1(R";E), A € Sy, problem (4.8) has a unique solution ¢ € H#'(R"; E(A), E)
and the following coercive uniform estimate holds:

2l x g + AU, + (M Nellx, < Clldivfilx, ;-
Consider the operator P = P, defined by
D(P) = L1(R";E), Pf =f - grad g,
where ¢ is a solution of problem (4.8).

Result 4.2 Let E be a UMD space, let A be an R-positive operator in E and ¢q € (1, 00).
Then P,X, is a closed subspace of X,.

Lemma 4.4 Let E be a UMD space, let A be an R-positive operator in E and q € (1,00).
Then the operator P, is a bounded linear operator in X, and Pf = f if divf(x) = 0.

Proof The linearity of the operator P is clear by construction. Moreover, by Result 4.1 we
have

I1Pfllx, < IIfllx, + l gradellx, < Cl[flix,- (4.9)
If divf(x) = 0, then by Lemma 4.2 we get that ¢ =0, i.e., Pf =f. d
Let E* denote the dual space of E.

Lemma 4.5 Assume that E is a UMD space and q € (1,00). Then the conjugate of P, is
defined as Py =Py, % + % =1 and is bounded linear in (L7 (R"; E*))".

Proof 1t is known (see, e.g., [13, 20]) that the dual space of LY(R";E) is L7 (R"; E¥).
Since C{°(R";E*) is dense in LY (R"; E¥), we only have to show P;go = qup for any
¢ € (C°(R";E*))". But this is derived by reasoning as in [4, Lemma 5]. Moreover, by
Lemma 4.4, the dual operator Pyis bounded linear in LY (R"; E*).

Page 10 of 17
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Let

G, ={Ve:9 e WP (R;E(A)E)},

(P X))t = {f € (L7 (R%E*))", {f,v) = 0 for any v € P, X, }. O
From Lemmas 4.4, 4.5 we obtain the following result.

Result 4.3 Assume that E is a UMD space, A is an R-positive operator in E and g € (1, 00).
Then any element f € X, uniquely can be expressed as the sum of elements of P, X, and
Gy

In a similar way to Lemmas 6, 7 of [4] we obtain, respectively, the following lemmas.

Lemma 4.6 Assume E is a UMD space and q € (1,00). Then

1 1
1
(Pqu) = Gq/, a + ; =1.

Lemma 4.7 Assume E is a UMD space and q € (1,00). Then

. 11
}(qa = (;qU -+ - = 1.
9 49

Now we are ready to prove Theorem 4.1.

Proof of Theorem 4.1 From Lemmas 4.6, 4.7 we get that X,, = (P,X,)*. Then, by con-
struction of P, we have X, = X;; ® G,. By Lemmas 4.2, 4.4, we obtain estimate (4.1).
Moreover, by Result 4.2, G, is a close subspace of X,. It is known that the dual space of the
quotient space X, /G, is G;-. By the first assertion we have X,;/G,; = X;¢, and by Lemma 4.7
we obtain the second assertion. a

Theorem 4.2 Let E be a UMD space, let A be an R-positive operatorin E, q € (1,00). Then,
Jor f e Xy, ¢ € Xy1, A € Sy, problem (1.8) has a unique solution u € Xy, and the uniform

coercive estimate holds

n 2 ; )
i i
2D e

k=1 i=0

dlu

z
0x;,

+ | Aullx, + IVelx, < Cllfllx, (4.10)
Xq

with C = C(q,A) independent of €1,¢€3,...,&4, L and f.

Proof By applying the operator P, to equation (1.8), we get problem (1.9). It is clear to see
that

D(qu) =D(B:) N qu

where Q,, is the Stokes operator and B, is an operator in X, generated by problem (4.5)
fora=0,ie,

D(B) = X4, B.u=-Au+Au. 0
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Then by Lemma 4.2 we obtain the assertion.

Result 4.4 From Theorem 4.2 we get that Q, = Q,, is a positive operator in X,; and it also

generates a bounded holomorphic semigroup S (¢) = exp(—Q¢) for ¢ > 0.
In a similar way to that in [21] we show the following.

Proposition 4.1 The following estimate holds
|Qts@] = ce
uniformly in € = (€1,€2,...,&,) fora >0 and t > 0.

Proof From Theorem 4.2 we obtain that the operator Q; is uniformly positive in X, i.e.,

the following estimate holds
[(Qc+ 27| = Mir™

for A € Sy .., 0 < <, where the constant M is independent of A and ¢. Hence, by using

Danford integral and operator calculus (see, e.g., in [11]) we obtain the assertion. O

5 Well-posedness of the instationary parameter-dependent Stokes problem
In this section, we show the uniform well-posedness of problem (1.1)-(1.2).

Theorem 5.1 Assume that E is a UMD space, A is an R-positive operator in E and 0 <

&k = 1. Then, for f € LP(0, T;Xy) = B(p,q) and a € (Xg2(A), Xg)1 , = G(p,q), p>q € (1,00),
b2

there is a unique solution (u, V) of problem (1.1)-(1.2) and the following uniform estimate

holds:

ou
ot

< C(If s + 12l cpg) (5.1)

n 2

+ E Sh—
2

dxy

Blpq) k-1

+ 1 AullBpg + VOl Bp.g
B(p.q)

with C = C(T, p, q) independent of f and ¢.

Proof Problem (1.1)-(1.2) can be expressed as the following parabolic problem:

du
i Qeu=f(1), u(0) = a. (5.2)

If we put E = X, then by Proposition 4.1 operator Q, is uniformly positive and generates
a bounded holomorphic semigroup in X, uniformly in e. Moreover, by using [15, Theo-
rem 3.1] we get that the operator Q; is R-positive in E uniformly in €. Since E is a UMD
space, in a similar way to that in [22, Theorem 4.2] we obtain that for f € L7(0, T; E) and
ac (D(QS),E)%Q,p, there is a unique solution z € W?(0, T, D(Q,), E) of problem (5.2) such
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that the following uniform estimate holds:

du
‘ T +1Qeutllr0,7:6) < C(If Iz, 78 + @l pan)e), )- (5.3)
tro,1:E) p? 0
From estimates (4.10) and (5.3) we obtain the assertion.
Result 5.1 It should be noted that if &7 =3 = - - - = ¢, = 1, then we obtain maximal regu-

larity properties of an abstract Stokes problem without any parameters in principal part.

Remark 5.2 There are a lot of positive operators in concrete Banach spaces. Therefore,
putting in (1.8) and (1.1) concrete Banach spaces instead of E and concrete positive differ-
ential, pseudo differential operators, or finite, infinite matrices, etc. instead of A, by virtue
of Theorem 4.2 and Theorem 5.1, we can obtain the maximal regularity properties of a
different class of stationary and instationary Stokes problems which occur in numerous
physics and engineering problems.

6 Separability properties of anisotropic Stokes equations
Let  C R™ be an open connected set with compact C*-boundary 3. Consider the BVP
for the following anisotropic Stokes equations with parameters:

(L+Nu=Au+Vo+ Y ayy)Dsu+ru=f, (6.1)
Jee|<2/
div,u=0, xeR"',yeQ, (6.2)
Biu= Y by(y)Diu(x,y)=0, ye€dQ,j=12...,1 (6.3)
1BI<l;

where a, and bjg are complex-valued functions,

u=ulx,y) = (ul(x,y),ug(x,y), . u,,(x,y)), ¢ = p(x)
are unknown solutions and

f=f@&y) = (). y). ... fulx))

is a given function;

" u d
Agll:ZEkF, Dj=—l‘—', y=(yl;~-~;ym)r x=(x1,...,x,,),
k=1 xk
€ =(&1,82,...,8y), € are positive and X is a complex parameter.
If G=R" x Q, p=(p1,p), LP(G) will denote the space of all p-summable scalar-valued
functions with mixed norm (see, e.g., [12, §1], i.e., the space of all measurable functions f
defined on G, for which

Ifllzece) = (/Rn </Qlf(x,y)|p1 dy)p% dx)}? < o0.
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Analogously, WP22(G) denotes the anisotropic Sobolev space with a corresponding

mixed norm [12, §10]. Let X;, = (LP(G))". From Theorem 4.2 we obtain the following result.

Theorem 6.1 Let the following conditions be satisfied:
1) ay € C(Q) for each |a| = 2l and a, € [L™ + L*](Q) for each |a| = k < 2l with 1, > q
and 21—k > %;
() b e CZH/(BQ)for each j, B and l; < 21, 211.:1 big(y')o; #0, for |Bl =1;, y' € 0G, where
o =(01,0%,...,0,) € R" is normal to 0Q;
(3) forye Q& €R", v €S(p), ¢ € (0,7), [E] + V] #0 let v+ 3,y da(V)E* #0;
(4) foreach yo € 0R, the local BVP in local coordinates corresponding to y,

vt Y ag(yo)D9(y) =0,

|a|=21
Bio¥ = Y bigo)DPu(y) =hy, j=1,2,...,1,
1B1=4;

has a unique solution ¢ € Co(R,) for all h = (hy, ha, ..., hy,) € R™, and for &’ € R"!
with |E'| + |v| #0. Then for f € Xp, A € S(p) with sufficiently large |1| problem
(6.1)-(6.3) has a unique solution u belonging to W®**(G;R") and the uniform
coercive estimate holds

du
E)x}‘<

n 2 i )
Lol
DD sk

+ Z ”Dfl't”Lp(G) +IVellx, = Clif llx,-
k=1 i=0

Xp |Bl=2m

Proof Let E = LP1(R2). By virtue of [11, Theorem 3.6], E is a UMD space. Consider the
operator A in L”1(Q2) defined by

DA) = WP (QBu=0),  Au= Y a,(y)D*u(y).
loe| <21

Problem (6.1)-(6.3) can be rewritten in the form (1.8), where u(x,y) = u(x,-), f(x,y) =

f(x,-) are vector-functions with values in E = L”1(2). By virtue of [11, Theorem 8.2] the
problem

vu(y) + Z as(NDyuly) =f (),

Jer| <21

Biu=Y bpp)Dlu(y) =0, j=1,2,..,1
1B1=<l;

has a unique solution for f € L”1(2) and for v € S(¢), |v| — co. Moreover, the operator

A is R-positive in LP1(S2), i.e., all the conditions of Theorem 4.2 hold. So, we obtain the
assertion. 0

Page 14 of 17


http://www.boundaryvalueproblems.com/content/2013/1/172

Shakhmurov Boundary Value Problems 2013, 2013:172 Page 15 0f 17
http://www.boundaryvalueproblems.com/content/2013/1/172

7 Infinite system of Stokes equations with small parameters
Consider the IVB for the following infinite system of instationary Stokes equations with

small parameters:

My = U, —
T ;81(8_96,2( + ;gjuj + Vo, =fuxt), (7.1)

divu =0, Uu(x,0)=0, xeR",te(0,T),m=1,2,...,00,

where g are positive parameters. Here u,, = (14,1 (%, £), U2 (%, £), - - ., Ui (%, £)), Qra = @0, £)

are unknown solutions, and f = (f,n (%, ), firma (%, £), . . ., fun (%, £)) is a given function. Let
G= {gm}r gm>0: u = {y}, Gu = {gmum}y m=12,...,

1
o) o
14(G) = uzuelmuunl{,(@:||Gu||za:<Z|gmum|”) <oo}, 1<o <00
m=1

Xpq0 =170, T;L1(R% 1)) is a class of functions

f= (A0, Lx0),.... fulx1))

with the norm

o

o0
|I.f||Xp,q,{x = (Z "fi”fp(o,ﬁg(m))) < Q.
i=1

Let X,%,q,a = WP2(0, T; L1(R";1,)). From Theorem 5.1 we obtain the following.

Theorem 7.1 Let0<ex <landg>0. Thenforf € X, 45,p,q,0 € (1,00) there is a unique

solution (u,,, Vo) of problem (7.1) belonging to X;yqﬂ X Xz,q,(, and the following uniform

coercive estimate holds:

with C = C(T, p, q) independent of f and ¢.

n

3

Xpao k=1

2y
Py —
X

u

% +1GUlxy g0 + IVOIxp 00 < Cllf X0

Xpa.o

Proof Really, let E = /,, A and be an infinite matrix, defined by
A:wmalm]; Wl,j=1,2,...,00.
It is easy to see that

B(A) =MA+ 1) = [Mgn + 1) ], mj=12,...,00.
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Forall uy us,...,u, €ly A, Aoy, € Co A # =g, m=1,2,...,00 and independent sym-
metric {-1,1}-valued random variables r;(y),j = 1,2,..., 4, i € N, we have

Iz o 0 | o
[ o6 ar=c [ 315 g+ o d
Q| i1 I Q=] =1

oo | pn L4
< sup\ki(gm + )Li)_1|a/ Z Zri(y)u,- dy.
m,i Q

m=1] i=1

Since sup,,, ; |Ai(gm + 2)7Y° < C for A; # g, from the above we get

" e Iz o
/Q ZV,()/)B()\,)M, d_)/ < C/ Z?’i()/)lli ,

i=1 Iy i=1 Iy

i.e., the operator A is R-positive in [,. Therefore, all the conditions of Theorem 5.1 hold

and we obtain the assertion. O
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