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1 Introduction
In recent years, there have been many monographs concerning stochastic partial differ-
ential equations with Lévy jump and their applications in physics, economics, statistical
mechanics, fluid dynamics and finance etc. For this theory and its applications, one can
see [1-3] and references therein. In this article, the existence, uniqueness, regularity for
the mild solution of stochastic partial differential equations with Lévy jump are studied.
There are a lot of works dealing with existence and uniqueness for stochastic partial differ-
ential equations with jump processes. In [4], the existence and uniqueness for solutions
of stochastic reaction diffusion equations driven by Poisson random measures are ob-
tained. In [5], Malliavin calculus is applied to study the absolute continuity of the law of
the solutions of stochastic reaction diffusion equations driven by Poisson random mea-
sures. In [6], a minimal solution is obtained for the stochastic heat equation driven by
non-negative Lévy noise with coefficients of polynomial growth. In [7], a weak solution
is established for the stochastic heat equation driven by stable noise with coefficients of
polynomial growth. In [8], the existence and uniqueness for solutions of stochastic gener-
alized porous media equations with Lévy jump are obtained. In [9], the strong solutions
to a large class of stochastic equations with Lévy noise are obtained in variational frame-
work. And it is shown in [9] that the results can be applied to stochastic reaction-diffusion
equations, Burgers-type equations, 2D Navier-Stokes equations, p-Laplace equations and
porous media equations with locally monotone perturbations.

The main aim of this paper is to study the existence, uniqueness and regularity of the
stochastic equation

dx(t) = [A(X(®)) + B(X(2)) ] dt + Q(X () AW (¢) + fz F(X(t—),x)ﬁ(dt,dx). (1.1)
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In [10], the intensity measure A of N(dt, dx) is finite, while the intensity measure in this
article is o -finite, and also the classical Lipschitz condition (2.5) in [10] is relaxed to condi-
tion (A.5) in this article. The author of this article proves the existence and uniqueness of
a mild solution of (1.1), the continuity of the solution with respect to initial data. And then
a stochastic Fubini theorem is established for the compensated Poisson random measure
whose intensity measure is o -finite compared to a finite case in [10]. Furthermore, a new
type of the Burkholder-Davis-Gundy inequality, which is more precise than Lemma 2.2 in
[10], is gotten. The two formulas are basic in stochastic analysis. Using the formulas, the
author gets the regularity property of a mild solution of (1.1) without conditions (2.15) and
(2.16) in [10] which are critical there.

The article is organized as follows. In Section 2, we present the framework. Existence,
uniqueness and regularity are proved in Section 3. In Section 4, two examples including
stochastic heat equations with Lévy jump are given.

2 Some preliminaries

Let (U, || llu), (H, || |) be separable Hilbert spaces and Z be a Banach space. Let L, (U, H) de-
note the space of all Hilbert-Schmidt operators from U to H, and set || ||z, := || lz,u,x)- Let
W (t), t > 0 be a cylindrical Wiener process in U on a probability space (€2, F, P) with a nor-
mal filtration F;, t > 0 and let N(dt, dz) be a Poisson random measure associated with the
compensated (F;)-martingale measure defined as N(dt, dz) := N(dt,dz) — M(dz) dt, where
A(dz) defined on a measurable space Z is the intensity measure of N(dt, dz). In this article
we study the following equation:

dX(t) = [AX(2) + B(X(2)) ] dt + Q(X(2)) dW (t)

+ f F(X(t-),2)N(dt,dz), tel0,T] (2.1)
VA

with initial condition X(0) = 5, and the coefficients in equation (2.1) satisfy the following
conditions:
(A1) A:D(A) — H is the infinitesimal generator of a Cy-semigroup S(¢), t > 0.
(A.2) B:H — H is B(H)/B(H)-measurable, and there exists a positive constant C
satisfying
|Bx) -~ B()|| < Cllx-yl forallx,ye H.
(A.3) Q:H — L(U,H) is strongly continuous, i.e. the mapping

x— Q(x)u

is continuous from H to H for each u € U.
(A.4) Forallte]0,T] and x € H, we have

S(H)Q(x) € Lr(U, H).
(A.5) There is a square integrable mapping M : [0, +oco[ — [0, oo such that

[$®(Q@) - Q)| ,, = M@)lx -yl
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[S@QW)|l,, =M@)(1+Ix])

forallt€]0,T] and x,y € H.
(A.6) There is a positive constant C like (A.2) such that

/Z |F(2) - F(,2)|*A(d2) < Cllx =y
and
/Z||F(x,z) I°A(dz) < C(1+ I1x]1%),

where F: H x Z — H is B(H) x B(Z)/B(H) measurable.
For fixed T > 0, we define:

H(T,H) := {H valued predictable process X with

IX[l2 := sup (E(||X(t)||2))1/2<oo].
te[0,T]

Obviously, (H2(T,H), || ||;2) is a Banach space. For technical reasons we define || |27,
A>0onH*T,H) as

1Xlla5,7 = sup e (E(|X(®)]*)".
te[0,T]

Then, for X € H*(T,H) and A > 0, we have
1XN20,7 < 1XNg2 < 71X 20,7

For the reader’s convenience, before giving our main results, we cite some theorems here

which will be needed later.

Contraction theorem (i) Let (E, || ||g) and (A, || ||A) be two Banach spaces. Let the map-
ping G: A x E — E satisfy

IG%) - Gy |, <ellx—ylle, o <[0,1]

forall . € A and x,y € E. Then there exists exactly one mapping ¢ : A — E such that
0() = G(1, o (1))

forall » e A.

(ii) If we assume in addition that the mapping A — G(X,x) is continuous from A to E for

all x € E, we get that ¢ : A — E is continuous.

Page 3 of 23
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(iii) If the mapping A — G(X,x) is not only continuous from A to E for all x € E, but there
even exists an L > 0 such that

|G(L%) - G x)| , < LIA =Rl
for all x € E, then the mapping ¢ : A — E is Lipschitz continuous.

Theorem [11] If a process V is adapted to F;, t € [0, T], and stochastically continuous
with values in a Banach space E, then there exists a predictable version of V.

Definition 2.1 An H-valued predictable process X(¢), t € [0, T] is called a mild solution
of (2.1) if

t t
X() =S)n + / S(t - S)B(X(s)) ds + / S(t —s)Q(X(s)) dw (s)
0 0
t ~
+/ /S(t—s)F(X(s—),z)N(ds, dz)
0 Jz

for each t € [0, T'].
3 Existence, uniqueness and regularity
Theorem 3.1 Assume that conditions from (A.1) to (A.6) hold, then there exists a unique
mild solution X(n) € H2(T, H) of (2.1) with the initial condition

nel*(Q Fo;H) = L.
In addition we get that the mapping

X:L:— HX(T,H),

n— X(n)
is Lipschitz continuous.
Proof Fixt €[0,T], n € L§ and X € H*(T,H), and define
t t
Fn, X)) := S(t)n + / S(t —s)B(X(s)) ds + / S(t - S)Q(X(s)) dw (s)
0 0
t ~
+ / S(t - s)F(X(s-),z)N(ds, dz).
0
In the following two steps, it comes to prove that
F L2 x HX(T,H) — H*(T,H).

The first step: It is proved that the mapping F is well defined.
1l.Lethe H,as

(Lo.a(9)S(t = )B(X(s)), h),, = (B(X(5)), 10, (s)S"(¢ - s)h),,.
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By the strongly continuity of S(z), we know 1[04 (s)S(¢ — s)B(X(s)) is predictable. And to-
gether with (A.2), we know the Bochner integral fot S(t — s)B(X(s))ds, t € [0,T1], is well
defined.

2. Let {e;} and {/;} be an orthonormal basis respectively of U and H. Because

{his110,4()S(£ - $)Q(X(5))ey),,

is predictable, and by (A.5), it is easy to see 1 (s)S(t — s)Q(X(s)) € N‘%V(O, T). So, the
stochastic integral fot S(t —5)Q(X(s)) dW (s) is well defined.
3. Similarly to 1, it is easy to see that 1(o 4 (s)S(t — s)F(X(s), 2) is predictable, and by (A.6)

we have

2
E < +00.

/ t / S(t - s)F(X(s-), )N (ds, dz)
0 JZ

Therefore the stochastic integral fot /. St —s)F(X(s—), 2N (ds,dz) is well defined.

The second step: We prove that F(n,X) € H*(T,H) for all n € L} and X € H*(T, H).

1. Obviously S(¢)n, t € [0, T1, is an element of H*(T, H).

2. There is a version of the second summand fot S(t —s)B(X(s))ds, t € [0, T], which is an
element of H*(T, H).

Similarly to the argument of the first step, we know fot S(t — s)B(X(s)) ds is adapted for
(F2)=0- Then we will show fot S(¢t — s)B(X(s)) ds is continuous a.s. Let 0 < £ < £y, r €]1,2].
By (A.2), we have

/tS(t - S)B(X(s)) ds — /to S(to — S)B(X(S)) ds
0 0

< /t(S(t—S) —S(to —S))B(X(s)) ds| + /to S(t —S)B(X(s)) ds
0 t

< +

/‘t/r (S(t —rs)—S(to — rs))S((r - l)s)B(X(s)) ds
0

/t S(t—- s)B(X(s)) ds

Ir

+ +

/t S(ty — S)B(X(s)) ds /to S(to — S)B(X(s)) ds

Ir

=

tir
/ (S(t —rs) = S(to — rs))S((r - l)s)B(X(s)) ds
0

+ EM(T) / (L+ |X(5)]) ds
tir
+ CM(T) // 1+ X(s)]) ds + CM(T)f 0(1 + | X(s)]) ds
tir
< /0 || (S(t —rs) —S(to — rs))S((r - l)s)B(X(s)) || ds
L/t 1/2
+4CM(T)(T)? (/ (1+ ||X(s)n2)ds)
tir

. f 1/2
+2CM(T)(T)? (/ (1+ | X(s) ||2)ds) .
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In the above inequalities, we set Mt := sup,(o 77 [IS(¢)l| () and C := max{C, || B(0)||}, where

Cisasin (A.2). As we can derive that

tlr tir
/0 15((- = 1)) B(X(s)) | ds < CM(T) /0 (1+ | X)) ds

¢ 12
< _M(T)</ 2(1+ HX(s)HZ) ds) < +00.
0

Letting ¢ — tp, and then r — 1, by (A.2), strong continuity of S(¢) and dominated conver-

gence theorem, we know, for all most w € 2, we have
t to
/ S(t —s)B(X(s)) ds — / S(to —s)B(X(s)) ds forall0<t<ty<T.
0 0

Similarly we can get the same conclusion for 0 <ty <t < T'when ¢ | £, so we have proved
fot S(t — s)B(X(s)) ds is continuous a.s. for ¢ € [0, T.

As we have
£

¢ 2 t
fo S(t - 5)B(X(s)) ds ) =t f (s -)B(x() ) dsT

< en(EmmyE [ 1+ xol)a

< 2(TCM(T))* (1 + I1X11%,).
Therefore we have proved fot S(t—s)B(X(s)) ds € H*(T, H).

3. There is a version of fot S(t - s)Q(X(s))dW (s), t € [0, T, which is in H*(T, H).
First we fix r €]1,2], then

tir tir
/0 S(t - s)Q(X(s)) dw (s) = /0 S(t - rs)S((r - l)s)Q(X(s)) dw (s).
Let us define
D" :=1j,7) (s)S((r - 1)s)Q(X(s)).
Then it is clear that " € NZ,(0, T). By (A.2), we have
T ) T )
E / | )2, ds - E ] [1o®)S(( - DS)QXO) |, ds
0 0

< E/OT 2(M((r-1)s))* (1+ | X(s)|*) ds

IA

[ 209 as(i+ s E(lxl)

te[0,T]

IA

1 r-)T
:/o 2(M(S))2d5<1+t:£%]E(||X(t)||2)).
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Similarly we have 1(o(s)S(¢ — s)Q(X(s)) € N, (0, T) and fot S(t — )Q(X(s)) dW (s) is F;-
measurable. Next we are going to show

£ /0 'S(t - 9Q(X©) W)

is continuous in the mean square and therefore stochastically continuous. Indeed, let 0 <

)

t<ty <T,weget
(” - s)Q X(s)) dWwW (s) - /0 ’ S(tp - s)Q(X(S)) dWwW (s)

2
< 2E< fo (S(to —5) = S(t - 5))Q(X(s)) dW(s) )

o )

—2F /0 1(Sto - s) - S(z - ) Q(X(5)) ||j2 ds+2E /t ’ ISt - $)Q(X(s)) ||j2 ds

/ ’ S(tp - s)Q(X(s)) dW (s)

tir
= ZE/ || (S(to —rs)—S(t - rs)) D' (s) ||i2 ds
0
+2E | | (Stto — ) - S(t - ) Q(X(s)) | ;, s
+2F / St - 9Q(X(6) |7, ds
t/r 9 t 9
< 2E/ [ (S(to = 7s) = S(£ - 1s)) @ (s) HLZ ds + 4E/ | (S(to - ))Q(X(5)) ||L2 ds
+4E/ (s -)Q(x)[?, ds+2E/ [Stto - 91QX®) |, ds
< 2E(/ Z [ (S(to = rs) = S(£ = 1)) D" (s)e ||2 ds>
o
t ) 9
+ SE// M= (ty —s)(l + HX(S)” )ds

L 8E / M=) (1+ [XO|) ds + 4E / " Mt - )1+ | X6 ) ds
:2E</ Z“ S(to —rs) —rs))<I> (s)e; || ds)

to—t/r tr-1)/r
+8[1+ ||X||f12](f Mz(s)ds+/ Mz(s)ds>
|7 0

0—t
to-t
+4E/ M*(s)ds[1+11X112,]
0

— 0, lett— tyandthenr— 1.

The last step follows by a dominated convergence theorem since ||(S(ty — rs) — S(¢ —
rs)) D" (s)e;||? < 4M%|| D (s)e;||*> and D" (¢) € N3, (0, T), t € [0, T.
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For 0 <ty <t < T, we can get the same conclusion. Therefore by Theorem [11] we know
t
/ S(t - s)Q(X(s)) dW (s)
0
has a predictable version for all £ € [0, T]. Furthermore, by (A.5), we have
20\ 172
(5 )
! 2
([ Eise-s0mo);,) )
0

T 1/2
5( / MZ(s)ds> (AL + [ X]s2).
0

/0 S(t - s)Q(X(s)) AW (s)

1/2

So far we have proved fot S(t - s)Q(X(s)) dW (s) has a predictable version which is an ele-
ment in H2(T, H).

4. There is a version of fot J,S@- $)F(X(s-),z)N(ds,dz), t € [0, T], which is in H2(T, H).
It is easy to show 1jo,(s)S(¢ — s)F(X(s—), z) is predictable. By (A.6), we have

24 172
(¢ )
t 1/2
= {E(./o le[o,t](s) ”S(t—s)F(X(s),z) ||2A(dz) ds)}
) t 172
< CZM(T){E(/ (1+]x)]% ds)}
0

< CTTM(T)( + [|X]l72)-

/ t / S(t - s)F(X(s-), z) N (ds, dz)
0 JZ

Letting ¢ < £y, we have

: ¥

/ /S(t—s)F(X(s—),z)K[(ds,dz)—/0/S(to—s)F(X(s—),z)Kf(ds,dz)
0 Jz 0o Jz

t N 2\ ) 1/2
< {E( / /(S(t—s) - S(to —S))F(X(S—),Z)N(ds, dz) >}
0 Jz

I )

t , 12
= {E/ f||(S(t—s)—S(to—s))F(X(s),z)“ A(dz)ds}
0 Jz

/ N / S(to — $)F (X (s=), )N (ds, dz)
t Z

to 1/2
+ {E/ L”S(to —s)F(X(s),z) sz(dz) ds}
tir 172
< {E / / |(S( = 5) = S(to - ) F(X(s),2) || *1(d2) ds}
0 VA

¢ ) 1/2
¥ {E / / [ (St —3) St - 5)) F(X(5),2) | )»(dz)ds}
t V4

Ir
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1/2

+C§M(T){/0(1+E(||X(s)||2))ds}
tlr 5 1/2
< {E /0 /Z [ (S(£=s) = S(to - 5))F(X(s),2) | )\(dz)ds}
1 ¢ 2 12 1 1
+2C7M(T){E// 1+ x| )ds} + CIM(T)(to — )2 (1 + | X|l2)
tlr 172
< {E/o L|| (S —rs) = S(to — rs))S((r — 1)s)F(X(s), 2) ||2A(dz)ds}
L t ) 1/2 1 1
+ 2C2M(T){E// 1+ X )ds} + CIM(T)(to — )2 (1 + | X | 2).
Since

tir
2
E/(; /Z”S((’"_ 1)s)F(X(s),2) | “Mdz) ds < +o0,

letting ¢ — £ and r | 1, by a dominated convergence theorem, we have the following re-

sult:
/t/S(t—s)F(X(s—),z)]V(ds,dz)
0 JZ
— / ! / S(to — )F(X(s=),z)N(ds,dz) in L*(2), as t 1 .
0 Z

If t > ty, similarly we can get

f t / S(t - s)F(X(s-), z)N(ds, dz)
0 JZ
— fto f S(to —s)F(X(s—),z)X[(ds, dz) inL*(Q), ast | to.
0 Z

As fot [, St -s)F(X (s-),2)N(ds, dz) is F; adapted, thus by Theorem [11] we know

/ t / S(t - s)F(X(s-), )N (ds, dz)
0 JZ

has a predictable version which is an element in H?(T, H).
The third step: We are going to show

Fn,): H¥(T,H) - H*(T,H)

is a contraction mapping for all n € L3.
Let X,X € H*(T,H), n € L} and t € [0, T]. Then we have

||F(W7X) - -7:(71,5() ||L2

<

/OtS(t - $)[B(X(s)) - B(X(s))] ds

Page 9 of 23
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+

/ S(t - [ QX)) - Q(X(s)) | dW(s)

0

12

+

/ t / S(t - s)[F(X(s=),2) - F(X(s-),2) [N (ds, dz)
0 JZ

) (3.1)

12

where || ||;2 := (E(|| ||2))"2. For the first term of the right-hand side of (3.1), we have

fots“ -9)[B(X() - B(X(s)] ds
= {E( 2) }1/2
= {( [ 1ste-s91x0) —B(X<s>)]||2ds>t}”2

t 1/2
M(T){E(/O ez“e_nSHX(s) - X(s) ”2 ds) } 2

12

/Ot S(t - s)[B(X(s)) - B(X(s))] ds

IA

¢ 12
§M(T)(/ ez“ds) sup e‘“(E(HX(t)—)N((t) ”2))1/2T1/2
0

te(0,T]
t 1/2
= T”ZM(T)e“( / e"”‘sds> 1X = Xlo7- (3.2)
0

Dividing by e** both sides of (3.2), we have

/0 t S(t-s)[B(X(s)) - B(X(s))] ds

t 1/2
sT“ZM(T)( / e-mds) X = Xl 7-
20,1 0

Obviously Tl/zM(T)(fg e ds)2 0 as A — oo.

For the second term of (3.1), by the Burkholder-Davis-Gundy inequality and (A.5), we
have

fots(t -9)[Q(X(5) - Q(X(s)) ] dW(s)
(o

< ([ (lse-slews) - ex)]) &)

L2

| ste-9euxe) - aw)]awe

.

1/2

; 12
< (/ M (t - s)e” e E| X(s) - X(s) ||iz ds)
0

T 172
< e“(/ M2 (s)e s ds) X = Xlo 7 (3.3)
0

Dividing by e** both sides of (3.3), we have

H fo St - 9)[Q(X() - Q)| AW (s)

T 172 ~
< (/ M2(s)e‘2“d3> X = Xll20,7-
2,,T 0
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Obviously,
T
/ MA(s)e ™ ds— 0, asi— +00.
0

By the Burkholder-Davis-Gundy inequality and (A.6), we have the following estimate for
the third term of the right-hand side of (3.1):
2) }1/2

(=(
< {E( /0 t /Z |S( = ) (F(X(s), 2) — F(X(s),2)) | M) ds) }m

L t 1/2
< CIM(T) E(/o ||X(s)—5((s)||2ds>}

f t / S(t - s)(F(X(s-),2) - F(X(s-),2))N(ds, dz)
0 JZ

1 ‘ 1/2
<chan| [ eerr g - Xl s)
0

; 12
< i /emsds} (sup ef”(E(”X(t)—)~((t)||2))1/2)
0

te[0,T]

t 1/2
CéM(T)eM{‘/ emds} IX = Xllo,7-
0

Thus we have

/t / S(t—5s) (F(X(s—),z) - F(f((s—), z))ﬁ(ds, dz)
0 Jz

2,T
. ¢ 172 y
< CzM(T){ / e ds} X=X,
o e
Obviously,
t
/ e ds— 0, asi— +0o.
0
Therefore we have finally proved that there exists an a(1) < 1 with
| F 0, %) = F(0,X9)] .7 < aG)IX = Xllo,1-
So, there exists a unique
X:L} — HX(T,H)
satisfying
X(n) = F(n,X(n)),

which is the unique solution of (2.1).
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The fourth step : We will show the Lipschitz continuity of X : L2 — H*(T, H). By con-
traction theorem (iii), we only have to prove that the mapping

F(,Y): L — H*(T,H)

is Lipschitz continuous for all Y € H2(T, H), where the Lipschitz constant does not depend
onY.
But this is obvious for all &, &, € L3 and Y € H*(T,H), as

|FELY) - FE V)|, = [SOE - &), < Mrl& - Ell2. O

Before giving the regularity of the mild solution of (2.1), we first need a stochastic Fubini
theorem with respect to compensated Poisson measure. Set Q7 X Z = [0, T] x Q x Z,let Z
be o -algebra generated by open subsets in Z, Pr be the predictable o -algebra of [0, T] x €2,
ds ® P ® L(dz) be the product of the Lebesgue measure, P and A(dz) on [0,T] x Q2 x Z.
L*(Qr x Z):=L*(([0, T] X Q x Z,ds ® P ® M(dz)); H).

Proposition 3.1 Let (Y, ), ) be a finite measure space and let  : Qr X Y x Z — H be a
Pr ® Y ® Z-measurable mapping such that

15O gy i <.

Then
(1) the process indexed by t € [0, T]

/Y v () du

is progressively measurable and belongs to L*(Qr x Z),
(2) the process indexedbyy €Y

/0 ' /Z v (s—,2)N(ds, dz)

has an Fr Q@ Y-measurable version m: Q x Y — H such that
T ~
P[m(y) = / / ¥ (y)N(ds, dz)] =1,
0o Jz
(3) we have

P[ [ moran- [ ' / ( / wmdu)mds,dz)] _1

Proof (1) follows from the following inequality: Let f be a nonnegative Pr @ Y ® Z-
measurable function. Then

2
\// (/fdﬂ> ds x P x AMdz) S/ W llz2(@p xz.p) 41 (3.4)
QrxZ Y Y

Page 12 of 23


http://www.advancesindifferenceequations.com/content/2013/1/175

Zhou Advances in Difference Equations 2013, 2013:175 Page 13 of 23
http://www.advancesindifferenceequations.com/content/2013/1/175

because

2
( f Flay) du) | Far)f@ydudn
Y YxY

and we get (3.4) by the Schwarz inequality. Now suppose that m in (2) exists. Then, by
taking Q instead of Q7 x Z in (3.4), we get

2
Je([1m0a) = [ Vel P = u0) 10 69

by the Burkholder inequality. Hence

[ mora

is defined P-almost everywhere. Now take v, satisfying the assumption of the proposition

such that the sequence of the integrals

J 1520000l

converges to zero. Then there exists a subsequence (# : k € N) such that:
@ [ [, ¥n 0)N(ds,dz) — [} [, ¥ ()N (ds,dz) in L% H) for j-almost all y € Y.

®) fy So(fy V) dw)N(ds,dz) > [, [,( [, () du)N(ds, dz) in L2(S; H) for
pn-almostally e Y.
Let us introduce the set D of all Pr ® V) ® Z-measurable processes y with

1500y p i <2

such that there exists an m satisfying (2) and (3). It is easy to see that D is a linear space
and if we can find ¥, € D such that

fy [940) =¥ 0 20y ) A1 = O,

then we would finish the proof. Indeed, take the corresponding functions #1,. Then the
sequence (m,, : n € N) is Cauchy in L}(Q2 x Y; H) due to (3.5) and v belongs to D due to (a)
and (b). Now we will show how to construct the approximating sequence v,,. We assume
that A(dz) is finite. By Lemma A.1.4 in [11] we can find mappings F, on H. The simple
functions F, take values in the finite dimensional subspace of H. Moreover,

fy 1B 0) = 0| 2y 42 4 O,

and if F,y € D, n € N, then ¢ € D. Now to show that F,,i € D, we will take advantage of
the fact that each F,,v is bounded in H and

/Y||¢n(y) -o() ||L2(QT><Z) dp— 0
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if and only if

J 1690 =000l = 0

for ¢, uniformly bounded in H. So as F,, is of the form

m
> Ig By,
k=1

where (Cy : k <m) is a Pr ® Y ® Z-decomposition of Q7 x Y x Z and By, k < m are
elements in the finite dimensional subspace of H. We conclude that F,y € D provided
Ic, B € D due to linearity of D. Another reduction shows that this is true if

Iaicxc3Br €D
for every C,1< € Pr, C,% e, C,f € Z as I, can be approximated by IC/? in L' (Qr x Y x 2)
where C}) is a disjoint union of sets of the type C; x C¢ x C;. Finally, as Ic1 is a predictable

process, it can be approximated by simple bounded real processes in L(Q27). So, we will

finish the proof by showing that

I]S,t]xcsxc,fxc,in €D

for s < t, C; € Fy, but this is obvious. When A(dz) is o -finite, there exists a sequence A,
satisfying A(4,) < +00 and A, 1 Z. Obviously,

VO, €D and [ 910, = V@ g,y — O

therefore v € D. |

In the following we give a type of the Burkholder-Davis-Gundy inequality which will
play an important role in proving the regularity property of the mild solution of (2.1).

Lemma 3.1 If A is the infinitesimal generator of pseudo-contraction Cy-semigroup S(t),
t <T,and g(t,z) is an H-valued progressively measurable mapping with respect to {F;}i>o0
such that

T
/ /||g(t,z)||2A(dz)dt<oo, a.s.,
0 Z

then for any t € [0, T],

2 t
> < 8¢E / / lg(s, 2)|*1(dz) ds
0 JZ

/ ) / S(s — u)g(u—, z)N(du, dz)
0 JZz

E( sup
0<s<t

for some number r > 0.


http://www.advancesindifferenceequations.com/content/2013/1/175

Zhou Advances in Difference Equations 2013, 2013:175 Page 15 of 23
http://www.advancesindifferenceequations.com/content/2013/1/175

Proof Let us define
[ ~
Y(¢) :/ /S(t—s)g(s—, 2)N (ds, dz).
0 Jz
Assume that g(t, z) takes values in D(A) and

t t
E/ /Hg(s,z)”z)»(dz)ds+E/ /HAg(s,z)Hz)»(dz)ds<+oo forall ¢ > 0. (3.6)
0 Jz 0 Jz

Since A is the infinitesimal generator of a Cy-semigroup, A is closed. And by (3.6) we can
check that

/ f S(t — s)g(s—,2)N(ds, dz) € D(A)
0 Jz
forall £ > 0 and
A/(; /ZS(t —$)g(s—,z)N(ds,dz) = /o ‘/;AS(t —$)g(s—,z)N(ds, dz).

By (3.6) and Proposition 3.1 with Y replaced with [0, 7], we have

¢ T T
-/()AY(S)dS:/O /0 /;l[o,t](s)l[o,s](u)AS(s—u)g(u—,z)N(du,dz)ds
T T
= /0 /Z /0 11 ()10, () AS(s — u)g(u—, 2) dsN (du, dz)
= / t / S(t — u)g(u—,z)N(du, dz) - / t / g(u—,2)N(du, dz)
0 Jz 0o Jz
= Y(t)—/0 /Zg(u—,z)N(du,dz).
By Ito’s formula, we get
2 ! ‘ 2
|Y@)|* =2 /0 (AY(s), Y(s))ds + /0 /Z lg(s,2)|*M(d2) ds
¢ o
+/0 /Z(Z(Y(s—),g(s—,z)>+ lg(s—2)|")N(ds, dz).
Set

Y(t) = sup H Y(S)H and <é(t):/o /Z”g(s,z) ”Zk(dz) ds.

0<s<t

So, we have

- 9 s t 5
(Y(t)) < sup 2/; <AY(u), Y(u))du+f0 /ZHg(u,z)” Mdz) du

0<s<t

+ sup /0 /Z (2(Y (u=), g(u=-,2)) + | g(u—,2)|*)N(du, d2). (3.7)

0<s<t
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Since A is pseudo-contraction, there exists r > 0 such that
(Ax,x) <r|x|*> forallx € D(A). (3.8)

Define T, := inf{¢|||Y(¢)|| > n}. Then by (3.7), (3.8) and B-D-G inequality, we can get the
following estimate:

tATy
E(Y(tATy) < 2r15/ | Y (s)|| ds + Eg(¢ A T,)
0
+2E  sup /0 /Z(Y(u—),g(u—, z))N(du, dz)

0<s<tATy

+E sup //||g(u—,z)||2ﬁ(du,dz)
0 Jz

0<s<tATy

tATy 9
< ZrE/ || Y(s) || ds+Eg(t nTp,)
0

ATy 1/2
-),g(s—,2))’N(ds, d )
+2E</0 L(Y(s ),g(s z)) N (ds,dz)

ATy 12
~2)|*N(ds,d )
+E(/0 /Z”g(s 2)||"N(ds, dz)

tATy 9
< 2rE/ H Y(s) H ds+Eg(t NT,)
0

ATy 12
2F Y(s-),g(s—,2))’N(ds, d >
+ </0 /Z( (s-),4(s—,2)) N(ds, dz)

tATy
E - 2)|’N(ds,d )
+ (/0 /Z”g(s 2)||"N(ds, dz)

tATy 9
_oE / 1Y) ds + 2E3(t A T,)
0

tNTy 1/2
2E Y(s-),g(s—2))'N(dz,d >
+ (./o /Z< (s—),g(s z)) (dz,ds)

tATy 9
<2E / |Y()| ds + 2E3(t A T,)
0

tNTy 1/2
2F Y(s-)| (- 2)|*N(ds, d )
([ [ e 2l N a2

tATy 9
<2r/E / |Y(s)|” ds +2Eg(¢ A Ty)
0

tATy 1/2
+2E|:17(t/\ Tn)( /0 /Z ||g(s—,z)||2N(ds,dz)) ]

tATy
<E / |Y(s)| ds + 2E3(t A T;,) + %E(f/(t AT,))" +2E3(t A T)).
0

So, by Gronwall inequality, we have

tATy
E(Y(tAT,))" <8¢"E / / |g(s,2) | *1(dz) ds.
0 z
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By the Fatou lemma, we have

v 2 4rt ! 2
E(Y(1)” <8e™E /0 /Z lg(s,2)| "1 (dz) ds. (3.9)

Without assuming g(t,z) takes values in D(A), we define g,(¢,z) = nR(n,A)g(t,z) where
R(n,A), n € N, is the resolvent of A, then we know g, (¢, z) takes values in D(A) and satisfies
(3.6) under the following condition:

t
E/ /Hg(s,z) ||2)»(dz)ds<+oo. (3.10)
0 Jz
Define

Yu(t) = /0 fz S(t - 9)gu(s—2)N(ds,dz),  Y,(t) = sup | Y,(®)].

0<s<t

Then instead Y(t), Y,,(t) satisfies (3.9). By the Burkholder-Davis-Gundy inequality and
dominated convergence theorem, we have

t
E/ /”gn(s,z)—g(s,z)||2)\(dz)ds—>O, as 1 —> +00.
0 Jz

Then it is easy to check

E( sup || Y,(s) - Y(s)||2) — 0, asn— +00.

0<s<t

So, under condition (3.10), (3.9) also follows without assumption that g(t,z) takes values
in D(A). In order to relax (3.10), we define stopping times

Ty = inf{t‘/t/||g(S,z)||2A(dz)dsZn}.
0 Jz

Then

2
N(du, dz))

E<{0<§l<ltrj\rn} /(; /ZS(s—u)g(u—,z)
5864”E< /0 o /Z ”g(S,z)sz(dz)ds>
§8e4"E< /0 /Z lg(s,2) ||2A(dz)ds).

Therefore by Fatou lemma, the assertion follows. O

In order to study the regularity property of the mild solution of (2.1), we introduce an
approximation system of (2.1) in the following:

X() = Ry + fo t[AX(s) ds + R()B(X(s))] ds + /0 lR(l)Q(X(s)) AW (s)

" /O fz R(F(X(s-),2)Ni(ds, dz), (3.11)
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where [ € p(A) which is the resolvent set of A, and R(!) := IR([,A), R(l,A) is the resolvent
of A. We say a stochastic process is RCLL if each of it’s sample path is right continuous

with left limit. So a stochastic process X(¢) is called a strong solution of (2.1), if it is RCLL,
Fi-adapted, X(t) € D(A) and satisfies (2.1).

Theorem 3.2 Let n € L*(Q, H) and Fy-measurable. In addition to assumptions in Theo-
rem 3.1 we assume A is dissipative with x € H. Then the mild solution of (2.1) is RCLL.

Proof Let [ € p(A), obviously AR(I) = AIR(l,A) = [ — [>R(l, A) are bounded operators. So
(3.11) has unique strong solution. In fact by Theorem 3.1 we know (3.11) has a unique mild
solution denoted by X'(¢) and the following hold:

T pt
/ / |AS( - s)RWB(X'(s)) | dsdt < oo,
0 0
T pt
E( /0 /O |4S( - )ROQX'®) ] 30 dsdt) < 00,
T pt
E(/O /0 /ZHAS(t s)R(l)F(X (s),z) ” A(dz)dsdt) < 00.
Thus by Fubini theorem, we have
/ t / SAS(u ~$)R()B(X'(s)) dsdu
0 JO
_ / t / tAS(u—s)R(l)B(X’(s)) duds
0 Js
_ f 'S(t - JRWBOX()) ds - f ROB(X'(5)) d.
0 0

On the other hand, by the stochastic Fubini theorem for Q-Wiener processes in [11], we

have
/0 t /0 uAS(u - S)RDQ(X'(s)) dW (s) du
= /0 t / tAS(u—s)R(l)Q(Xl(s)) dudW (s)
- 'Sl - IROQX(9) dW) - / ROQX(9) AW ).

And by Proposition 3.1

/ t / ' / AS(u - s)R()F(X'(s-),z)N(ds, dz) du
0o Jo JZ
- / t / / tAS(u—s)R(l)F(X’(s—),z) duN (ds, dz)
0 JZJs

= / t / S(t - s)RWF (X' (s-),2)N(ds, dz) - / t / R(F(X'(s-),2)N(ds, dz).
0 JZ 0 JZ
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Hence, AX'(t) is integrable almost surely and

/ tAXl(s) ds = S)R(1)n - R()n + / t S(t - s)R()B(X'(s)) ds — / tR(l)B(Xl(s)) ds
0 0 0
+ / S(t - )RDQ(X'(s)) dW(s) - / R(HQ(x(s)) dW (s)
0 0
[ se-9r0E(X -),z)N(ds, d
+ [ ste-9roF(-), )R, o
- f t / R(F(X'(s-),2)N(ds, dz)
0 JZ
=Xx't) - R()n - f R(DB(X'(s)) ds - / R(Q(X'(s)) dW (s)
0 0
- / l / R(F(X'(s-),2)N(ds, dz).
0 JZ

So far, we prove X'(¢) € D(A), t € [0, T, is the unique strong solution of (3.11). Let X(t) be
the mild solution of (2.1). Then we consider

X(t) - X'(8) = S@)(n - R()n)

of 'St - 9[B(X(s)) - ROB(X'(5)) ] ds

R /0 'S(¢ - 9[QUX() - ROQX(S)] dW s

+ /0 t /Z S(t - $)[F(X(s=), 2) = RUF(X'(s-),2) |N(ds, dz)
for any ¢ > 0. We have that for any 7" > 0,

E sup ||X(t) -X'@) ||2
0<t<T

2

<16E sup /tS(t - s)R(l)[B(X(s)) - B(Xl(s))] ds
o=<t=TllJo
t 2
+16E sup / St - s)RD[Q(X(s)) — Q(X'(s)) | dW(s)
0<t<T||JO
t ~ 2
+16E sup / f S(t - s)R(l)[F(X(s—),z) - F(Xl(s—),z)]N(ds, dz)
o<t<tllJo Jz
+ 16{E sup [S(8)(n—R(Dn) + /tS(t - $)[I-R()]B(X(s)) ds
0<t<T 0

- /0 S - 9)[1 - R(D]Q(X(s)) dW (s)

|

- /0 /Z S(t - 9)[1 - R()|F(X(s-),z)N(ds, dz)

= 16[11 +12 +13 +14].
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We consider

2

I, = E sup ftS(t—s)R(l)[B(X(s)) —B(Xl(s))]ds
0

0=<t<T

t 2
<E sup ( /0 IRDS(t - 5)[B(X(s) - B(X'(9))]| ds) )

0<t<T

When [ is big enough, there exists constant M such that |R(!)|| < M, so we have
t 2
I < C2M2M2TE sup </ HX(S) - X(s) || ds)
0<t=<T \Jo

T
< C*M*M> / E sup || X(u) - X'(w)|” ds.

0 0<u<s

Then we consider

2

L:=E sup / St - )RD[Q(X(s)) — Q(X'(5)) ] dW (s)
0=<t<TI|lJO
2

= E sup f S(t - )IRAL A)[Q(X(5)) - Q(X!(s)) ] dW(s)
0<t<TI|lJO
2

= E sup / (t- s)/ leT u) )) - Q(Xl(s))]dudW(s)

0<t<T

sE/OT
<E fo T( / et Ta(xe) - (X 0)],, du)zds

0
T T
CU)E /0 |x(s) - X'(s)|* ds < C)E /0 sup [ X() - X' | ds,

2
ds

Ly

/0 le™™T(w)[Q(X(s)) - Q(X'(s)) ] du

where C(/) - 0 as [ — 00. By (A.6) and Lemma 3.1 we have

2

I3 = E sup
0<t<T

/ /”p F(x!(s),2) PA(dz) d

< C(T)/(; E sup ”X(u)—Xl(u)||2ds.

0<u<s

/ t / S(t - RW)[F(X(s-), 2) — F(X!(s-),2) |N(ds, d2)

Finally we consider

S(®)(n - R(D)n) + /0 S(t - s)[I - RU)|B(X(s)) ds

Iy = E sup
0<t<T

- /0 S(t - 9)[1 - R()]Q(X(s)) dW (s)

t 2
+ /0 /ZS(t —s)[I —R(l)]F(X(s—),z)N(ds, dz)| .
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It is easy to check

E sup |SO(n-ROn)|> >0, asl— oo.
0<t<T

By dominated convergence theorem, we have

2

E sup
0<t<T

| S(t— 91 - ROJB(X() ds
0

¢ 2
<E sup < /0 |[1 - RD]S(E - 9)B(X())|| ds)

0<t<T
T 2
< MZTE( /O I[1-RD)]B(X()]| ds)
T
< TM? / E||[1-RQ)]B(X(s))|*ds — 0, asl— oc.
0

By Burkholder-Davis-Gundy inequality, we have

2

/0 S(t—s)(I - R(1))Q(X(s)) dW (s)

E sup
0<t<T

T
<E / | (1 - RD)S(t - )Q(X(s)) |, ds
0
< CE/ ||S(t - S)Q(X(s)) ”L2 ds < +00
0
for C > 0. So, by dominated convergence theorem and the fact that
[(I-RD)H| — 0, asli— +oo

for h € H, we get

T
(312)=E fo ZH (I—R(l))S(t—s)Q(X(s))eiHst — 0, asl— oo.

By Lemma 3.1, we get

2
E sup

0<t<T

/ t / S(t - s)[1 - RW]F(X(s-), 2)N(ds, dz)
0 JZ

T
<M2E f / I[7 - RO]E(X($),2) | *1(dz) ds — 0, asl— oo.
0 Jz
After discussing about [;, i = 1,2, 3,4, we can get the following estimate
E sup HX(L‘) - X' ||2
0<t<T

T
<[c(T) + ) + C*M*M7] / E sup || X(u) - X'w)|) ds + g(0),

0 0<u<s

(3.12)
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where g(I) — 0 as [ — oco. By Gronwall theorem, we have

E sup HX(t)—Xl(t) ”2 Sg(l)e[C(T)+C(l)+C2M2M2T]T_) 0, asl— oo.
0<t<T

Therefore we know X(¢) is RCLL on [0, T] a.s. a

4 Example
Example 4.1 Consider the following stochastic heat equation

2
dy(x,t) = 9 98}(9;’ D dt + bx)f (y(-,t)) dB, + / Z2xN(dt,dz), t>0,0<x<1 (4.1)
X lzI<1
and
y(0>t):y(1rt) =0, t>0; y(x,O):yo(ﬁC), 0<x<1, (4'2)

where B;, t > 0, is a real standard Brownian motion, N(d¢, dz) is a Poisson compensated
martingale measure with character measure A(dz) on R, b € L2(0,1) := H and f is a real
Lipschitz continuous function on H satisfying |f ()| < c||u|| for some c¢> 0 and u € H. Let
A =L with D(A) = H}(0,1) N H*(0,1), then we have

(u,Auyy < —-m||lu||* for u € D(A).

For the sake of simplicity, we assume ||b|| = 1. It is easy to check that (A.1)-(A.5) are satis-
fied. So Theorem 3.1 and Theorem 3.2 hold true for (4.1).

Example 4.2 Denote X(t,x) a process satisfying X(0,x) = x. Then we consider the semi-
linear stochastic partial differential equation:

dx(t,x) = a;—;X(t, x)dt + [(p(t)X(t, x)] dt + b(X(t, x)) aw (t)

+ / ZX(t—, x)N(dz, dt), (4.3)
lzl<c
X(t,0)=X(t,7) =0 fort>0,a>0,c>0,x€H:=L*0,x)
for some negative constant a < 0, and some M > 0, () : R, — R! is a bounded function
with |@(t)| <M for all £ > 0, b(x) : H — R! is nonlinear and Lipschitz continuous with

b(0) = 0, |b(x)| < M|x|, W(¢t), t > 0, is an H-valued Q-wiener process with covariance

operator Q, tr Q < oo.

Let C= [, _ 2*M(dz) < +00 and A = a% with domain
oh 9%h
DA)=3heH:—,— € H,h(0)=h(mr)=0;}.
0x 0x2

So, it is easy to deduce

(Ax, %) < a|lx|®, x€D(A).
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It is easy to check that (A.1)-(A.5) are satisfied. So, Theorem 3.1 and Theorem 3.2 hold
true for (4.3).
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