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Muramyl peptides activate innate
immunity conjointly via YB1 and NOD2

Alexander G Laman1, Richard Lathe1,2,
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Feodor A Brovko1, Svetlana Guryanova1, Ludmila Alekseeva1,
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Abstract

Bacterial cell wall muramyl dipeptide (MDP) and glucosaminyl-MDP (GMDP) are potent activators of innate immunity.

Two receptor targets, NOD2 and YB1, have been reported; we investigated potential overlap of NOD2 and YB1

pathways. Separate knockdown of NOD2 and YB1 demonstrates that both contribute to GMDP induction of NF-kB

expression, a marker of innate immunity, although excess YB1 led to induction in the absence of NOD2. YB1 and NOD2

co-migrated on sucrose gradient centrifugation, and GMDP addition led to the formation of higher molecular mass

complexes containing both YB1 and NOD2. Co-immunoprecipitation demonstrated a direct interaction between YB1

and NOD2, a major recombinant fragment of NOD2 (NACHT–LRR) bound to YB1, and complex formation was

stimulated by GMDP. We also report subcellular colocalization of NOD2 and YB1. Although YB1 may have other

binding partners in addition to NOD2, maximal innate immunity activation by muramyl peptides is mediated via an

interaction between YB1 and NOD2.
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Introduction

Defense against pathogens not only involves Ag-spe-
cific immunity, mediated by Abs and specialized
immune cells, but also relies on broad-spectrum resist-
ance known as innate immunity. A series of pathogen-
specific molecules (PAMPs) produced by microbes and
viruses induce a potent ensemble of defense strategies
including cytokine release and inflammation, macro-
phage invasion, and the production of antimicrobial
peptides, proteases, reactive oxygen species, and extra-
cellular nets (for review, see Janeway and Medzhitov,1

Ganz2, Brinkmann et al.,3 West et al.,4 and Cui et al.5).
The principal bacterial PAMPs include bacterial

LPS, cell-wall muramyl peptides, peptides bearing pro-
karyotic N-formylmethionyl residues, and unmethy-
lated DNA. These induce innate immune responses
by binding to specific PRRs; receptor activation leads
to potent induction of innate immune pathways, not-
ably by activation of transcription factor nuclear factor
NF-kB that induces the expression of key of cytokines
and chemokines involved in innate immunity.

LPS is known to bind to TLR4,6 and TLR9 recog-
nizes unmethylated CpG residues in bacterial DNA.7

Three receptors, formyl peptide receptor (FPR)1–3,
recognize N-formylated peptides.8 However, the
molecular targets for muramyl peptides have remained
contentious.

Muramyl dipeptide (MDP) and glucosaminyl-MDP
(GMDP) are potent immunostimulators released from
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the bacterial cell wall by the action of lysozyme and
amidases, and synergize with LPS in the induction of
the innate immune response.9–11 MDP is composed
of N-acetylmuramic acid linked to the N-terminus of
an L-alanine D-isoglutamine dipeptide; GMDP bears
an additional N-terminal acetyl-glucosamine moiety.
The different muramyl peptides show similar biological
activity and are thought to target the same binding sites.

Attention initially focused on NOD2, encoded by
the CARD15 gene in humans, as a likely sensor for
cell-wall peptidoglycans.12–14 NOD2 is widely expressed
in innate immune cells, and Nod2 knockout in mice was
reported to impair MDP responses15–17 whereas expres-
sion of NOD2 can increase MDP signaling.13,18

Nonetheless, there has been debate concerning the iden-
tity of the MDP receptor. NOD2 was first reported to
lack detectable affinity for immobilized MDP19 and,
although purified NOD2 protein was reported to bind
to biotinylated MDP, excess biotinylated MDP
retained only about 3% of NOD2 protein.20

Subsequently it was reported that MDP was able to
bind directly to recombinant NOD2 protein produced
in insect cells.21

However, it is open to debate whether NOD2 is the
principal binding target of MDP. Although birds
appear to lack a NOD2 gene (reviewed in Boyle
et al.22), and may respond less well to muramyl pep-
tides,23 an MDP analog was reported to exert potent
immunostimulatory effects in chickens,24 suggestive of
an alternative receptor. In addition, the mitogenic and
adjuvant activities of MDP can be separated,25 and
MDP can induce caspase-1 activation and IL-1 induc-
tion by a pathway independent of NOD2.26 Indeed,
using a peptide mimetic of GMDP,27,28 we reported
expression cloning of GMDP-binding polypeptides
from mouse splenocytes: All clones identified multi-
functional factor YB1 as a specific target for GMDP.29

YB1 (also known as Y box binding protein 1, YBX1)
is a highly conserved multifunctional factor, and homo-
logs of YB1 are present in bacteria, plants, insects, and
vertebrates.30 In mammals, YB1 acts as a transcription
factor/messenger RNA (mRNA) binding factor that
modulates the transcription and translation of innate
immune genes encoding cytokines and their recep-
tors,30,31 and may also regulate some aspects of Ag-
specific immunity.32 YB1 is secreted from the cell via
a non-canonical secretion pathway,33 and extracellular
YB1 is found in the serum of sepsis patients but not of
healthy controls.34 Demonstrating the importance of
YB1, mice genetically deficient for YB1 are not
viable.35 More recently, we confirmed specific binding
of GMDP to YB1, subcellular colocalization of YB1
and GMDP, and demonstrated that YB1 knockdown
impaired the biological response to GMDP.36

Independent lines of evidence thus suggest that both
NOD2 and YB1 may act as receptor targets for

muramyl peptides, and we therefore addressed the pos-
sibility of overlap between YB1 and NOD2 in the
innate immune response of mammalian cells to
GMDP. We report here that YB1 interacts with
NOD2 in the cellular response to muramyl peptide.

Materials and methods

General experimental procedures

Experimental details and reagents for the background
procedures described here are presented in Laman
et al.36 As before, the induction of an innate immune
response by GMDP was assessed by quantitative PCR
of NF-kB (Nfkb2); Gapdh provided the internal con-
trol—as described previously,36 qPCR of Nfkb2 tran-
script levels employed primers 5’-ATG CCT GAT TTT
GAG GGA CTA TAC CCT GTA-3’ and 5’-GAC
TTG GTG GGT CTA TTG GAG GCC TTG TC-3’
located within the downstream coding region of Nfkb2,
and which identify all major splice variants. Gapdh
internal control primers were 5’-GAC CAC AGT
CCA TGC CAT CA-3’ and 5’-TGA AGT CGC
AGG AGA CAA CC-3’. For biochemical experiments,
GMDP and MDP were synthesized chemically at the
Institute for BioOrganic Chemistry.

Antibody (Ab) preparation

Abs to mouse NOD2 were produced by immunizing
rabbits subcutaneously with NOD2 peptides KANGL
AAFLLQHVRE (peptide 1) and KAEPHNLQIT (pep-
tide 2) conjugated to BSA or OVA. Groups of two
rabbits received either 2mg BSA-peptide 1 or BSA-pep-
tide 2. One wk later animals received the same injec-
tions, and after a further week were immunized with
2mg OVA-peptide 1 or OVA-peptide 2, respectively.
Immunization with OVA-conjugated peptides was
repeated 1 wk later. After 3d, anti-peptide titers were
approximately 1/100 000. Total Ig from combined
serum from each pair of animals was purified twice
by (NH4)2SO4 precipitation and re-suspended into
PBS. For affinity purification, epoxysepharose (0.3 g)
was washed in 50mM NaHCO3 (pH 9.5) and re-sus-
pended in 1ml of the same buffer containing 4mg of
peptide 1 or peptide 2. After coupling (4h at room tem-
perature, 18�C), the resin was washed, blocked (1M
ethanolamine, pH 8, 1h), and used to prepare affinity
columns. Total Ig preparations were applied to the col-
umns at room temperature, washed with PBS, and
retained Ig was eluted with 2ml 200mM glycine-HCl,
pH 2.3. Eluates were immediately neutralized (1M
Tris-HCl, pH 9.0) and dialyzed extensively versus
PBS, yielding about 2ml affinity-purified polyclonal
anti-NOD2 peptide Ab (about 2mg/ml). YB1 Abs
were as described previously.36 The specificity of both
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Abs was confirmed by detection of bands of the
expected molecular mass on Western blotting and by
their abrogation in gene-specific knockdown cells
(Figure S1 in the Supplementary Data Online).

Knockdown experiments

Specific antisense RNA coding sequences 5’-GGGTCC
TCCACGCAATTAC-3’ (for YB1)36 and 5’-TTGATC
TCGCTGCGGTGAA-3’ (for NOD2) were introduced
downstream of a Pol III promoter in plasmid pSIREN-
RetroQ-TetH (Clontech Laboratories Inc); mouse WEHI-
3 monocytes were stably transfected with the expression
plasmids using selection in 250mg/ml hygromycin.

Sucrose gradient centrifugation

WEHI cells (2� 107) were lysed in 100ml 25mM Tris
HCl (pH 6.8), 150mM NaCl, 5mM MgCl2 containing
1% Triton X-100 and 1mM phenylmethanesulfonyl
fluoride (PMSF) for 5 min at room temperature.
After centrifugation (5 min at 1200 g; 5 min at 5000 g)
supernatants were collected and were divided into four
portions. These were treated, respectively, with GMDP
(0.1 mg/ml), YB1 (1mg/ml), or GMDP+YB1, and
incubated for 0.5h at 37�C. Aliquots (75 ml) of each
sample was layered onto 5%–20% sucrose gradients
in the same buffer without Triton X-100. The samples
were centrifuged for 16h (SW40 rotor, Beckman
Instruments), 111,000 g at rav, 4

�C. Fractions (400 ml)
were collected and analyzed by dot-blotting using bio-
tinylated mouse anti-YB1 monoclonal or biotinylated
rabbit anti-NOD2 polyclonal Abs; detection employed
streptavidin-peroxidase conjugate and enhanced chemi-
luminescence detection. Molecular mass markers were
IgG (150 kDa) and IgM (950 kDa).

Recombinant NOD2

For cloning and expression of NOD2 NACHT-leucine-
rich repeat (LRR) in bacteria, the following primers
were used: 5’-CTCCACATATGGTCGCCACCCTG
GGCCTGGA273-3’ (forward primer NdeI) and 5’-
ATGCGGCCGCAAGCAAGAGTCTGGTGTCC-3’
(reverse primer 1040) corresponding to amino acids
273–1040 of NOD2 (NACHT-LRR). PCR fragments
were cloned into the expression vector pET22b as
NdeI–NotI fragments in Escherichia coli strain
Rosetta (DE3). Encoded polypeptides were isolated fol-
lowing bacterial disruption (model 300VT Ultrasonic
Homogenizer) and Ni chelate chromatography (Ni-
NTA agarose, Quiagen 30210) according to suppliers’
recommendations and as described previously for
YB1.36 To measure affinity for YB1 purified proteins
(100 nM) were applied to immunoplates, washed
(PBST), and different concentrations of YB1 were

added as described in the Figure 1 legend. After incu-
bation (1h, 37�C) and washing the plates were incu-
bated with anti-YB1 Abs, washed, and developed
using anti-mouse HRP conjugate. Negative control
was an extract of total protein from E. coli strain
Rosetta containing empty plasmid.

Results

Both NOD2 and YB1 are required for the
full stimulatory activity of muramyl peptides

We previously reported that knockdown of YB1
impaired the activation of innate immune pathways,
as assessed by the induction of NF-kB (Nfkb2) by
GMDP (see Figure 1).36 This is believed to be an accur-
ate proxy for innate immunity because the NF-kB pre-
cursor protein was cleaved following stimulation,
translocated to the nucleus, and the expression of a
key cytokine gene (Cxcr4) was induced.36 To address
potential overlaps between NOD2 and YB1 pathways,
we prepared knockdown cell lines for NOD2; knock-
down was confirmed by Northern and Western blotting
(Supplementary Figure S1). Cells were treated with
chemically synthesized GMDP, and qPCR was used
to assess the induction of Nfkb2 expression, a marker
of innate immunity. As shown in Figure 1, knockdown
of NOD2 led to significant down-regulation of NF-kB
induction by GMDP, although the response could be
restored by excess exogenous YB1; the same result was
obtained when GMDP was replaced by chemically
synthesized MDP (Supplementary Figure S2), indicat-
ing that the YB1 does not distinguish between the two
forms of muramyl peptides.

YB1 and NOD2 co-migrate on sucrose gradient
centrifugation; GMDP enhances the formation
of high molecular mass (MM) complexes

We addressed the possibility that YB1 and NOD2
might both contribute to a joint signaling complex.
Splenocyte extracts were incubated with GMDP or
YB1, or both agents, and were then resolved by sucrose
density-gradient centrifugation. Fractions were separ-
ately probed with specific Abs against YB1 and
NOD2. As shown in Figure 2, in addition to a peak
at around 30 kD, potentially representing YB1 mono-
mer, higher MM peaks were detected in the size range
of 100–150 kDa, and these fractions were confirmed to
contain both YB1 and NOD2 (Supplementary Figure
S3). On treatment with GMDP, a small peak appeared
at around 250 kDa that reacted modestly with anti-YB1
Ab, but very weakly with anti-NOD2 Ab. On addition
of both GMDP and YB1, new GMDP-dependent high
molecular mass complexes appeared in the size range
250–400 kDa that were positive both for YB1 and
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NOD2. This raised the possibility that, following
GMDP stimulation, YB1 might be recruited to a
larger complex that also contains NOD2, and that
YB1 might bind directly to NOD2.

Evidence for a direct interaction:
coimmunoprecipitation of YB1 and NOD2

We therefore treated monocytes, macrophages, or sple-
nocytes with GMDP, and recovered protein complexes
with either Ab to YB1 or Ab to NOD2. These were
resolved by gel electrophoresis and probed with Ab to
the other protein. Figure 3 shows that Ab to YB1
retains a protein that reacts with anti-NOD2 Ab and
that has an apparent MM (ca. 100 kDa) consistent with
NOD2 protein. Conversely, Ab to NOD2 retained a
protein that reacts with anti-YB1 Ab and that migrates
with an apparent MM (ca 50 kDa) consistent with the
migration behavior of YB1 (YB1 migrates abnormally
slowly on sodium dodecyl SDS-PAGE30). In all cases
complex formation was promoted by GMDP, but there
was evidence for binding in the absence of GMDP. We
conclude that YB1 and NOD2 both contribute to a
protein complex, and that GMDP promotes the forma-
tion of this complex.

GMDP is present in the YB1/NOD2 complex

The finding that GMDP promotes YB1/NOD2 com-
plex formation raises the question of whether it acts
indirectly or whether the molecule itself forms part of
a complex containing both polypeptides. We therefore
treated splenocytes with fluorescein isothiocyanate
(FITC)-labeled GMDP; complexes containing YB1
and/or NOD2 were affinity purified using anti-YB1 or
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Figure 1. Knockdown demonstrates that both NOD2 and YB1 participate in induction of NF-kB (Nfkb2) expression by GMDP.

WEHI cells alone, or knockdown (KD) cells stably transfected with an antisense construct to NOD2, were incubated for 2h at 37�C in

the presence or absence of GMDP (10 mg/ml) and/or recombinant YB1 protein (1mg/ml), as indicated, and levels of Nfkb2 mRNA were

determined. The internal control was Gapdh (not presented). The figure shows means and SDs of band intensities determined from

three or more independent replicates; NS: not significant. Values were normalized against maximal stimulation; the maximal level of

induction (+GMDP +YB1) was not significantly different in control versus NOD2 antisense transfected cells. The right-hand panel is

provided only for comparison and is adapted from Laman et al.36
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Figure 2. Sucrose gradient centrifugation (heatmap) of splenocytes

pretreated with GMDP and/or YB1 showing higher MM complexes.

Cells were pretreated with GMDP (1mg/ml) or YB1 (1mg/ml); after

cell disruption in the presence of 1% Triton X-100 cell extracts were

resolved by sucrose gradient centrifugation. Aliquots were immobi-

lized on membranes and probed with peroxidase-labeled anti-YB1 or

anti-NOD2 as indicated, and developed colorimetrically. Intensities of

fractions were normalized to peak intensity in each gradient (black)

and presented as a heatmap.
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anti-NOD2 Abs, and examined for FITC fluorescence.
As shown in Figure 4, both Abs retained fluorescence
that was abolished by excess unlabeled GMDP. We
conclude that GMDP forms part of the YB1 and
NOD2 complex.

Subcellular colocalization of YB1 and NOD2

We previously demonstrated that YB1 and (FITC)-
GMDP colocalize at the subcellular level.36 Because
other cell types were unsuitable for subcellular micros-
copy, we used primary dendritic cells to address
whether YB1 and NOD2 colocalize within the cell.
Primary mouse dendritic cells were preincubated with
GMDP and then probed with fluorescent (FITC or
AlexaFluor 555) Abs against YB1 and NOD2; cells
were then visualized by confocal microscopy. Figure 5
reveals prominent colocalization of YB1 with NOD2.

YB1 binds to the NACHT-LRR domain of NOD2

Given evidence for co-migration on sucrose gradient
centrifugation, co-immunoprecipitation, and co-locali-
zation within the cell, we addressed direct binding of
purified YB1 to recombinant NOD2. Because we were
unable to express full-length NOD2 in bacteria (data
not presented) we cloned the central NACHT (NAIP/
CIITA/HET-e/TP-1; nucleotide-binding and oligomer-
ization)-LRR fragment of NOD2 (termed here
NODNL); this was expressed in E. coli
(Supplementary Figure S4). Both YB1 produced in E.

coli36 and NOD2NL (this work) were purified to homo-
geneity. The NOD2NL fragment was immobilized on
microtiter plates and probed with different concentra-
tions of recombinant YB1 in the presence or absence of
GMDP. After washing, the plates were developed with
Ab to YB1. Figure 6 demonstrates that YB1 binds dir-
ectly to NOD2NL. Moreover, the extent of complex
formation was increased in the presence of GMDP.
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We conclude that YB1 binds directly to NOD2, and
that complex formation is promoted by GMDP.

Discussion

This work addresses the specific binding target for mur-
amyl peptides in the induction of the innate immune
response in mammals. There is evidence that GMDP
binds directly to YB1,36 but further data argue that
NOD2 centrally contributes to the biological activity
of muramyl peptides,15–17 potentially through direct
binding.21 We provide data that could explain this
dichotomy: We report that YB1 binds to NOD2, and
that complex formation is stimulated by chemically
synthesized GMDP. Although we suggest that the pri-
mary binding site is located on YB1, knockdown
experiments indicate that both YB1 and NOD2 are
required for a maximal response.

However, despite contradictory data (that muramyl
peptides poorly bind to NOD219,20), it was reported
that human NOD2 expressed in Sf21 insect cells
(derived from the Fall armyworm Spodoptera frugi-
perda, a moth) directly binds to MDP.21 We have
been unsuccessful in demonstrating binding of
GMDP to cloned NOD2 (not presented) but, because
we have been unable to express full-length NOD2 in
our system (E. coli), this failure per se does not exclude
the possibility that GMDP might bind to authentic
NOD2. We also note remarkable conservation of
YB1 across species including insects (Supplementary
Data Online).

Further, we present data that NOD2 may not be
absolutely required for complex formation with mura-
myl peptides and YB1. Knockdown of NOD2 impaired
induction of NF-kB expression by GMDP, but this
could be overcome by the addition of excess YB1. In
addition, although GMDP plus YB1 drove the forma-
tion of high MM complexes (250–400 kDa) containing
both YB1 and NOD, as revealed by sucrose density-
gradient centrifugation, GMDP alone (in the absence
of excess YB1) produced high MM complexes that con-
tained endogenous YB1, but little NOD2. Although
these experiments do not prove rigorously that YB1
can act independently, they point to the possibility
that YB1 may have another binding partner in addition
to NOD2. The absence of NOD2 in birds, reptiles, and
amphibians22 (these species all contain YB1 homologs
strikingly similar to mammalian YB1), also suggests
that other (non-NOD2-dependent) pathways may oper-
ate in these species.

In mammals, NOD2 is one of a large family of evo-
lutionarily related NLRs, including NOD1 and NOD3
(NLRC2), with up to 30% sequence identity between
pairs;37 it is possible that YB1 has some affinity for
NOD1/3. In the present work it is of note that our
anti-NOD2 Abs are unlikely to react with other
NOD-like molecules because (i) a single polypeptide
was observed on Western blotting (Supplementary
Figure S1), (ii) gene expression knockdown of NOD2
abrogated protein detection (Supplementary Figure
S1), and (iii) the specific peptides used to prepare
anti-NOD2 Ab (‘‘Materials and methods’’) are not con-
served between NOD2 and other NOD-like molecules
(data not presented). Further work using specific Abs
against NOD-family members, including NOD1, will
be necessary to address whether YB1 interacts with
other NLRs.

YB1 may also bind to the NOTCH3 cell surface
receptor38 that, like NOD2, activates NF-kB path-
ways.39 Although NOTCH signaling is generally impli-
cated in cell/cell interactions and the organization of
organogenesis, NOTCH pathways may also play an
important role in innate immunity (reviewed in Shang
et al.40). Other potential YB1 binding partners have
been reported (for review see Eliseeva et al.30).

We previously raised the issue of the domain of
interaction between YB1 and GMDP,36 now extended
to its binding partner NOD2. GMDP is principally an
extracellular moiety released from invading bacteria.
By contrast, the NOD2 receptor is intracellular,
although an association with the inside face of the cell
membrane may be required for activity,41,42 specifically
the C-terminal LRR domain. Although administered
muramyl peptides are rapidly taken up from the circu-
lation,43 and may enter cells via peptide transporters,
membrane vesicles, and bacterial pore-forming toxins/
secretion systems (for review see Clarke and Weiser42),
YB1 potentially offers a further route. Because YB1
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straddles both the extracellular and intracellular
domains, being secreted into the extracellular milieu—-
from where it is efficiently taken up, by a mechanism
not yet elucidated—it is therefore possible that extra-
cellular YB1 binding to muramyl peptides might con-
tribute to (or compete with) their cellular uptake.

In sum, we conclude that YB1 binds to NOD2, lead-
ing to the formation of higher MM complexes, and this
association is promoted by GMDP. A summary
schema is presented in Figure 7. Maximal induction
of innate immunity, as assessed through induction of
NF-kB, requires the integrity both of YB1 and NOD2.
It remains to be established whether the major binding
contacts of GMDP lie in YB1, in NOD2, or at their
interface; this will require crystallization of the ternary
complex.

However, there are suggestions that YB1 may have
other binding partners, so far unidentified, that could
also contribute the innate immune response induced by
bacterial muramyl peptides (Figure 7). In addition, the
unusual properties of YB1, a conserved polypeptide
that exchanges between intracellular and extracellular
localizations, could suggest that YB1 might be involved
in cellular uptake of muramyl peptides and potentially
in their delivery (as a YB1 complex) to NOD2.
Moreover, YB1 is up-regulated in response to infection
and appears in the circulation (e.g. Hanssen et al.34).
YB1 released from sites of infection could thus play an
intracrine/endocrine role in sensitizing adjoining tissues
to muramyl peptides, a possibility that warrants further
investigation.
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