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Abstract

In this paper, we investigate a new class of fractional differential equations with
non-instantaneous impulses. We give a suitable formula of piecewise continuous
solutions and present the concept of B-Ulam-Hyers stability. We present existence
and B-Ulam-Hyers stability results on a compact interval.
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1 Introduction

Impulsive fractional differential equations are used to describe many practical dynamical
systems in many evolutionary processes models. There are many recent contributions [1—-
4] on fractional differential equations with instantaneous impulses of the form

Dy x(t) =f(t,%(2), te[0,TI\ {t1,..., T}
Ax(te) = L(x(t)), k=1,2,...,m,

where °Dg , is the Caputo fractional derivative of the ordera € (n—1,n),n €N, f:J xR —
Rand I : R — R and 7y satisfies 0 = 7o < 71 < - -+ < Ty < Tp1 = T, %(7) = lime, 0+ (T4 + €)
and x(t;) = lim_,o- ¥(tx + €) represent the right and left limits of x(¢) at ¢ = 7, respectively.
Here, I is a sequence of instantaneous impulse operators and it has been used to describe
abrupt changes such as shocks, harvesting, and natural disasters.

In general, the classical instantaneous impulses cannot describe some certain dynamics
of evolution processes. For example, when we consider the hemodynamic equilibrium of
a person, the introduction of the drugs in the bloodstream and the consequent absorption
for the body are gradual and continuous process. In fact, the above situation can be charac-
terized by a new case of impulsive action, which starts at an arbitrary fixed point and stays
active on a finite time interval. From the viewpoint of general theories, Herndndez and
O’Regan [5] initially offered a study of a new class of abstract cases of semilinear impul-
sive differential modeling with no instantaneous impulses and Pierri et al. [6] continued
the work and extended the previous results.

However, we note that the absorption of drugs has a memory effect. In fact, fractional
calculus provides a powerful tool for hereditary properties on various materials and mem-
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ory processes [7, 8]. Motivated by [5-8], we investigate the following new class of impul-
sive differential equations:

@)

CDZ,tx(t) = _)‘x(t) +f(t’ x(t)), te (Si7 ti+1]ri = 0; ]-7 2; N (P RS (0’ ]-)1 A > 0:
x(@t)=q+ Ig,tgi(t,x(t)) —I5 fsix(s:), te(tusili=12,...,my€(0,1),y #a,

where D, is the Caputo fractional derivative of the order « € (0,1) with the lower limit
$,0=80<ti <81 <ty <+ <ly <Syu <ty =T are pre-fixed numbers, f: [0, T] x R - R
is continuous and g; : [¢;,5;] X R — R is continuous for all i =1,2,...,m and g € R. If;tgi
and [jf are given by

Y g :L ' _ V1,
Iaa60) = 5 / (¢~ 5 gi(5,2(6) ds

Ig}sff(s,’,x(s;)) = ﬁ /0 (s: = 9)*7f (5, %(s)) ds.

The Ulam stability problem [9] has attracted many famous researchers. For more de-
tails, the readers can refer to good monographs of Hyers et al. [10], Rassias [11], Jung [12],
Cadariu [13] and other recent contributions [14—20] in standard normed spaces and [21,
22] in B-normed spaces. As far as we known, neither the existence of a solution nor the
Ulam type stability of (1) in B-normed spaces has been studied. Here, we shall apply the
usual methods of analysis and novel techniques in S-Banach spaces to deal with our prob-

lem.

2 Preliminaries

To begin with, we present the concept of S-Banach space.

Definition 2.1 ([14]) Suppose E is a vector space over K. A function || - | (0 <8 <1):
E — [0,00) is called a B-norm if and only if it satisfies (i) ||x]g = O if and only if x = 0;
(i) IAxllg = [L|P|lxllg for all A € K and all x € E; (iii) |lx + yllg < lIxllg + llyllg. The pair
(E, |l - lg) is called a B-normed space. A B-Banach space is a complete f-normed space.

Let J = [0, T] and C(J, R) be the 8-Banach space of all continuous functions from J into
R with the B-norm ||x|s := max{|x(t)|? : £ € J,0 < B < 1} for x € C(J,R). We also need
the piecewise continuous B-Banach space PC(J,R) := {x:] - R:x € C((tx, txs1], R), k =
0,1,...,m,and there exist x(¢;) and x(¢{), k = 1,...,m, with x(¢;) = x(t)} with the PB-norm
)l pg := sup{|x(t)|? : £ €],0 < B <1}.

Next, we recall some basic concepts of the fractional integral and derivative, and some
results as regards fractional differential equations [23].

Definition 2.2 The fractional integral of order y with the lower limit 4 for a function f is
defined as

1 [ £

Y _
lad =505 |, oo

ds, t>a,y>0,

provided the right side is point-wise defined on [a, 00), where I'(-) is the gamma function.
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Definition 2.3 The Riemann-Liouville derivative of order y with the lower limit a for a

function f : [a,00) — R can be written as

1 a [ f)

T yyan ), G an-i<y<n

"Dl f(0) =

Definition 2.4 The Caputo derivative of order y for a function f : [a,00) — R can be

written as

n-1

CDZ,JC(t)=LDZ’t|:f(t)—Z% (k)(a):|, t>an-l<y<n

Denote E,(2) := Y 1o 1_(;—,:1) and Ey4(2) := Y 10 F(;Tkﬂx) By [24], Lemma 2, for any A >

Oand £ €/, Bq(0) =1, Eo(-£92) <1, Ego(—£*1) < 55

Lemma 2.5 Let h: ] — R be a continuous function. A function x € PC(J,R) is a solution

of the fractional integral equations
%(0) = xo;
t
x(t) = Eo (—%X)xo + / (t = 8)* " Eou (-t -8)*M)h(s)ds, te(0,4];
0

x(t)=q+ IZ,tg,'(t) — o h(s), te(tys)i=12,...,m

x(t) = Bo (—(t = 8)“A) (q + I} 5,8i(s:) — I&sih(si))
t
+ / (t—5)""Eqq (—(t - s)"‘k)h(s) ds, te(sptili=1,...,m,
if and only if x is a solution of the equation
CDz,tx(t) =—Ax(t) + h(t), te€(sitia],i=0,1,2,...,ma € (0,1),
x(t) = q+It):,tgi(t) _Ioa,sih(si): te (tiysi]»i =1, 2,”.,1’}1,)/ € (0: 1); (2)

x(0) =x9 € R.

Proof Suppose that x satisfies (2).
For t € [0, #1], we consider

Dy x(t) = —=Ax(t) + h(t), with x(0) = xo.
Integrating from O to ¢ by virtue of Definition 2.2, one can obtain
t
x(t) = Ey (—t“k)xo + / (t—5)""Eqq (—(t - s)“k)h(s) ds, tel0,t].
0

For t € (t1,1], x(t) = g + I}, ,& (£) — 1§ hi(s1).
For t € (s, 2], we consider

DG x(t) = —Ax(t) + h(t), withx(s)) =q + It);ﬂgl(sl) — Iy his1).
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Then

x(t) = /t(t —5) By (—(t - S)“A)h(s) ds

+ Bo (=2 = 50)*2) (q + I, ,81(51) — I i(s1) ).

For t € (ty, 5], x(t) = q + I}, .2 (t) — I, hi(s2).
For ¢ € (s2, 23], we consider

D§, x(t) = —Ax(t) + h(t), withx(sz) =q + Iéyszgz(sz) — Iy, h(s2).

So we get

x(t) = /t(t = 8)* " Eau (=t - 9)*A)h(s)ds
52
+ Bo (—(t —52)2) (q + 17, ,82(52) — 1§, i(s2)).
Finally, for any ¢ € (s;, £;,1], we consider
Dg x(t) = —Ax(t) + h(t), withx(s;) =g+ IZ'Sl,gi(s,-) = Iy hs).

Thus,

x(t) = ft(t -5 By (—(t - s)“k)h(s) ds
+Eo(—(t—s)"2) (g + IZ’Sl_gi(s,») - I(‘isl,h(s,«)).

Conversely, one can verify the fact by proceeding the standard steps to complete the rest
of proof. d

3 B-Ulam-Hyers stability concept and auxiliary facts

Let 0 < B <1, € > 0. We consider the following inequality:
|CDg,,ty(t)+)\'y(t) _f(t’y(t)” <¢€, te (Sirti+1])i:0)172)"';m) (3)
|)’(t) —-q- It}:,tgl(try(t)) + Ig,sf(si)y(si))| <€, te (tirsi])i = 1) 21 ey .

Then our goal is to find a solution y(-) close to the measured output x(-) and this closeness

is defined in the sense of B-Ulam’s type stability as follows.

Definition 3.1 Equation (1) is 8-Ulam-Hyers stable if there exists a real number ¢7,4,,,,,4; >
0 such that for each € > 0 and for each solution y € PC!(J,R) of the inequality (3) there
exists a solution x € PC'(J,R) of (1) with

ly(®) —x(t)’ﬁ < Claypacs tel.

Remark 3.2 A function y € PC(J,R) is a solution of the inequality (3) if and only if there
is a number G such that
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i) 1Gl <€
(ii) “Dg () = -ry(@) +f(&,y()) + G, £ € (sis tin], i=0,1,2,...,m;
(iii) (&) = q + 1} gi(t, y(8)) =I5 f (51, 9(50) + G, t € (tips), i = 1,2,...,m.

Remark 3.3 If y € PC'(J,R) is a solution of the inequality (3) then y is a solution of the
following integral inequality:

y(6) —q - I}, ,8i(6,y(2)) =I5 f (s y(si)) ds| <€, t€(tipsil,i=1,2,...,m;
7(8) = Ea(<22)5(0) = [y (¢ = 8)* Eau (~( = 5)*2)f (s, ¥(s)) dis]

=< ﬁé, te [07 tl]x (4)
(8) = [ (& = )" Ea (£ = 5)*2)f (5, 5(s)) dis

B (=t - 5)"0)q + I 0 7(50)) — 12, f (55, ¥(5:)
<e+ (tF(lo(_:i)) €, te(sptimli=12,...,m.
In fact, by Remark 3.2 we get

CDZ,tJ’(t) = _)\y(t) +f(try(t)) + G: te (Si) ti+1]»i = Or 1: 2y ceeym, (5)
y(t) =q+ It}j,tgl(t,y(t)) - [g,sf(si)y(si)) + G, te (ti: Si]; i= 1,2,...,m.

Clearly, the solution of (5) is given by

y(t) =q+ It}l/,tgl(t,y(t)) - Ig,sf(Si,y(Si)) + G’ te (tirsi])i =1, 2, cee, MG

y(t) = Ey (—t“k)y(O) + ./0 (t—5)""Eyq (—(t - s)“k)[f(s,y(s)) + G] ds, tel0,4];

90 = [ (=9 B (=57 2) [ (5(5) + G s

+ Bo (=t — )" 1) (q + I}, 5,8 (s ¥(5:)) = I6 . f (56, ¥(s1)) + G),

te(s,«,t,»+1],i=1,2,...,m.

Fort e (sitin1], i=1,2,...,m, we get
‘y(t) - / (t = 9)* Eq,o (—(t = $)*1)f (5, 7(5)) ds

~Eo(~(t —5)*2)(q + I} 8 (siry(s2)) = Ig,sf(si,y(si)))

1 ! -1
<|Gl+ —F(a)/sl(t_S) Gds
< 1 t(t )a—l d
<€+ @ /. $)* eds

(Eiv1 — 80)"

_6+7F(oe+1) €.

Proceeding as above, we derive that

’J’(t) -q- Ig,[gi(t)y(t)) _I(O)(,sif(siry(si)” =< |G| <¢€, te (tirsi]yi = 1) 21 e, m
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and

‘y(t) -E, (—t"‘)»)y(O) - ./o (t—5)""Eqq (—(t - s)“k)f(s,y(s)) ds

t

Mo +1)

1
T(a)

= =

t
/(t—s)"‘_lGds e, tel0,4].
0

4 Existence and 3-Ulam-Hyers stability results
We impose the following assumptions:

(A1): feC(U xR,R).
(Az): There exists a positive constant Ly such that

[f(t, w) —f(t, u2)| < Lfluy —uy|, foreachte/andallu;,u, eR.
(Az): g € C([ti,si] x R,R) and there are positive constants Ly, i = 1,2,...,m such that
|g,-(t, u) — gi(t, u2)| < Lglu1 —uy|, foreachte[t;,s;]andall uj,uy €R.
We begin by giving the existence and uniqueness result for the solutions to (1).

Theorem 4.1 Assume that (A;), (Ay), (As) are satisfied. Then (1) has a unique solution
provided that

. Le(tin —s)*\"  (Lg(si— )"\’ Lesy \’
Q“max{( Tl +1) ) +( Ly +1) > +<F(a+1)>’

Lftix ﬁ‘__
(F(a+1)> .l—1,2,...,m}<1. (6)

Proof Consider an operator A : PC(J,R) — PC(J,R) defined by

(Ax)(0) = x0;

(Ax)(t) = q + I} gi(t, x(t)) — I . f (s0,%(s0),  t € (tisili=1,2,...,m;

(Ax)(2) = E, (—t“k)xo + /:(t —5)" By (—(t - s)“)\)f(s,x(s)) ds, tel0,t];

(Ax)(t) = / (t—5)""Eqy (—(t - s)“k)f(s,x(s)) ds

+ B (—(t =5 2) (q + 1], @i (s, %(51)) — I o f (515 %(51)))»
te (Si,ti+1],i= 1,2,...,m.

It is easy to see that A is well defined. Next, we show that A is a contraction mapping.
Case 1: For u, uy € PC(J,R) and for each ¢ € [0, £1], we have

[(Au)(®) - (Au)(®)]

/t(t —8)" Ry (—(t - s)“k)f(s, ul(s)) ds
0
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- /t(t —5) 1 Eqq (—(t - S)“A)f(s, uz(s)) ds
0

Lf ! a-1
< m ; (t-s) ’M1(5)—M2(5)|d5

Ly t 1
< 2 — t—8)*"d
= ) [l241 M2||Pc/0 (t—s) S

Lty
Mo +1)

< Izt — ua |l pc,

which implies that

Lot B
|(Aug)() - (Auz)(t)|ﬂ < (F(szti 1)) lu1 — uallpp-

This reduces to

o

” ” = T ftl] ” ”
Au Au u u .
1 211PB ( ) 1 211PB

Case 2: For uj,uy € PC(J,R) and for each t € (¢;,8;], i = 1,2,...,m, we have
|(Auw)(®) — (Aup)(2)|

i n-sni

1 K a-1
) /0 (si =) |f (s, 1(5)) = f (5, u2(5)) | ds
Ly [*

=7 ), € e mm)ds I / (51— 9y 5) =y 5)| s

C(a) Jo
=To) F(e)

Lgi (si — 1) Lfs?‘
< +
'y +1) Mo +1)

Lgi ! -1 Lf N -1
—— i —ullpc | (t=8)"ds+ ——llur —uzllpc | (si—5)""ds
t; 0

)””1 —uz|lpcs

which implies that

L ,'( i_ti)y L ;‘1 P
|(Auw)(2) - (Auz)(t)|ﬁ < ( gF(j/ ) + F(éi 1)> llur — uz | pp-

This reduces to

L V(Si - t,‘)y b LfS‘-x b
A - A <|(ZEim i — s lpp.
[Au1 — Ausllpg < |:< rG 1) + Fa+1) le1 — uzllpp

Case 3: For uy,uy € PC(J,R) and for each t € (s;, t;,1], i = 1,2,...,m, we have

[(Au)(®) - (Aus)(®)]

Ly [ o N |
F(V)/tl. (si =)o (si) — ua(s0)| ds

< %/S (t =97 |ur(s) — ua(s)| ds +
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L e (s) -
+F(a)/0 (s = )7 ua(s) — ua(s)| ds

Lg,' (Si - ti)y

L (t' 1 —S‘)a
< LT ) |2ty — uallpc

Izt — Uzl pc +

MNo+1) Ty +1
LfS?
N _
FasD lu1r — uallpc
Le(tiy —s;)% Lo.(s; —t) Lysf
- £ (tiv1 = s2) . o (5 — 1) + =L N = wallpes
T(a+1) Fy+1) Tle+1)

which implies that

Lf(tm —s5;) L, (si— 1) Lfs‘?‘

(M) (©) ()] < (

This reduces to

[[Az; — Ausllpg

- Li(tia = s\’ [Lg(si— 1) \" Ls? \’
| (o) (i) < (555) Jra-wn

From the above cases, we obtain

A2y — Auslipg < ollur — uz|lpg;

B
1
Mo +1) i I'(y +1) +F(a+1)) o =2 g

Page 8 of 13

where o is given in (6). Finally, we can deduce that A is a contraction mapping. Then one

can derive the result immediately.

O

In what follows, we discuss the stability of (1) by using the concept of 8-Ulam-Hyers in

the above section.

Theorem 4.2 With the same assumptions in Theorem 4.1. Then (1) is -Ulam-Hyers sta-

ble with respect to €.

Proof Denote by x the unique solution of
CDg,tx(t) = _)\'x(t) +f(t’x(t))) te (sl') ti+l], i= O, 11 2, e M0 € (O, 1);
x(t) =q+ It}:,tgl(t:x(t)) - Ig,sf(si,x(si)): te (ti’sl'], i= 1, 2; ceey 1,

%(0) = (0).

Then we get

q + It}:,tgi(t; x(t)) - Ig,sf(Si, x(si))’ te (ti) Si]r l = 1) 2; cee, M

Eq (—£%1)y(0) + fot(t —8)* By o (—(t = 5)*A)f (s, x(s)) ds, te€(0,4];

2(t) = [i (=8 B (—(t = 5)*2)f (5,x(5)) ds
+ B (—(£ = s:)*M)(q + I} &i(si,%(s:)) — I, f (51, %(5:))),
te (Si,ti+1],i= 1,...,m.
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Let y € PC(J,R) be a solution of the inequality (3). According to (4), for each ¢ € (s;, £;,1],

i=1,2,...,m, we have
‘y(t) - ‘/0 (t—5)""REqq (—(t - s)“k)f(s,y(s)) ds

-E, (—(t —s)*A)(q + IZ.,sl.gi (Si»y(si)) - Ig,sf(si,y(si)))

e+ (Eiv1 — 8)"
I +1)

and for ¢ € (t;,8;],i=1,2,...,m, we have

[y(6) —q - 17 & (6,9(0) + I f (s ¥(s1)) | <€,

and for t € [0, ], we have

o

< 1
T +1)

€.

’y(t) - E, (—t"‘k)y(O) - ‘/0 (t—5)""Eqq (—(t - s)"‘)»)f(s,y(s)) ds

Case 1: For each £ € [0, 1], we get

|y(£) - x(t)| <

y(t) — Eq (~£72)y(0) - /0 (t = 8)" B0 (= = 5)*A)f (5,5(5)) ds

+

/0 (= ) Eae (—(¢ = )" A)f (5,5(5)) ds

- /t(t —5)" By (—(t - s)“k)f(s,x(s)) ds
0

t
<
“IM'a+1)
e Lot
< 1 €+ 41
Mo +1) Mo +1)

Lf ! a-1
e+m/(; (t-s) |y(s)—x(s)|ds

ly —xllpc,

where

s t Lty ’
ly(@) -x(0)|” < (r(a " 1)6 + T+l IIy—xllpc>

o B B
4 Lftl
< _
- (F(a+1)€) " (F(a+1) Il =xleg,

which implies that

Litg \* £ g
[1_<r(a+1>> }”y_’c””“f(r(mlf) '

Thus,

(@) - 2@)|” < craypae’s tel0,a], ®)
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where
4\
. (F(oz+1))
Cfay.Bg = L
1- (I‘(a+1))

Case 2: Fort € (¢;,s;],i=1,2,...,m, we have

(&) = x0)|” < |y(©) — g~ I .gi(t,90) = 18, f (50 ¥(50) |”
I8 f (s09(50) = I8 f (510 2(s) |°
|1 gi(6y(®) - I i (8,20)) |”

p Lst \’ Eﬁgz:jﬁz)ﬁ )
=° +|:<F(Ot+1) * T(y +1) ly —xllpg

which implies that

Lsi \'_ (La(si=t)"" 8
|:1_<F(05+1)> _<W> ]"y_x||P5§€ .

Page 10 0f 13

Thus,
(O - 20" < Gy pae’s e tusli=12,...,m, ®)
where
._ 1
Cfay.Bgi = Les? Ly, (si=t:)Y

- (F(Ot+1)) - ( L(y+1) )
Case 3: For t € (s;,t;1],i=1,2,...,m, we have
|(2) —x(t)|ﬂ < ‘y(t) - / | (t = 5)* " Baa (=t — )" 1)f (5, 5(5)) ds
B
B (= 59°0) (g + (50306 - IS‘,Sif(si,y(Si)))‘
L ! _ -l _ /
+ [F(a) /0 (t-s) [f(s,y(s)) f(s,x(s)) | ds]

|1 @50 y(50) = I i (sx(50) |+ |16 f (500 3(50)) = 12, f (s00%(50)) |
i —s)* \’
(6+ Fux+1)6>

Le(tin —s)*\" [ Lg(si—1:)"\" Lst \’ Iy x|
+ + + - ,
Fa+1) Ty +1) Ta+1)) |V *P8
which yields

Ltin=s)"\"  (La(si=t)"\" Lysi \"
{1_[<W> +( Ty +1) ) +<F(a+1)) ]}”y_x”Pﬂ

a \B a\ B
< (e N (tiv1 = i) e) < [1+ ((ti+1—Si) ) i|613'
(o +1) [ +1)

IA

B
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Thus,
) =20 < rappae’s tebotinli=12.m, 10
where
1+ ((t’“a_f{) )
Sy, B8 = Ly (ti1-5)° Lg; (si=t:)Y Lysf

[( T (c+1) )ﬂ+( C(y+1) )ﬂ ( a+1))ﬂ]

Summarizing, (8), (9), and (10) imply that (1) is 8-Ulam-Hyers stable with respect to €.
The proof is completed. d

5 Example

Let us consider

3

“Dg x(t) = —x(t) + & %”2 arctan(t2 +x(t)), te(0,1],

HO)=q+ 5 Jie-973 st s ds (11)
#%) f02(2 —s)3 i arctan(s® + x(s)) ds, t€(1,2]

and

3
1°Dg,y(t) + ¥(t) - 503 arctan(t2 +y@) <1, te(0,1],
1 -3
() —q - T2 NG 573 16(1+\y(s y ds (12)

+ r(li) f02(2 —5)8 —+ arctan(s® + y(s))ds| <1, te(1,2].

1
8+eS+s

SetA =1, a=§ =%,] [0,2], O—to—so<t1—1<sl—2 and 8 =
—L__ arctan(¢2 +x(¢)) with Ly = 1 g fort €(0,1] and[ftgl(t x(t) = L

8+el+t

with L, = E for t € (1,2]. Moreover, we pute =1.
Let y € PC'([0,2],R) be a solution of the inequality (12). Then there exists G € R such
that |G| <1and

Denotef(t x(t)) =
t—

-3 _ )l
S) 60+xG)) ds

A

r
3

CD(%,;J’(t) =—y(8) + ﬁ arctan(£® +y(¢)) + G, t€(0,1], 13)
o [y(s)]
= d
7 r()f “Te+ hen
F( ) / (2- % 3 arctan(s2 +y(s)) ds+G, te(1,2].

For t € (0,1], integrating (13) from O to £, we have

¥(O) = E; (~£3)y(0)

3 1 2
+/0 (t-s) E%%( (t—s)5 )(78+es+s2 arctan(s +y(s))+G)ds.
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For t € (1, 2], we have

10
yt)=q+ m (t—s) S hon
1 2 )
- Tg) A (2-9)75 Siors arctan(s® + y(s)) ds + G.

After checking the conditions in Theorem 4.1, we find that

CD0 x(t) = x(t) + 8+ez+t2 arctan(t? + x(t)), t e (0,1],
M) =q+ o fl(t—s) 3 ol dis
— r(%) fo 2- 8+83+S2 arctan(s® + x(s)) ds, te(1,2],
x(0) = (0),

has a unique solution, where

1 1 210
, +
3\/r(§) 4\/r(g) 3\/r(§)

Next, let us take the solution x of the problem (14) given by

0:= max{

#(t) = By (~£3)y(0)
/ (t- s)’%E%,% (—(e- s)%) (Miﬁ alrctan(s2 + x(s))) ds,

X(0) = q+_/l'(t 9 [%(s)]

Il

ro 1601+ k)
1 2(2 = tan(s? + x(s)) ds, te(1,2]
_Tg) i —s marcan(s +x(s))ds, te(1,2].

For t € (0,1], we have
1

e

o) -] = = —eb <160
NEH]

For t € (1,2], we have

y(6) - 2(0)|* < ; <33.

3/r(¢) T4 r)
Summarizing, we have
1
y(6) —x(®)|? <33=33-12, te],

which shows that (11) is %—Ulam—Hyers stable with respect to € = 1.

} ~ max{0.3526,0.6972} < 1.

te(0,1],

Page 12 0f 13

(14)
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6 Conclusions

This paper has investigated a new class of fractional differential equations with instanta-
neous impulses. In particular, the existence and -Ulam-Hyers stability for such a new
class of impulsive equations on a compact interval are obtained.
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