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Abstract

This work deals with a boundary value problem for a nonlinear multi-point fractional
differential equation on the infinite interval. By constructing the proper function
spaces and the norm, we overcome the difficulty following from the noncompactness
of [0, 00). By using the Schauder fixed point theorem, we show the existence of one
solution with suitable growth conditions imposed on the nonlinear term.
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1 Introduction
In this paper, we consider the existence of solution of boundary value problem for a non-

linear multi-point fractional differential equation,

Dy, u(t) = f(t,u(t), D3, u(t)), te]:=[0,+00), (L.1)
m-2

u(0)=0,  #(0)=0,  Di'u(+o0)=Y_ Bul&), (1.2)
i=1

where 2 <« <3 is areal number, f € C(J x R x R,R) and I'(«) — Zfﬁf ﬂff"l Z0.

Due to the intensive development of the theory of fractional calculus itself as well as its
applications, such as in the fields of physics, chemistry, aerodynamics, polymer rheology,
etc., many papers and books on fractional calculus, fractional differential equations have
appeared (see [1-16]).

For example, Bai [11] established the existence results of positive solutions for the prob-

lem

Dy, u(t) +f(Lu(®)) =0, 0<t<1,

M(O) =0, M(l) = ﬁu(fl), ne (01 1)
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In [13], the authors considered the three-point boundary value problem of a coupled sys-

tem of the nonlinear fractional differential equation

DY, u(t) =f(¢,v(®),Dv(t)), 0<t<l,
D u(t) = f(t, u(t), DTu(t)), 0<t<1,

u(0)=v(0)=0,  u()=yuln),  v({1)=yu),

under the conditions 0 < yn*~! <1, 0 < yn#~! < 1. By using the Schauder fixed point theo-
rem, they obtained at least one solution of this problem.

The theory of boundary value problems on infinite intervals arises naturally and has
many applications; see [17]. The existence and multiplicity of solutions to boundary value
problems of fractional differential equations on the infinite interval have been investigated
in recent years [18-21].

Agarwal et al. [22] established existence results of solutions for a class of boundary value
problems involving the Riemann-Liouville fractional derivative on the half line by using
the nonlinear alternative of Leray-Schauder type combined with the diagonalization pro-
cess.

Arara et al. [23] considered boundary value problems involving the Caputo fractional

derivative on the half line,
D*u(t) =f(t, u(t)), t €] :=[0,00),u(0) = ug, u is bounded on J.

By using fixed point theorem combined with the diagonalization process, they obtained
the existence of solutions.
Liang and Zhang [24] consider the m-point boundary value problem of fractional dif-

ferential equation on the infinite interval

D, u(t) +a(o)f (t,u(t)) =0, 0<t<+o0,

m-2

w(0)=0,  #(0)=0,  Di'u(+o0)=  Bu(&),

i=1

where 2 < o < 3, Dj, is the standard Riemann-Liouville derivative. Using a fixed point
theorem for operators on a cone, sufficient conditions for the existence of multiple positive
solutions were established. We point out that the nonlinear term of the equation does not
depend on the lower order derivative of the unknown function.

In this paper, by constructing the proper function spaces and the norm to overcome the
difficulty of the noncompactness of [0,00) and using the Schauder fixed point theorem,
we show the existence of one solution with suitable growth conditions imposed on the

nonlinear term. Our method is different from [22, 23] in essence.

2 Preliminaries and lemmas
For convenience of the reader, we present the necessary definitions from fractional calcu-
lus theory [1].
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Definition 2.1 The Riemann-Liouville fractional integral of order « > 0 of a function u(¢) :
R — R is given by

I, u(t) / (£ —9)*Yu(s) ds

_r()

provided the right side is point-wise defined on (0, 00).

Definition 2.2 The fractional derivative of order o > 0 of a continuous function u(¢) :
R — R is given by

PPN S (AN A O
Do, u(®) = F(n—oz)(dt) ,/0 (t — s)antl ds

where 7 = [«] + 1, provided that the right side is point-wise defined on (0, 00).

Lemma 2.1 Assume that u € C(0,1) U L(0,1), and D§, € C(0,1) U L(0,1). Then
I8, D8, u(t) = u(t) + Crt* ™ + Cot* 2 + -+ + Cyt* N,
forsome C;eR,i=1,2,...,N, where N is the smallest integer greater than or equal to «.

Lemma 2.2 Given y(t) € L[0, 00). The problem

D, u(t)=y(t), 0<t<oo,2<wo<3,

m-2
w(0)=u(0)=0,  D*'u(+o0) =) Bul&),

i=1

is equivalent to

t (t _ S)oz—l t"‘_l 0
= _ d
uo) = [ s TS JRECEE

Yo it i (£ —s)* !
L) -0, ﬂlsM/ Foy 2O%

Proof By Lemma 2.1, we have

t—
u(t) = / ( y(s Yds + 1t + et + ¢33

The boundary condition #(0) = #/(0) = 0 implies that ¢; = C3 =0.
Considering the boundary condition D*u(+00) = Y /] % B:u(&;), we have

—fo y(s)ds + Y1 /5zf0' '_s y(S)dS
o) - Z ﬂl%—a 1

=

The proof is completed. d
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Define the function spaces

X= {u(t) € C(J,R) : sup ()] < +oo}

tE] 1 + ta_l

with the norm

llzell =SupM
X tE] 1+t06—1

and

(¢t
Y= {u(t) € X :4/(t),D*u(t) € C(J,R), sup ) < +00,sup|D*Mu()| < +oo}
te]

1+ ta—2 te]

with the norm

) Ju(2)| ju/(8)]
luelly = max{ sup
te

,su ,sup| D ()] §.
] 1+ta_1 te})l_,_tot—Z tE?| ()|}

Lemma 2.3 (X, | - ||x) is @ Banach space.

Proof Let {u,}22, be a Cauchy sequence in the space (X, | - ||x), then Ve > 0, 3N > 0 such
that

unlt) ()
1+l 14!

v(t)

14221

can verify easily that v(¢) € X. Then (X, | - |lx) is a Banach space. O

for any t € J and n,m > N. Thus, {u,}}2, converges uniformly to a function and we

Lemma 2.4 (Y, | - |ly) is a Banach space.

Proof Let{u,}:°; beaCauchysequenceinthespace (Y, ||| y), then {u,}:°, isalso a Cauchy

sequence in (X, || - ||x). Thus there exists a function v(t) € X such that

o un(2) u(t)
lim =—".
n—+oo 1+ ¢2-1 1421

Moreover,
u (¢t v(t

lim n() = L, lim D% u, = w(t),

n—+00 ] + (@2 1 4 o2 n—>+00
and

v(t
up I )|2 < +00, sup| D*'u(t)| < +o0.
te] 1+E% te]

It is easy to check that v = #'(¢). Next we need to ensure that w = D*u(t).

Page 4 of 13
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In view of the Lebesgue dominated convergence theorem and the uniform convergence
of {D*u,,(£)}2,, there exists a positive constant M > 0 such that % <M,n=12,....

Then
1 Up
w(t) = lim D*lu,(t) = ———— —/ (t-s)t” "‘(1+s)°‘*1 ()
n—+00 (2 a n—>+oo
together with
! Uy (5)
/ (t_s)l—a(l +S)a+l_
0 1+s%

t
§M/ (t—s)l“"(1+s°‘_1)ds
0

1 1
M
:M[tz‘“/ 1-70)"dr+ tf 70741 - )l dti| = 2—::2-“ +Blo, 2 — )Mt
0 0 -

ensures that w = D* y(¢).
Thus (Y| - ||ly) is a Banach space. O

Because the Arzela-Ascoli theorem fails to work in Y, we need a modified compactness
criterion to prove the compactness of the operator.

Lemma 2.5 Let Z C Y be a bounded set and the following conditions hold:
(i) forany u(t) € Z, lj‘tﬁf I lf[}j 5 and D*Lu(t) are equicontinuous on any compact
interval of J;

(ii) given e >0, there exists a constant T = T(g) > 0 such that

u'(t) u'(ty)
a2 ) <&,
1+ 1+125

u(ty) u(ty)
a-1 a-1 <&
1+ 1+125

|D°“1u(t1) - D"‘_lu(tz)| <e
forany t1,ty > T and u(t) € Z. Then Z is relatively compact in Y.

Proof We need to prove that Z is totally bounded. First we consider the case ¢ € [0, T].
Define

Zio,ry = {u®) :u(t) e Z,t €[0,T1}.

It is easy to check that Zjo,7} with the norm |[u[|oo = Sup,c(o 1] |1+”t(%| is a Banach space.
Then condition (i) combined with the Arzela-Ascoli theorem indicates that Zo 1) is rela-
tively compact. Thus for any positive number ¢, there exist finitely many balls B, («;) such
that

n
Zom) € | Be (),
i=1
where

u(t) ui(t)

Bo(u;) = Ju(t) € Z = uilleo = SU
s( z) { () [0,T] I illoo te[O,I;”] 1+e1 1401
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Similarly, the space

Zioqy = {u/(6) : u(t) € Z,£ €10, T}
with the norm ||| = |1f/%| and

Zio = {D'u(t) : w(t) € Z,t € [0, T]}
with the norm

||D°‘_1u|| = sup |D“_1u(t)|
te[0,T)
are Banach spaces. Then

m
Zio,ry € B (),
j=1

k
Ziom C U B.(D""'wy),
p=1

where

Bg(v]/») = {u/(t) IS Z[IO'T] : Hu/ - Vl/” < {;‘},

B.(D*'wy) = {D*'u-we Z‘[{)lyT] | D u - D"y < &}
Next we define
Zip = {u(t) € Z,ujo,1) € Be(ui), upg 11 € B (V}),Da_lu[o,ﬂ €B, (D"‘_lwp)}.

Now we take u;, € Z;j,. Then Z can be covered by the balls Bs,(u;3,), i = 1,2,...,n, j =
1,2,...,mp=12,...,k where

Bse(up) = {u(t) € Z: lu— ugplly < 5¢}.

In fact, for ¢t € [0, T'],

u(t) _ ”L’jp(t)
1+l 14l

u(t) ui(t)

1+l 14!

Mij(t) _ Mijp(t)
1+tel 14t

wi(®)  uy(t)
1+l 14t

<e+ée+¢ =3¢

/
u'(t) B u,‘jp(t)
1+22 1422

u'(t) u(¢)
1+t22 14¢e2

u(t) M;’j(t)
1+t02 142

u;]. (®) u;jp (®)

1+t22 142

<&+e+e=3¢g,
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and

D" ut) - D" gy (0)|
< DM ut) = DMy (8)] + | D ilt) — D ag(e)] + [ DMy (8) — D ()|

<e+e+e=3e.

For t € [T, +o0], we have

L+gel 1401

u(t) u(T)

1+t 14t

‘ u(t) Uijp (2)

uT) ()
1+t 14t

u;ip(T) B Uijp(2)
1+l 14l

<e+e+3e=be,

W 0
1+t22 1422

() 16,0

1+t272 1422

u'(t) u'(T)
1+t22 14¢e2

u/(T) M;‘jp(T)
1+t22 1422

<e+é&+3e=5¢g,

and
|D°"1u(t) - D“’luijp(t)|
< [D*u(t) - D*u(T)| + [ D* ' u(T) = D* Mty (T)| + [D* a4y (T) = D* gy (2) |
<&+¢€+3¢e=D5e.
These ensure that
||u(t) — u;jp(2) || y < 5e. O

3 Main results
Define the operator T by

(t _ S)a—l

Tu(t) = /O Wf(s, u(s),D“—lu(s)) ds

T JSC f(s,uls), D uls)) ds + 30 B fo @f;g;’l £(s, u(s),D“‘lu(s))dst
INCIED Do

a-1

Theorem 3.1 Assume that f :] X R X R — R is continuous. Then problem (1.1)-(1.2) has
at least one solution under the assumption that
(H) there exist nonnegative functions a(t)(1 + t*1), b(t), c(t) € L'(J), such that

If @29 < a@)lxl + byl + c(t),

where [ c(£) dt < +o0.
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Proof First of all, in view of

, t (t— )a—2 o
Tu(t):/0 F(Soc) f(s,u,D lu)ds

—fo f(s,u, D% 1u)ds+z ,BLfO’ (E’_S f(s,u,D"‘ lu)ds(
-y pE 1

_ 1)ta—2’
D Tu(z)
= /tf(s, u(s), D*u(s)) ds
0

—fo s,u(s), D" \u(s)) ds + 312 i fo’ élr(a) f (s, u(s), D*'u(s)) ds
D) - Y72 pigr?

I'(a),

together with the continuity of f, we see that T"u(t) and D% Tu(¢) are continuous on /.
In the following we divide the proof into several steps.
Step 1 Choose the positive number

R > max{Ri, R, R3},
where

a) fO (&) dt + T'( oz)A Z IBL fol(éz )% IC(t)dt+ x fO c(t) dt

Page 8 of 13

R - ’
1 ey Jo @(®) + b(e) dt - o 3157 B fo‘(éi—t“ Ya(t) + b(®) dt — L [ (alt) + b(t)) dt
_ g Jo R N GE O R P
w7 Jo (a(t +b()dt - 55 X ﬁ, fo’(a — 02 alt) + b(e) dt — %L [ (a(t) + b)) dt
Ry = Joctwyde—+3 3 ﬂljof(s,—t“ Le(t)dt + B2 fo oft) dt

1— [2(a(®) + (D) dt — L Y12 B, [5( — )% (a(e) + b(8)) dt — "2 [*(a(t) + b(2)) d.

and A = T(a) - Y 7> Bige .
Let set

U={u@)eY:|u@|, <R}
Then, A : U — U. In fact, for any u(t) € U, we have

| Tu(t)]
1+l

t _e-l
s Do) ds

- /0 £(s,u(s), D*Mu(s)) ds + Y72 B fol i S}j‘ F(s,u(s), D Vu(s)) ds g1
F(C( Z ’Blgot 1 (1+ tot—l)

R .
< () /(; (a(s)|u(s)| + b(s)|D u(s)| +cls)) ds

+ %/Ooo(a(s)’u(sﬂ + h(s)’Do"lu(s)| + c(s)) ds
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m=2 g ek (g _ el
LI [ I o]0t )

1 1
< ”F(('gf (a(t) + b(2)) dt + F )/0 c(t)dt

N ”’j\”Y/O (a(®) + b(®)) dt+%/oooc(t)dt

 Nully =[G (G- 2,’”12/31 (& —s)
Zﬁ,/ Tl ((t)+b(t))dt+ / T c(t) dt

<R,
| T u(t)|
14 te2

~ t (t_s)a—z o
[ S 690 ) ds

- I f s uls), D*Mus)) ds + 3772 B fiy: <s,;234 £ (s, u(s), D*u(s)) ds
-2 g

(o0 = 1)t*2
X _—
(1+122)

1 .
=T /0 (a(s)|uls)| + b(s)| D us)| + cs)) ds

o

;1 /Ooo(a(s)|u(s)‘ + b(s)|D°‘_1u(s)| + c(s)) ds

+

YECB [5 G- a1
+(x—-1) ~ T (a(9)[u(s)] + b(s)| D uls)| + c(s)) ds

_ llully ! 1t
< F(a)fo (a(t)+b(t))dt+r(a)/o c(t) dt

(@ =Dlully [* -1 /%
4 ¥~ lully /0 (a(t)+b(t))dt+aA /0 c(t)dt

A
(06 1)||M||y alt) + b(0)) dt
<a—1)Ziﬁfﬂi & (& —5)*!
+ A /0 Fa) c(t)dt
<R,
|D* Tu()|
! o — F( o —
S/; If (s, u(s), D* " u(s)) | s + - )—Z;fﬁlé‘” 1/ If (s, u(s), D" u(s)) | ds

Yl B i o N
' () - Z;ZIZ B! /(; (Gi—9) 1lf(s,bt(s),D lu(s)) ‘ ds

1 1
<Rx / (a(t) + b(2)) dt + / c(t)dt
0 0

+ F(i)R /ooo(a(t) +b(t)) dt + ? /Owc(t) dt
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m=2 g & m=2 g ki
» 2 PR /0 (69 (a0 + b0) e + =L /0 (&9 elt) dt

<R

Hence, || Tu(t)||y < R, which shows that A: U — U.
Step 2 Let V be a nonempty subset of U. We will show that TV is relative compact. Let
I C ] be a compact interval, £, € I and t; < t;. Then for any u(t) € V, we have

Tl/l(tz) TM(tl)

1+ 1+t

B ty (t2 _ S)a—l .
) /0 Wf(s’”’ D*'u)ds

5 f (s D) ds + 0 B fo G (s, D s gt
+
INCIRD Sl (L+557

I3} (tl _ S)ot—l .
_fo Wf(s’ u, D""'u) ds

m—. i (§i=S el o— _
— [ f(s,u, D" u) ds + Zl’=12ﬂi I %f(s, u, D* V) ds gl
INCORD I 1+
i
<
0

(£ =)™ (t—5)*!
15} _ Qa1
+/; %[}‘(s, u, D 'u)| ds

o—1

T@)1+£7) T+ |f (5,4, D°'us) | ds
_fooof(s1 M(S);Daflu(S)) ds + Zlni;2 ,Bi foi (51‘;2{0;_1]0(5’ M,Da—lu) ds
F(e) - 375" B

+ ’

’

5! gt
’1+t§‘1 N 1T+t
T'u(t,) T'u(t)h
1+t272  1+¢e2

-9 - S -
|| Faeay e 0 [ o e

3 f (s D) ds + Y0 B [ S (s, u, DY ) ds

D) - Y0 pige?

+(a—1)‘

a-1 a-1
‘ t2 tl

1+t 1 + 251

and

|D* ! Tu(ty) - D' Tu(t) |

<

ftzf(s, u(s),D"‘_lu(s)) ds — /tlf(s, u(s),D“_lu(s)) ds
0 0

=< /tz [f(s, u(s),D“_lu(s)) ds|.

5]
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Note that for any u(t) € V, we have f(¢, u(t), D*'u(t)) is bounded on I. Then it is easy to

Tu(t T u
see that { pr= 2 ‘1+za(2’

Considering the condition H, for given ¢ > 0, there exists a constant L > 0 such that

and D¥ ! Tu(t) are equicontinuous on 1.

/+w V(t, u(t),D""lu(t))| <e&.
L

o= 1

On the other hand, since lim;_, ;oo = T T =1, there exists a constant T} > O such that ¢, £, >
Tl)

o-1 -1
1 5

2 _l<
1+ 1+

o—1
Similarly, in view of lim,_, , oo (¢=L)

e =1, thereexistsa constant 73 > L > 0 such that ¢y, ¢, >
To,and 0 <s <L,

(-5 (-5
<e.
L+t 1+571

. =2 .
In view of lim;_, , % =1, there exists a constant T3 > L > 0 such that #, £, > T3, and
0<s<lL,

(-5 (ty—s)?

1+ 6872 1+572

Now choose T > max{Ti, T», T3}. Then for t;,t, > T, we have

Tu(t,)  Tu(t)
T+e570 14+t

max;eo,ruev |f (& 4, D" ur)| 2
= e+ e
[(a) T(a)
’—fooof(s, w, D u)ds + Y0 Bi fol Sis ‘: f(s,u,D*u) ds
+ g
IMNa) - Z[:l ﬁifia !
T'u(ty) T'u(t)
tg -1 1+ tfz—l
o —1
< maxeo,rluev |[f (£ 1, D" 1) . 2 ,
(@) I'(x)
)’ T f(s,u, DY) ds + 3T 2B fol "1: (s,u D* 'y ds
-1 ,

D(e) - Y757 g
and
5]
|D"“1 Tu(ty) —D“‘lTu(t1)| 5/ [f(s, u(s),D"“lu(s)) ds| <e.

n

Consequently, Lemma 2.5 shows that TV is relative compact.
Step 3 T : U — U is a continuous operator.
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Letu,,uecl,n=1,2,...,and |u, — u|ly — 0 as n — 0o. Then, we have

Tua(t)  Tu(?)

1+l 14l

¢ _ J\a-1
= /0 % If (5, 24(5) D" 11n(8)) = f (5, 14 (), D11 (s)) | s

s _ 1
Zﬁl/ (gz 5)* S, n( ) DY lun(s))

(1 + 1ol ')

—f(S, Un (S): Da_l Uy (S)) | ds

a-1 [e%e)
a +tta_1) A /0 If (s, 1(5), D" 1,(5)) —f (s, (), D* s (s)) | s

= (i * i) / 1P (5 0 D ) — (5 61, D 5) s
0

4 8 *© a-1
< (m + X)R/O [(1+ 2 M)a(t) + b(e)] dt

Tu,(t) T'u(t)
1+t22 1422

¢ _ a2
: /0 % [f (5 2(), D" 14 (5)) = £ (5, 4 (5), D"~ 11n(s)) | s

(@-De? = /éf G-t

o—1
FAr A Ty (6, D)

i=1

— £ (5, 1n(), D* 1y (5)) | ds

_ a-2 s}
’ %/0 If (5, 1n(8), D"~ 14 (5)) — £ (s, 14a(5), D" 11 (s)) | s

< (F(Za) + (aA— 1)) /o‘oolf(s’ un(s),Da_lun(s)) —f(S, u,,(s),Da_luy,(s)) | ds

* 8( _1) * o—
<(r<a)+ % )R /o [(1+ 7 )ale) + b(o)] e

4 8(x—-1) o0
+ (m + N )/0 c(t) dt,

| D* Ty, (£) = D* ™ Tu(2)|

< / OOlf(s, 1n(8), D" () = £ (5, tn(s), D" M1t (s)) | ds
0

m-2 & (£ _ q)a-1
+ % ;ﬁi /0 (E’F((Sx)) If (s, (), D" 14 (5)) — £ (5, 14 (5), D14 (5)) | s
=1

? / 9 D ) 50, D 5) s

( 2 2+2F
<

a— o—1 a1
F(a) )/ If (5, 4n(5), D" 14, (5)) — £ (5, 14 (5), D* M ua(s)) | ds

Page 12 0f 13
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4 4 +4T () *© o
5(m+%)13/0 [(1+)ae) + ()] de

4 4+ 4T () o
+ (m + — )/0 c(t) dt.

Then the operator T is continuous in view of the Lebesgue dominated convergence theo-
rem. Thus by Schauder’s fixed point theorem we conclude that the problem (1.1)-(1.2) has
at least one solution in U and the proof is completed. O
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