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Differential free fatty acid receptor-1
(FFAR1/GPR40) signalling is associated
with gene expression or gelatinase granule
release in bovine neutrophils
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Maria A Hidalgo1

Abstract

Fatty acids have been recognized as regulators of immune function in addition to their known metabolic role. Long-chain

fatty acids bind free fatty acid receptor (FFAR)-1/GPR40, which is expressed on bovine neutrophils, and increase

responses such as granule release and gene expression. In this study, we investigated the molecular mechanisms

governing the up-regulation of cyclooxygenase-2 (COX-2) and IL-8, as well as matrix metalloproteinase (MMP)-9 granule

release in FFAR1/GPR40 agonist-stimulated neutrophils. Our results showed that natural (oleic and linoleic acid) and

synthetic (GW9508) FFAR1/GPR40 agonists increased ERK1/2, p38 MAPK and Akt phosphorylation, and that the

FFAR1/GPR40 antagonist GW1100 reduced these responses. We evaluated the levels of IkBa, a component of the

classical activation pathway of the transcription factor NF-kB, and we observed IkBa reduction after stimulation with

FFAR1/GPR40 agonists, an effect that was inhibited by GW1100 or the inhibitors UO126, SB203580 or LY294002.

FFAR1/GPR40 agonists increased COX-2 and IL-8 expression, which was inhibited by GW1100 and an NF-kB inhibitor.

Finally, the FFAR1/GPR40 agonist-induced MMP-9 granule release was reduced by GW1100 and UO126. In conclusion,

FFAR1/GPR40 agonists differentially stimulate neutrophil functions; COX-2 and IL-8 are expressed after FFAR1/GPR40

activation via NF-kB, IkBa reduction is FFAR1/GPR40- and PI3K/MAPK-dependent, and MMP-9 granule release is

FFAR1/GPR40- and ERK1/2-dependent.
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Introduction

Neutrophils are the first line of defence of the host
against invasive microorganisms and are one of the
first cells to migrate from the bloodstream into injured
or infected tissues.1 In the tissue, neutrophils perform
their defensive role by engulfing pathogens, producing
reactive oxygen species (ROS), releasing degradative
enzymes stored in cytoplasmic granules and synthesiz-
ing proteins, thus contributing to the inflammatory
process and inducing potential tissue damage; there-
fore, their activation need to be closely regulated.2,3

Fatty acids have extensively been studied as key
metabolic components; however, a role in the immune
and inflammatory response has begun to be recog-
nized.4,5 Long-chain fatty acids (LCFA) are increased
in the plasma in cows around partum, a time where

these animals are more susceptible to acquiring infec-
tious diseases, and an association between LCFA and
infectious disease incidence has been suggested.6,7 In
bovine neutrophils, the unsaturated fatty acids oleic
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(OLA) and linoleic (LA) acid increase ROS production,
matrix metalloproteinase (MMP)-9 release, and
cyclooxygenase (COX)-2 and IL-8 mRNA levels.8–10

OLA and LA-induced ROS and MMP-9 release are
mediated through free fatty acid receptor-1 (FFAR1/
GPR40). FFAR1/GPR40 is a G protein-coupled recep-
tor that has been identified in pancreatic cells,11–13

monkey neurons,14 breast cancer cells,15,16 and bovine
mammary epithelial cells and neutrophils.8,17 In pan-
creatic b cells and breast cancer cells, FFAR1/GPR40
is coupled to intracellular Gq and Gi proteins, respect-
ively,15,18 whereas in bovine neutrophils, it is coupled to
both Gq and Gi proteins because phospholipase C
(PLC) inhibition reduced MMP-9 and ROS production
induced by LCFA, and pertussis toxin only partially
reduced OLA-induced intracellular calcium mobiliza-
tion.8,10 In addition, we observed that FFAR1/
GPR40 activation induces protein kinase C (PKC) acti-
vation in bovine neutrophils;10 however, the down-
stream signalling pathways activated by FFAR1/
GPR40 in bovine neutrophils remain unknown. Some
reports have suggested the participation of FFAR1/
GPR40 in MAPK and PI3K pathway activation; syn-
thetic and endogenous ligands of FFAR1/GPR40
induce ERK1/2, JNK and p38 MAPK, and PI3K/Akt
phosphorylation in b pancreatic cells, breast cancer
cells, bovine mammary epithelial cells or murine neu-
rons.13,15,17,19,20 The MAPK and PI3K pathways have
been involved in various cellular processes important in
inflammation, such as migration, respiratory burst,
granule release and gene expression.21,22 Previous stu-
dies have shown that ERK1/2 and p38 MAPK are
involved in the up-regulation of COX-2 expression
induced by IgE in human neutrophils.23 In addition,
LA induces COX-2 expression through the activation
of ERK1/2 in retinal epithelial cells.24 Besides, LA
increased IL-8 expression in intestinal smooth muscle
in Crohn’s disease.25 Although fatty acids (FFAR1/
GPR40 agonists) are known to induce MAPK phos-
phorylation and gene expression,9 a role of FFAR1/
GPR40 in signalling in bovine neutrophils has not yet
been demonstrated. Therefore, this study established
the participation of FFAR1/GPR40 in the phosphoryl-
ation of intracellular signalling pathways such as
ERK1/2, p38 MAPK, and PI3K/Akt, and their role
in MMP-9 release. We also demonstrated a role for
FFAR1/GPR40 in the signalling pathway of NF-kB,
a transcription factor that controls COX-2 and IL-8
gene expression.

Materials and methods

Neutrophil isolation

Blood was collected by jugular venipuncture of five
healthy Holstein heifers from a Universidad Austral
de Chile herd, and samples were collected in ACD

Blood Collection Tubes (Becton Dickinson, Franklin
Lake, NJ, USA). All experiments were conducted in
strict accordance with protocols approved by the eth-
ical committee of the Universidad Austral de Chile
(permit number: 216/2015). Neutrophils were isolated
according to a previously described method.26 Viability
was determined by trypan blue exclusion assays and
was at least 97% for all experiments. Neutrophil
purity was at least 95%, as assessed by flow cytometry
(BD FACSCanto II; Becton Dickinson) using a for-
ward-scatter vs. side-scatter dot plot to determine the
relative size and granularity of the cells.27

Immunoblot

Five million bovine neutrophils were suspended in
Hank’s balanced salt solution (HBSS) plus Ca2+

(HBSS+0.9mM Ca2+) and incubated with vehicle
(0.1% DMSO) or 10 mM GW1100 (FFAR1/GPR40
antagonist) for 15min at 37�C. Then, FFAR1/GPR40
agonists (10mMGW9508, 100 mMLA or 300 mMOLA)
were added and incubated for 5min at 37�C (for phos-
phorylation experiments). As a control, 100 nM plate-
let-activating factor (PAF) was used. To analyse the
COX-2 levels, neutrophils were incubated with vehicle
(0.1% DMSO), 10 mM GW1100 or 50 mM androgra-
pholide (NF-kB inhibitor) for 15min at 37�C, and
then FFAR1/GPR40 agonists (10 mM GW9508,
100 mMLA or 300mMOLA) were added and incubated
for 3 h at 37�C. Total proteins were obtained, as previ-
ously described.9 Total proteins (80 mg) were analysed
by 12% SDS–PAGE and transferred onto a nitrocellu-
lose membrane. Immunoblotting was performed
according to a protocol as previously described.9

Primary Abs against phospho-p38 MAPK, phospho-
ERK1/2 and phospho-Akt (Cell Signaling, Beverly,
MA, USA) or COX-2 (Cayman Technologies,
Pickerington, OH, USA) were used according to the
instructions provided by the manufacturer. A second-
ary anti-rabbit HRP-conjugated Ab (Santa Cruz
Biotechnology, Santa Cruz, CA, USA) was used, and
the membranes were developed using an enhanced
chemiluminescence system (Perkin-Elmer, Waltham,
MA, USA). The primary Abs were stripped,9 and
each membrane was re-probed with an Ab recognizing
total p38, ERK1/2, Akt or b-actin (Cell Signaling).
Re-probed signal was detected as described above.

Determination of I�B� levels by flow cytometry

Neutrophils (1� 106 cells) were incubated with vehicle
(0.1% DMSO) or 10 mM GW1100 for 15min, and then
FFAR1/GPR40 agonists (10mM GW9508, 100 mM LA
or 300 mM OLA) were added and incubated for 30min
at 37�C. To analyse the effect of the MAPK and PI3K
pathways on IkBa levels, the pharmacological inhibi-
tors UO126 (10 mM, MEK1/2 inhibitor), SB203580
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(10 mM, p38 MAPK inhibitor), LY294002 (10mM,
PI3K inhibitor) or vehicle (0.1% DMSO) were incu-
bated for 15min at 37�C. Next, FFAR1/GPR40 agon-
ists were added and incubated for 30min at 37�C. The
neutrophils were fixed with 4% paraformaldehyde,
washed with PBS, permeabilized with Perm/Wash
Buffer I (BDTM Phosflow; Becton Dickinson) and incu-
bated with an AlexaFluor 488-conjugated IkBa Mouse
mAb (Cell Signaling) for 1 h. The cells were analysed
using a FACSCanto II flow cytometer (Becton
Dickinson) and FlowJo 7.6 software (TreeStar Inc.,
Ashland, OR, USA).

RT-qPCR

Neutrophils (1� 107) were incubated with vehicle
(0.1% DMSO), 10 mM GW1100 or 50 mM androgra-
pholide (AP; NF-kB inhibitor) for 15min at 37�C.
Afterwards, FFAR1/GPR40 agonists (10mM
GW9508, 100 mM LA or 300 mM OLA) were added
and incubated for 2 h at 37�C. Total RNA was isolated
using a Total RNA Kit (E.Z.N.A; Promega, Madison,
WI, USA). For the cDNA synthesis reaction, 90 ng
total RNA was reverse transcribed using the Affinity
Script QPCR cDNA Synthesis Kit (Agilent
Technologies, Cedar Creek, TX, USA). Real-time
PCR was performed using SYBR Green qPCR
Master mix (Fermentas Life Sciences, Waltham, MA,
USA) and primers specific for bovine COX-2, IL-8 and
GAPDH. The primers used for the PCR reaction were
as follows: COX-2 R 50-ACCGTTTTGGTGAGGTG
CGTAT-30, COX-2 F 50-AGCACCATTCTCCCTGA
AACT-30; IL-8 R 50-TCATGGATCTTGCTTCTCA
GC-30, IL-8 F 50-TGGGCCACACTGTGAAAAT-30;
GAPDH R 50-CCCTCCACGATGCCAAAGT-30,
GAPDH F 50-GGCGTGAACCACGAGAAGTATA
A-30.9 The following conditions were used: 95�C for
10min and 40 cycles of 30 s at 95�C, 30 s at 55�C and
30 s at 72�C. This was followed by three additional
steps (dissociation curve): 95�C for 1min, 60�C for
30 s and 95�C for 30 s.

ELISA

Neutrophils (5� 106) were incubated with vehicle
(0.1% DMSO), 10 mM GW1100 or 50 mM AP
for 15min at 37�C. Afterwards, FFAR1/GPR40 agon-
ists (10mM GW9508, 100 mM LA or 300 mM OLA)
were added and incubated for 5 h at 37�C. Then,
the supernatants were obtained and stored at –80�C.
The IL-8 levels in the supernatants were assayed
using a commercially available IL-8 ELISA kit
(R&D Systems, Inc., Minneapolis, MN, USA). The
Ab pairs used in this kit have been previously shown
to cross-react with bovine IL-8.28 The absorbance was
measured in a Varioskan microplate reader (Thermo
Fisher Scientific, Waltham, MA, USA) at 450 nm.

The results were expressed as the IL-8 concentration
(pg/ml).

Determination of MMP-9 activity by zymography

Neutrophils (1� 106) were incubated with 10 mM
UO126, 10 mM SB203580, 10 mM LY294002 or vehicle
(0.1% DMSO) for 5min at 37�C, and then with
FFAR1/GPR40 agonists (10mM GW9508, 100 mM
LA or 300 mM OLA) for 5min at 37�C. After incuba-
tion, the neutrophils were centrifuged at 600 g for
6min, and equal amounts of supernatants were assayed
for gelatinase activity by zymography, as described.10

Briefly, 10 ml supernatant was loaded on 10% poly-
acrylamide gels (0.75-mm thick) containing 0.2% gel-
atine. The gels were run at 200V for 1 h in a Bio-Rad
Mini Protean II apparatus (Bio-Rad Laboratories,
Richmond, CA, USA) and then soaked twice in 2.5%
Triton X-100 in distilled water on a shaker at room
temperature for 30min. Then, the gels were soaked in
reaction buffer consisting of 100mM Tris (pH 7.5) and
10mM CaCl2 at 37

�C overnight. The gels were stained
in 0.5% Coomassie Brilliant Blue R-250 (Winkler,
Santiago, Chile) in acetic acid:methanol:water (1:3:6).
Evidence of enzymatic activity was determined by non-
staining areas in which the gelatine was degraded. The
gelatinolytic bands were compared with a recombinant
MMP-9 standard (Sigma-Aldrich, St. Louis, MO,
USA).9 To measure the activity, the gels were digita-
lized, and the intensity of the bands was determined
using ImageJ 1.35 s software (NIH, Bethesda, MD,
USA).

Statistical analysis

All experimental protocols were performed in quintu-
plicate. The results are illustrated in bar graphs as the
mean�SEM. For statistical analysis, an ANOVA and
Dunnett’s multiple comparison or t-tests were per-
formed. All analyses were performed using Graph
Pad Prism v6.01 software (GraphPad Inc., La Jolla,
CA, USA) using a significance level of 5%.

Results

FFAR1/GPR40 agonists induce ERK1/2, p38 MAPK
and Akt phosphorylation

To study the intracellular signalling pathways related to
the FFAR1/GPR40 receptor, we used the endogenous
agonists LA and OLA, and the synthetic agonist
GW9508, and the phosphorylation of MAPK p38,
ERK1/2 and Akt was evaluated. Previously, we demon-
strated that the ERK1/2 and p38 phosphorylation
induced by LA is a rapid process, reaching a maximum
at 5min of treatment.9 Neutrophils were incubated with
10 mM GW9508, 100 mM LA and 300 mM OLA for
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5min, and total proteins were analysed by immunoblot.
The LA and OLA concentrations used in the experi-
ments are in the range of the concentration in healthy
and ketotic cows;29,30 furthermore, these LA, OLA and
GW9508 concentrations were previously used to induce
neutrophil functions.10 We observed a significant
increase in the phosphorylation of ERK1/2, p38
MAPK and Akt (Figure 1). The pretreatment of neu-
trophils with the FFAR1/GPR40 antagonist GW1100
significantly reduced the phosphorylation stimulated by
the agonists. As a control, we used neutrophils treated
with GW1100 and then stimulated with PAF, a ligand
of an unrelated fatty acid receptor, and no reduction in
PAF-induced phosphorylation was observed.

FFAR1/GPR40 stimulation reduces I�B� levels

The NF-kB transcription factor pathway is important
for the up-regulation of pro-inflammatory genes.31–33

Therefore, we studied whether agonists of FFAR1/
GPR40 participate in the activation of this pathway.

The classical NF-kB pathway involves the protein
IkBa, which is degraded when the pathway is acti-
vated.34 Neutrophils were incubated with FFAR1/
GPR40 agonists for 30min, and levels of IkBa were
analysed by flow cytometry. A significant reduction in
IkBa levels was observed in neutrophils treated with
GW9508, LA or OLA (Figure 2). The pretreatment of
neutrophils with GW1100 and then with the agonists
showed significantly higher levels of IkBa than the agon-
ists, suggesting the participation of FFAR1/GPR40 in
the activation of the classical NF-kB pathway.

We next evaluated the role of the pathways activated
by FFAR1/GPR40, MAPK and PI3K/Akt, on the IkBa
levels. For this, we used pharmacological inhibitors of
MEK1/2, p38 MAPK and PI3K, prior to stimulation
with GW9508, LA or OLA, and the IkBa level was
determined by flow cytometry. The inhibitors UO126
(MEK1/2 inhibitor), SB203580 (p38 MAPK inhibitor)
and LY294002 (PI3K inhibitor) significantly reduced
the effects of GW9508, LA and OLA (Figure 3), increas-
ing the IkBa levels compared with the agonists alone.
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Figure 1. The FFAR1/GPR40 receptor participates in ERK1/2, p38 MAPK and Akt phosphorylation induced by OLA, LA or

GW9508. Neutrophils were treated with GW1100 (10mM) for 15 min and then stimulated with GW9508 (10 mM), LA (100 mM) or

OLA (300 mM) for 5 min. PAF (100 nM) was used as a control for the specificity of GW1100. Total proteins were obtained, and the

phosphorylation of (a) ERK1/2, (b) p38 MAPK and (c) Akt was analysed by immunoblot. Densitometric analyses of five independent

experiments are shown in bar graphs (mean� SEM). *P< 0.05, **P< 0.01, ***P< 0.001.
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FFAR1/GPR40 stimulation increases the expression
of the pro-inflammatory genes IL-8 and COX-2
via NF-�B

Previous data showed that in bovine neutrophils LA
increases the expression of the pro-inflammatory
genes IL-8 and COX-2,9 two important mediators
with a role in the inflammatory response and neutrophil
chemotaxis. However, the participation of FFAR1/
GPR40 in this response has not been demonstrated.
Neutrophils were incubated with GW1100 for 15min,
and then GW9508, LA or OLA were added and incu-
bated for 2 h (for mRNA analysis), 3 h (for immunoblot
of COX-2) or 5 h (for IL-8 ELISA). COX-2 mRNA and
protein were analysed by RT-qPCR or immunoblot,
respectively, and IL-8 mRNA and protein were ana-
lysed by RT-qPCR or ELISA, respectively. IL-8
mRNA was significantly increased in neutrophils trea-
ted with GW9508, LA and OLA (Figure 4a); LA and
OLA induced a greater increase in IL-8 mRNA than
the synthetic agonist GW9508. Similarly, the IL-8
released into the culture medium was also increased
in neutrophils stimulated with LA and OLA compared
with those stimulated with GW9508 (Figure 4b). The
pretreatment of neutrophils with GW1100 prior to
agonist treatment significantly reduced the levels of
IL-8 mRNA and protein.

The analysis of COX-2 (Figure 4c, d) showed a sig-
nificant increase in the mRNA and protein in neutro-
phils treated with all agonists, and the greatest increase
was obtained with LA. Pretreatment with GW1100
reduced the mRNA to near basal levels, and the protein
levels were also significantly reduced.

FFAR1/GPR40 activated the NF-kB pathway, and
COX-2 and IL-8 possess sites in their promoters for
NF-kB binding.35,36 Therefore, we assessed the partici-
pation of this pathway in IL-8 and COX-2 expression
induced by FFAR1/GPR40 agonists. We pretreated
neutrophils with 50 mM AP, an NF-kB inhibitor,37,38

prior to treatment with GW9508, LA or OLA. AP sig-
nificantly reduced the IL-8 mRNA levels induced by
GW9508 and OLA, while a non-significant reduction
was observed in neutrophils stimulated with LA
(Figure 5a). Similar results were observed in the ana-
lysis of the protein by ELISA (Figure 5b). COX-2
mRNA and protein were significantly reduced by AP
when all agonists were evaluated (Figure 5c, d).

FFAR1/GPR40 stimulation increases MMP-9
granule release

Granule release is an important defensive mechanism
that occurs very rapidly in neutrophils,8,39,40 and a role
of MAPK and PI3K in the release of MMP-9 in human
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Mena et al. 483



neutrophils induced by a kinin receptor agonist has
been demonstrated.41 We evaluated the participation
of FFAR1/GPR40 in the release of MMP-9 into the
supernatants of neutrophils incubated with GW1100
and then with FFAR1/GPR40 agonists for 5min.

Zymography analysis showed that GW9508, LA and
OLA significantly increased the secretion of MMP-9,
visualized as gelatinase activity. GW1100 significantly
reduced the release of MMP-9, demonstrating the
involvement of the receptor in this process (Figure 6a).
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Figure 3. ERK1/2, p38 MAPK and PI3K participate in the reduction of IkBa levels. Neutrophils were treated with (a) 10mM UO126,

(b) 10 mM SB203580 or (c) 10mM LY294002 for 15 min and then stimulated with GW9508, LA or OLA for 30 min. Detection of IkBa
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Because FFAR1/GPR40 activation stimulates the
rapid phosphorylation of MAPK and Akt, we assessed
the role of these protein kinases in MMP-9 release.
Neutrophils were treated with UO126, SB203580 or
LY294002, and then with FFAR1/GPR40 agonists, and
theMMP-9 activity in the supernatants was evaluated by
zymography. We observed that only UO126 significantly
reduced the MMP-9 activity induced by GW9508, LA or
OLA (Figure 6b), indicating the role of MEK1/2-ERK1/
2 pathway in gelatinase granule release.

Discussion

Our results revealed the intracellular signalling path-
ways activated by FFAR1/GPR40 ligands in bovine
neutrophils and their link to gene expression and
MMP-9 granule release. We observed that natural
and synthetic ligands of FFAR1/GPR40 induced the
phosphorylation of ERK1/2, p38 MAPK and Akt via
FFAR1/GPR40 in bovine neutrophils. Studies of
FFAR1/GPR40 in pancreatic b cells (human, mouse
or rat) have demonstrated that FFAR1/GPR40 activa-
tion stimulates PLC and intracellular calcium.42

Human FFAR1, which shows 85% identity with the
bovine receptor,10 induced PI3K, ERK1/2 and p38
MAPK activation.19 In bovine neutrophils, natural
and synthetic ligands of FFAR1/GPR40 stimulated
intracellular calcium mobilization and PLC and PKC
activation,10 pathways that have been associated with

MAPK activation. The absence of external calcium and
the store-operated calcium entry inhibitor 2-ami-
noethoxydiphenyl borate reduced the ERK1/2 phos-
phorylation induced by platelet-activating factor in
bovine neutrophils.43 The role of PKC in MAPK
activation has been demonstrated using the PKC
inhibitor GF109203X, which decreased kinin receptor
agonist-induced ERK1/2 phosphorylation in human
neutrophils.41

We studied the activation of the NF-kB downstream
of ERK1/2, p38 MAPK and PI3K/Akt because this
transcription factor is important in the gene expression
of pro-inflammatory mediators, such as COX-2 and IL-
8. Our results showed for the first time that FFAR1/
GPR40 ligands reduced IkBa levels via FFAR1/
GPR40 in neutrophils, suggesting the activation of
the classical NF-kB pathway, and the inhibitors
UO126, SB203580 and LY294002 reduced this effect,
indicating the participation of ERK1/2, p38 MAPK
and PI3K. Previous reports have demonstrated the par-
ticipation of MAPK and PI3K in the classical NF-kB
pathway activation induced by different stimuli in neu-
trophils. A role for ERK1/2 has been shown in NF-kB
activation in zymosan-stimulated mouse neutrophils
because UO126 inhibited the phosphorylation of p65
NF-kB, a subunit of the transcription factor that is
phosphorylated upon activation of the pathway.44

The role of p38 MAPK in NF-kB activation was
demonstrated through p38 MAPK inhibition, which

MMP-9

(a)

(b)

MMP-9 MMP-9

MMP-9MMP-9 MMP-9

NS NS NS

NS NS NS

30000 *** *

* * *

*** ** *** *

20000

10000

20000

15000

10000

5000

10 mM UO126 10 mM SB203580

10 mM GW9508
100 mM LA

300 mM OLA

10 mM LY294002

10 mM GW9508
100 mM LA

300 mM OLA
300 mM OLA

100 mM LA

10 mM GW9508

0

10 μM GW1100

10 μM GW9508

10 μM GW1100

100 μM LA

10 μM GW1100

300 μM OLA

M
M

P
-9

 (
A

U
)

M
M

P
-9

 (
A

U
)

20000

15000

10000

5000

0

M
M

P
-9

 (
A

U
)

M
M

P
-9

 (
A

U
)

M
M

P
-9

 (
A

U
)

M
M

P
-9

 (
A

U
)

0
–

– + – + – + – +

– – + + – – – –
– – – – + + – –
– – – – – – + +

– + – + – + – +

– – + + – – – –
– – – – + + – –
– – – – – – + +

– + – + – + –

– – + + – – –
– – – – + + –
– – – – – –

+

–
–
++

–

+

–

+

+

–

+

–

–

+

–

+

+

–

+

–

–

+

–

+

+

–

+

30000

20000

10000

20000

15000

10000

5000

0

0

30000

20000

10000

0

Figure 6. The ERK1/2 pathway controls MMP-9 granule release induced by FFAR1/GPR40 agonists. Neutrophils were treated with (a)

10mM GW1100 or (b) 10mM UO126, 10mM SB203580 or 10mM LY294002 for 15 min and then stimulated with GW9508, LA or OLA for

5 min. The MMP-9 activity released into the supernatants was analysed by zymography. Densitometric analysis is shown in the bar graphs.

The mean� SEM of five independent experiments is shown. AU: arbitrary units. NS: not significant. *P< 0.05, **P< 0.01, ***P< 0.001.
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reduced the NF-kB nuclear translocation induced by
LPS or high levels of superoxide in human or mouse
neutrophils, respectively.45,46 Recently, we demon-
strated that the inhibition of the ERK1/2, p38 MAPK
or PI3K/Akt pathways reduced the NF-kB nuclear
translocation induced by fMLP in human neutrophils.47

Fatty acid-induced NF-kB activation has scarcely
been studied. A recent study showed that palmitic
acid, a saturated fatty acid, increased NF-kB activity
in microvascular endothelial cells,48 and LA induced
NF-kB transcriptional activation in retinal pigment epi-
thelial cells.49 In contrast, omega-3 polyunsaturated
fatty acids (PUFAs) do not affect NF-kB in Caco-2
cells by themselves, however omega-3 PUFAs inhibited
the IL-1b-induced degradation of IkBa.50 In addition,
another study suggested the participation of FFAR1/
GPR40 in the NF-kB-mediated activation of human
renal epithelial cells, showing that cisplatin-induced
NF-kB activation was attenuated by pretreatment

with GW9508.51 These studies provide initial data
about the effects of fatty acids on NF-kB, which
could vary depending on the fatty acid used, the cell
type and the presence or absence of a stimulus.

COX-2 and IL-8 genes have NF-kB binding sites in
their promoter regions that regulate their expres-
sion.36,52 Our results showed that FFAR1/GPR40
agonists increased the gene and protein levels of
COX-2 and IL-8. Moreover, we observed that the
NF-kB inhibitor AP significantly reduced FFAR1/
GPR40 agonist-induced COX-2 and IL-8 expression,
suggesting the participation of NF-kB. In addition,
the FFAR1/GPR40 antagonist reduced the COX-2
and IL-8 levels, suggesting the involvement of
FFAR1/GPR40 in the expression of these pro-inflam-
matory mediators. Previous studies have demonstrated
a role for fatty acids in COX-2 and IL-8 expression in
other cells; LA and OLA significantly increased the
COX-2 protein expression in chicken hepatocytes and
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human retinal pigment epithelium, but the participa-
tion of FFAR1/GPR40 was not studied.49,53 Our
recent study in bovine endothelial cells showed that
LA increased IL-8 mRNA, and GW1100 significantly
reduced LA-induced IL-8.54 From our analysis using
the MAPK and PI3K inhibitors in FFAR1/GPR40
agonist-treated neutrophils (Supplementary Figure),
we did not observe a reduction in COX-2 or IL-8
expression, although a trend towards a decrease in
some experiments was observed, which indicates that
the inhibition of a single pathway is not enough to
reduce the levels of COX-2 or IL-8.

Finally, we studied whether the MAPK or PI3K
pathways could play roles in MMP-9 release because
MAPK and Akt phosphorylation are rapid events and
MMP-9 release also occurs quickly,8,39,40 because active
MMP-9 is stored in granules into neutrophils.55 First,
we demonstrated the participation of FFAR1/GPR40
in FFAR1/GPR40 agonist-induced MMP-9 release
(Figure 6). Our experiments using MAPK and PI3K
inhibitors demonstrated that only the ERK1/2 pathway
is involved in MMP-9 release induced by FFAR1/
GPR40 agonists. This result is consistent with previous
studies in which the ERK1/2 pathway is required for
active MMP-9 protein release in aldosterone-stimulated
HL-60 cells; however, PI3K and p38 MAPK also
played roles in MMP-9 release in that model.56 In
kinin receptor agonist-stimulated human neutrophils,
MMP-9 release was dependent on ERK1/2 and p38
MAPK.41 Thus, our results and those of others show
that specific signalling pathways involved in MMP-9
granule release are dependent on receptor activation.

In conclusion, we demonstrated that COX-2 and IL-
8 are expressed after FFAR1/GPR40 activation, and
NF-kB controls this response. MMP-9 granule release
is FFAR1/GPR40- and ERK1/2-dependent in bovine
neutrophils. Overall, natural and synthetic FFAR1/
GPR40 agonists activate the receptor and differentially
activate intracellular signalling pathways to mediate the
appropriate bovine neutrophil functions (Figure 7),
which is specific of the bovine because FFAR1/
GPR40 is not expressed in human neutrophils. These
results suggest a link between metabolism and innate
immunity, via FFAR1/GPR40 on bovine neutrophils
activation, which could contribute to the risk develop-
ing infectious diseases at calving, by mechanisms that
have been involved in tissue damage.
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