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Abstract

In this article, we study an iterative method over the class of quasi-nonexpansive
mappings which are more general than nonexpansive mappings in Hilbert spaces.
Our strong convergent theorems include several corresponding authors’ results.
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1. Introduction
Let H be a real Hilbert space with inner product 〈·,·〉, and induced norm ||·||. A map-

ping T: H ® H is called nonexpansive if ||Tx - Ty|| ≤ ||x - y|| for all x,y Î H. The set

of the fixed points of T is denoted by Fix(T) := {x Î H: Tx = x}.

The viscosity approximation method was first introduced by Moudafi [1] in 2000.

Starting with an arbitrary initial x0Î H, define a sequence {xn} generated by

xn+1 =
εn

1 + εn
f (xn) +

1
1 + εn

Txn, ∀ n ≥ 0, (1:1)

where f is a contraction with a coefficient a Î [0,1) on H, i.e., ||f(x) - f(y)|| ≤ a||x -

y|| for all x,y Î H, T is nonexpansive, and {εn} is a sequence in (0,1) satisfying the fol-

lowing given conditions:

(i1) limn®∞ εn = 0;

(i2)
∑∞

n=0 εn = ∞;

(i3) limn→∞(
1
εn

− 1
εn+1

) = 0.

It is proved that the sequence {xn} generated by (1.1) converges strongly to the

unique solution x* Î C(C := Fix(T)) of the variational inequality:

〈(I − f )x∗, x − x∗〉 ≥ 0, ∀ x ∈ Fix(T).

In 2003, Xu [2] proved that the sequence {xn} defined by the below process where T

is also nonexpansive, started with an arbitrary initial x0 Î H:

xn+1 = αnb + (I − αnA)Txn, ∀ n ≥ 0, (1:2)
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converges strongly to the unique solution of the minimization problem (1.3) when

the sequence {an} satisfies certain conditions:

min
x∈C

1
2

〈Ax, x〉 − 〈x, b〉, (1:3)

where C is the set of fixed points set of T on H and b is a given point in H.

In 2006, Marino and Xu [3] combined the iterative method (1.2) with the viscosity

approximation method (1.1) and considered the following general iterative method:

xn+1 = αnγ f (xn) + (I − αnA)Txn, ∀ n ≥ 0. (1:4)

It is proved that if the sequence {an} satisfies appropriate conditions, the sequence

{xn} generated by (1.4) converges strongly to the unique solution of the variational

inequality:

〈(γ f − A)x̃, x − x̃〉 ≤ 0, ∀ x ∈ C, (1:5)

or equivalently x̃ = PFix(T)(I − A + γ f )x̃, where C is the fixed point set of a nonexpan-

sive mapping T.

In 2009, Maingè [4] considered the viscosity approximation method (1.1), and

expanded the strong convergence to quasi-nonexpansive mappings in Hilbert space.

In 2010, Tian [5] considered the following general iterative method under the frame

of nonexpansive mappings:

xn+1 = αnγ f (xn) + (I − μαnF)Txn, ∀ n ≥ 0, (1:6)

and gave some strong convergent theorems.

Very recently, Tian [6] extended (1.6) to a more general scheme, that is: the mapping

f: H ® H is no longer a contraction but a L-Lipschitzian continuous operator with

coefficient L > 0, and proved that if the sequence {an} satisfies appropriate conditions,

the sequence {xn} generated by xn+1 = angf(xn) + (I - μanF)Txn converges strongly to

the unique solution x̃ ∈ Fix(T) of the variational inequality where T is still nonexpan-

sive:

〈(γ f − μF)x̃, x − x̃〉 ≤ 0, ∀ x ∈ Fix(T). (1:7)

Motivated by Maingè [4] and Tian [6], we consider the following iterative process:{
x0 = x ∈ H arbitrarily chosen,

xn+1 = αnγ f (xn) + (I − αnμF)Tωxn, ∀ n ≥ 0,
(1:8)

where f is L-Lipschitzian, Tω = (1 - ω)I + ωT, and T is a quasi-nonexpansive map-

ping. Under some appropriate conditions on ω and {an}, we obtain strong convergence

over the class of quasi-nonexpansive mappings in Hilbert spaces. Our result is more

general than Maingè’s [4] conclusion.

2. Preliminaries
Throughout this article, we write xn ⇀ x to indicate that the sequence {xn} converges

weakly to x. xn ® x implies that the sequence {xn} converges strongly to x. The follow-

ing lemmas are useful for our article.

The following statements are valid in a Hilbert space H: for each x,y Î H, t Î [0,1]
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(i) ||x + y|| ≤ ||x||2 + 2〈y, x + y〉;

(ii) ||(1 - t)x + ty||2 = (1 - t)||x||2 + t||y||2 - (1 - t)t||x - y||2;

(iii) 〈x, y〉 = −1
2

‖x − y‖2 + 1
2

‖x‖2 + 1
2

‖y‖2.

Lemma 2.1. Let f: H ®H be a L-Lipschitzian continuous operator with coefficient L >

0. F: H ® H is a �-Lipschitzian continuous and h-strongly monotone operator with � >

0 and h > 0. Then, for 0 <g ≤ μh/L,

〈x − y, (μF − γ f )x − (μF − γ f )y〉 ≥ (μη − γ L)‖x − y‖2. (2:1)

That is, μF - gf is strongly monotone with coefficient μη − γ L.

Lemma 2.2. [4]Let Tω := (1 - ω)I + ωT, with T quasi-nonexpansive on H, Fix(T) ≠

∅, and ω Î (0,1]. Then, the following statements are reached:

(a1) Fix(T) = Fix(Tω);

(a2) Tω is quasi-nonexpansive;

(a3) ||Tωx - q||2 ≤ ||x - q||2 - ω(1 - ω)||Tx - x||2 for all x Î H and q Î Fix(T);

(a4) 〈x − Tωx, x − q〉 ≥ ω

2
‖x − Tx‖2for all x Î H and q Î Fix(T).

Proposition 2.3. From the equality (iii) and the fact that T is quasi-nonexpansive, we

have

〈x − Tx, x − q〉 = −1
2

‖Tx − q‖2 + 1
2

‖x − Tx‖2 + 1
2

‖x − q‖2 ≥ 1
2

‖x − Tx‖2.

(a4) is easily deduced by I-Tω = ω(I-T) and the previous inequality.

Lemma 2.4. [7]Let {Γn} be a sequence of real numbers that does not decrease at infi-

nity, in the sense that there exist a subsequence {�nj}j≥0of {Γn} which satisfies
�nj < �nj+1for all j ≥ 0. Also, consider the sequence of integers {τ (n)}n≥n0defined by

τ (n) = max{k ≤ n | �k < �k+1}.

Then, {τ (n)}n≥n0is a nondecreasing sequence verifying limn®∞ τ(n) = ∞ and for all n ≥

n0, it holds that Γτ(n) < Γτ(n)+1 and we have

�n ≤ �τ(n)+1.

Recall the metric projection PK from a Hilbert space H to a closed convex subset K

of H is defined: for each x Î H the unique element PKx Î K such that

‖x − PKx‖ := inf{‖x − y‖ : y ∈ K}.

Lemma 2.5. Let K be a closed convex subset of H. Given x Î H, and z Î K, z = PKx,

if and only if there holds the inequality:

〈x − z, y − z〉 ≤ 0, ∀ y ∈ K.

Lemma 2.6. If x* is the solution of the variational inequality (1.7) with T: H ® H

demi-closed and {yn} Î H is a bounded sequence such that ||Tyn - yn|| ® 0, then

lim inf
n→∞ 〈(μF − γ f )x∗, yn − x∗〉 ≥ 0. (2:2)
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Proof. We assume that there exists a subsequence {ynj} of {yn} such that ynj ⇀ ỹ.

From the given conditions ‖Tyn − yn‖ → 0 and T: H ® H demi-closed, we have that

any weak cluster point of {yn} belongs to the fixed point set Fix(T). Hence, we con-

clude that ỹ ∈ Fix(T), and also have that

lim inf
n→∞ 〈(μF − γ f )x∗, yn − x∗〉 = lim

j→∞
〈(μF − γ f )x∗, ynj − x∗〉.

Recalling (1.7), we immediately obtain

lim inf
n→∞ 〈(μF − γ f )x∗, yn − x∗〉 = 〈(μF − γ f )x∗, ỹ − x∗〉 ≥ 0.

This completes the proof. □

3. Main results
Let H be a real Hilbert space, let F be a �-Lipschitzian and h-strongly monotone

operator on H with k > 0, h > 0, and let T be a quasi-nonexpansive mapping on H,

and f is a L-Lipschitzian mapping with coefficient L > 0 for all x,y Î H. Assume the set

Fix(T) of fixed points of T is nonempty and we note that Fix(T) is closed and convex.

Theorem 3.1. Let 0 < μ < 2η/κ2, 0 < γ < μ(η − μκ2

2
)/L = τ /L, and start with an

arbitrary chosen x0 Î H, let the sequence {xn} be generated by

xn+1 = αnγ f (xn) + (I − αnμF)Tωxn, (3:1)

where the sequence {an} ⊂ (0,1) satisfies limn®∞ an = 0, and
∑∞

n=0 αn = ∞. Also

ω ∈ (0,
1
2
), Tω := (1 - ω)I + ωI with two conditions on T:

(C1) ||Tx - q|| ≤ ||x - q|| for any x Î H, and q Î Fix(T); this means that T is a

quasi-nonexpansive mapping;

(C2) T is demi-closed on H; that is: if {yk} Î H, yk ⇀ z, and (I - T)yk ® 0, then z Î
Fix(T).

Then, {xn} converges strongly to the x* Î Fix(T) which is the unique solution of the

VIP:

〈(μF − γ f )x∗, x − x∗〉 ≥ 0, ∀ x ∈ Fix(T). (3:2)

Proof. First, we show that {xn} is bounded.

Take any p Î Fix(T), by Lemma 2.2 (a3), we have

‖xn+1 − p‖
= ‖αnγ f (xn) + (I − αnμF)Tωxn − p‖
= ‖αnγ (f (xn) − f (p)) + αn(γ f (p) − μFp) + (I − αnμF)Tωxn − (I − αnμF)p‖
≤ αnγ L‖xn − p‖ + αn‖γ f (p) − μFp‖ + (1 − αnτ )‖xn − p‖
≤ (1 − αn(τ − γ L))‖xn − p‖ + αn‖γ f (p) − μFp‖.

(3:3)

By induction, we have

‖xn − p‖ ≤ max
{
‖x0 − p‖, ‖γ f (p) − μFp‖

τ − γ L

}
, ∀ n ≥ 0.
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Hence, {xn} is bounded, so are the {f(xn)} and {F(xn)}.

From (3.1), we have

xn+1 − xn + αn(μFxn − γ f (xn)) = (I − αnμF)Tωxn − (I − αnμF)xn. (3:4)

Since x* Î Fix(T), from Lemma 2.2 (a4), and together with (3.4), we obtain

〈xn+1 − xn + αn(μF(xn) − γ f (xn)), xn − x∗〉
= 〈(I − αnμF)Tωxn − (I − αnμF)xn, xn − x∗〉
= (1 − αn)〈Tωxn − xn, xn − x∗〉 + αn〈(I − μF)Tωxn − (I − μF)xn, xn − x∗〉
≤ −ω

2
(1 − αn)‖xn − Txn‖2 + αn‖(I − μF)Tωxn − (I − μF)xn‖‖xn − x∗‖

≤ −ω

2
(1 − αn)‖xn − Txn‖2 + αn(1 − τ )‖Tωxn − xn‖‖xn − x∗‖

= −ω

2
(1 − αn)‖xn − Txn‖2 + ωαn(1 − τ )‖Txn − xn‖‖xn − x∗‖,

it follows from the previous inequality that

−〈xn − xn+1, xn − x∗〉 ≤ −αn〈(μF − γ f )xn, xn − x∗〉 − ω

2
(1 − αn)‖xn − Txn‖2

+ ωαn(1 − τ )‖Txn − xn‖‖xn − x∗‖.
(3:5)

From (iii), we obviously have

〈xn − xn+1, xn − x∗〉 = −1
2

‖xn+1 − x∗‖2 + 1
2

‖xn − x∗‖2 + 1
2

‖xn+1 − xn‖2. (3:6)

Set �n :=
1
2

‖xn − x∗‖2, and combine (3.5) with (3.6), it follows that

�n+1 − �n − 1
2

‖xn+1 − xn‖2 ≤ −αn〈(μF − γ f )xn, xn − x∗〉 − ω

2
(1 − αn)‖xn − Txn‖2

+ ωαn(1 − τ )‖Txn − xn‖‖xn − x∗‖.
(3:7)

Now, we calculate ||xn+1 - xn||.

From the given condition: Tω := (1 - ω)I + ωT, it is easy to deduce that ||Tωxn - xn||

= ω||xn - Txn||. Thus, it follows from (3.4) that

‖xn+1 − xn‖2 = ‖αn(γ f (xn) − μFxn) + (I − αnμF)Tωxn − (I − αnμF)xn‖2
≤ 2α2

n‖γ f (xn) − μFxn‖2 + 2(1 − αnτ )2‖Tωxn − xn‖2
= 2α2

n‖γ f (xn) − μFxn‖2 + 2ω2(1 − αnτ )2‖Txn − xn‖2.
(3:8)

Then, from (3.7) and (3.8), we have

�n+1 − �n +
[ω

2
(1 − αn) − ω2(1 − αnτ )2

]
‖xn − Txn‖2

≤ αn[αn‖γ f (xn) − μFxn‖2 − 〈(μF − γ f )xn, xn − x∗〉
+ ω(1 − τ )‖Txn − xn‖‖xn − x∗‖].

(3:9)

Finally, we prove xn ® x*. To this end, we consider two cases.

Case 1: Suppose that there exists n0 such that {�n}n≥n0 is nonincreasing, it is equal to

Γn+1 ≤ Γn for all n ≥ n0. It follows that limn®∞ Γn exists, so we conclude that

lim
n→∞(�n+1 − �n) = 0. (3:10)
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It follows from (3.9),(3.10) and combine with the fact that limn®∞ an = 0, we have

limn®∞||xn - Txn|| = 0. Considering (3.9) again, from (3.10), we have

− αn[αn‖γ f (xn) − μFxn‖2 − 〈(μF − γ f )xn, xn − x∗〉
+ ω(1 − τ )‖Txn − xn‖‖xn − x∗‖]

≤ �n − �n+1.

(3:11)

Then, by
∑∞

n=0 αn = ∞, we conclude that

lim inf
n→∞ −[αn‖γ f (xn) − μFxn‖2 − 〈(μF − γ f )xn, xn − x∗〉
+ ω(1 − τ )‖Txn − xn‖‖xn − x∗‖]

≤ 0.

(3:12)

Since {f(xn)} and {xn} are both bounded, as well as an ® 0, and limn®∞||xn - Txn|| =

0, it follows from (3.12) that

lim inf
n→∞ 〈(μF − γ f )xn, xn − x∗〉 ≤ 0. (3:13)

From Lemma 2.1, it is obvious that

〈(μF − γ f )xn, xn − x∗〉 ≥ 〈(μF − γ f )x∗, xn − x∗〉 + 2(μη − γ L)�n. (3:14)

Thus, from (3.14), and the fact that limn®∞Γn exists, we immediately obtain

*******

lim inf
n→∞ 〈(μF − γ f )x∗, xn − x∗〉 + 2(μη − γ L)�n

= 2(μη − γ L) lim
n→∞ �n + lim inf

n→∞ 〈(μF − γ f )x∗, xn − x∗〉 ≤ 0,
(3:15)

or equivalently

2(μη − γ L) lim
n→∞ �n ≤ − lim inf

n→∞ 〈(μF − γ f )x∗, xn − x∗〉. (3:16)

Finally, by Lemma 2.6, we have

2(μη − γ L) lim
n→∞ �n ≤ 0, (3:17)

so we conclude that limn®∞Γn = 0, which equivalently means that {xn} converges

strongly to x*.

Case 2: Assume that there exists a subsequence {�nj}j≥0 of {Γn}n ≥ 0 such that
�nj < �nj+1 for all j Î N. In this case, it follows from Lemma 2.4 that there exists a

subsequence {Γτ(n)} of {Γn} such that Γτ(n)+1 > Γτ(n), and {τ(n)} is defined as in Lemma

2.4.

Invoking (3.9) again, it follows that

�τ(n)+1 − �τ(n) +
[ω

2
(1 − ατ(n)) − ω2(1 − ατ(n)τ )2

]
‖xτ(n) − Txτ(n)‖2

≤ ατ(n)[ατ(n)‖γ f (xτ(n)) − μFxτ(n)‖2 − 〈(μF − γ f )xτ(n), xτ(n) − x∗〉
+ ω(1 − τ )‖Txτ(n) − xτ(n)‖‖xτ(n) − x∗‖].
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Recalling the fact that Γτ(n)+1 > Γτ(n), we have[ω

2
(1 − ατ(n)) − ω2(1 − ατ(n)τ )2

]
‖xτ(n) − Txτ(n)‖2

≤ ατ(n)[ατ(n)‖γ f (xτ(n)) − μFxτ(n)‖2 − 〈(μF − γ f )xτ(n), xτ(n) − x∗〉
+ ω(1 − τ )‖Txτ(n) − xτ(n)‖‖xτ(n) − x∗‖].

(3:18)

From the preceding results, we get the boundedness of {xn} and an ® 0 which

obviously lead to

lim
n→∞ ‖xτ(n) − Txτ(n)‖ = 0. (3:19)

Hence, combining (3.18) with (3.19), we immediately deduce that

〈(μF − γ f )xτ(n), xτ(n) − x∗〉 ≤ ατ(n)‖γ f (xτ(n)) − μFxτ(n)‖2
+ ω(1 − τ )‖Txτ(n) − xτ(n)‖‖xτ(n) − x∗‖. (3:20)

Again, (3.14) and (3.20) yield

〈(μF − γ f )x∗, xτ(n) − x∗〉 + 2(μη − γ L)�τ(n) ≤ ατ(n)‖γ f (xτ(n)) − μFxτ(n)‖2
+ ω(1 − τ )‖Txτ(n) − xτ(n)‖‖xτ(n) − x∗‖. (3:21)

Recall that limn®∞aτ(n) = 0, from (3.19) and (3.21), we immediately have

2(μη − γ L) lim sup
n→∞

�τ(n) ≤ − lim inf
n→∞ 〈(μF − γ f )x∗, xτ(n) − x∗〉. (3:22)

By Lemma 2.6, we have

lim inf
n→∞ 〈(μF − γ f )x∗, xτ(n) − x∗〉 ≥ 0. (3:23)

Consider (3.22) again, we conclude that

lim sup
n→∞

�τ(n) = 0, (3:24)

which means that limn®∞ Γτ(n) = 0. By Lemma 2.4, it follows that Γn ≤ Γτ(n), thus, we

get limn®∞ Γn = 0, which is equivalent to xn ® x*. □

Remark 3.2. Corollary 3.3 is only valid for ω ∈ (0,
1
2
). This is revised by Wongchan

and Saejung [8].

corollary 3.3. [4]Let the sequence {xn} be generated by

xn+1 = αnf (xn) + (1 − αn)Tωxn, (3:25)

where the sequence {an} ⊂ (0,1) satisfies limn®∞ an = 0, and
∑∞

n=0 αn = ∞. Also

ω ∈ (0,
1
2
), and Tω := (1 - ω)I + ωT with two conditions on T:

(C1) ||Tx - q|| ≤ ||x - q|| for any x Î H, and q Î Fix(T); this means that T is a

quasi-nonexpansive mapping;

(C2) T is demi-closed on H; that is: if {yk} Î H, yk ⇀ z, and (I - T)yk ® 0, z Î Fix

(T).

Then, {xn} converges strongly to the x* Î Fix(T) which is the unique solution of the
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VIP(3.26):

〈(I − f )x∗, x − x∗〉 ≥ 0, ∀ x ∈ Fix(T). (3:26)
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