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Immunomodulatory properties of
medicinal mushrooms: differential
effects of water and ethanol extracts
on NK cell-mediated cytotoxicity
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Abstract

Medicinal mushrooms have been used for centuries in Asian countries owing to their beneficial effects on health and

longevity. Previous studies have reported that a single medicinal mushroom may produce both stimulatory and inhibitory

effects on immune cells, depending on conditions, but the factors responsible for this apparent dichotomy remain

obscure. We show here that water and ethanol extracts of cultured mycelium from various species (Agaricus blazei

Murrill, Antrodia cinnamomea, Ganoderma lucidum and Hirsutella sinensis) produce opposite effects on NK cells. Water

extracts enhance NK cell cytotoxic activity against cancer cells, whereas ethanol extracts inhibit cytotoxicity. Water

extracts stimulate the expression and production of cytolytic proteins (perforin and granulysin) and NKG2D/NCR cell

surface receptors, and activate intracellular signaling kinases (ERK, JNK and p38). In contrast, ethanol extracts inhibit

expression of cytolytic and cell surface receptors. Our results suggest that the mode of extraction of medicinal mush-

rooms may determine the nature of the immunomodulatory effects produced on immune cells, presumably owing to the

differential solubility of stimulatory and inhibitory mediators. These findings have important implications for the prep-

aration of medicinal mushrooms to prevent and treat human diseases.
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Introduction

Traditional Chinese medicine (TCM) represents an
ancient form of medical treatment that was established
several thousand years ago. While evidence supporting
this practice is mostly based on tradition, folklore and
anecdotal accounts, considerable interest has been
devoted recently to assess the efficacy and safety of
TCM.1,2 Several bioactive compounds derived from
herbal remedies commonly used in TCM have been iden-
tified and approved for human use, including the anti-
malaria drug artemisinin (for which the Nobel Prize in
Physiology or Medicine was awarded in 2015), the
amphetamine-like compound ephedrine and the
immunosuppressive molecule fingolimod.1,3 We recently
showed that high molecular mass polysaccharides iso-
lated from Ganoderma lucidum (GL) mycelium produces
anti-obesity, anti-diabetic and anti-inflammatory effects
in mice fed a high-fat diet4 (see also Holmes5 and
Delzenne and Bindels6). Further studies are currently
under way to identify novel bioactive compounds from
TCM remedies and natural health products.

A vast group of medicinal mushrooms that includes
Agaricus blazei Murrill (ABM), Antrodia cinnamomea
(AC), GL and Ophiocordyceps sinensis (OS) have been
used extensively in TCM.7 These medicinal mushrooms
have been consumed for hundreds of years owing to
their beneficial effects on health and longevity.
Medicinal mushrooms produce a wide range of activ-
ities on cells and laboratory animals, including anti-
cancer, anti-diabetic, antioxidant and anti-viral
effects.7–9 For instance, OS (which was previously
called Cordyceps sinensis10) and its anamorph,
Hirsutella sinensis mycelium (HSM), produce beneficial
effects against atherosclerosis, fatigue, hyperlipidemia
and sexual dysfunction,11,12 while GL is mainly
known for its anti-bacterial, anti-cancer, anti-inflam-
matory, anti-obesity, anti-viral, hepato-protective and
hypoglycemic effects.4,13 Other studies have shown that
ABM possesses anti-cancer, anti-diabetic and anti-
inflammatory properties,14 while AC, a fungus native
to Taiwan, produces beneficial effects against cancer,
hepatitis, hypertension and inflammation, among
others.15 These observations suggest that medicinal
mushrooms may be used for the prevention and treat-
ment of human diseases. However, it remains unclear
whether sample preparation may influence the effects of
fungal extracts on human cells.

Among the biological effects described, the immuno-
modulatory properties of medicinal mushrooms have
been the subject of numerous studies (reviewed
recently7). Surprisingly, a single mushroom has been
shown to produce both stimulatory and inhibitory
effects on immune cells,16 but the reason for this appar-
ent dichotomy remains unclear. In the present study, we
examined the possibility that water and ethanol extracts
of medicinal mushrooms may produce opposite effects
on innate immune cells.

Materials and methods

Chemical reagents

Alpha-minimum essential medium (a-MEM) without
ribonucleosides and deoxyribonucleosides, RPMI 1640
medium, horse serum and FBS were purchased from
Invitrogen (Carlsbad, CA, USA). Folic acid, glutamine,
inositol, JNK inhibitor [SP600125 (SP)], ERK1/2 inhibi-
tor [PD98059 (PD)], p38 MAPK inhibitor [SB203580
(SB)] and 2-mercaptoethanol were purchased from
Sigma (St. Louis, MO, USA). Inhibitors were dissolved
in dimethyl sulfoxide and stored at �20�C before use.

Preparation of mycelium extracts

Mycelium strains (ABM, AC, GL and HSM) were ini-
tially isolated from fresh mushroom fruiting bodies and
characterized by Chang Gung Biotechnology. Species
identification was performed by sequencing of rDNA
and internal transcribed spacer genes (ITS-1 and ITS-2)
and comparison with sequence database (� 99% hom-
ology was observed with strains AJ133376, AJ496398,
AF506371, and AJ245559; Bioresource Collection
Research Center, Hsinchu, Taiwan). DNA sequence
search and alignment was performed using BlastN
2.2.29+ (NCBI, Bethesda, MD, USA).

To prepare the mycelium extracts, 400 g dried myce-
lium was mixed with 10 l of either double-distilled water
or 95% ethanol (w/v) in a bioreactor (Bioflo 4500 20L;
New Brunswick Scientific, Enfield, CT, USA). After
incubation at 122�C for 30min with gentle agitation,
the solution was centrifuged at 5900g for 30min at
4�C using a Sorvall RC 3C Plus centrifuge (Thermo
Fischer Scientific, Waltham, MA, USA). The super-
natant was concentrated in a vacuum centrifuge (Buchi
R220, Zürich, Switzerland) to obtain a final volume of 2
l (i.e. 20% extract, w/v). The final extract was used for
the experiments and diluted as indicated in the figures.

Cell culture

The human NK cell line NK92 was obtained from the
ATCC (CRL-2407; Manassas, VA, USA). The cell lines
were initially derived from a case of non-Hodgkin’s
lymphoma, as described previously.17 NK92 cells were
cultured in a-MEM containing 2mM L-glutamine,
1.5 g/l sodium bicarbonate, 10% FBS, 12.5% horse
serum and 100 IU/ml IL-2 (Peprotech, Rocky Hill,
CT, USA). The human cell line K562, initially derived
from a case of chronic myelogenous leukemia,18 was
obtained from the ATCC (CRL-243) and cultured in
RPMI 1640 containing 10% FBS.

Abs

Mouse anti-human Abs raised against granulysin,
NKG2D, NKp30, NKp44, NKp46 or perforin were
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used (R&D Systems, Minneapolis, MN, USA). Rabbit
polyclonal Abs that recognize ERK, JNK, p38, phos-
phorylated-ERK (Thr202/Tyr204), phosphorylated-
JNK (Thr183/Tyr185) or phosphorylated-p38
(Thr180/Tyr182) were obtained from Cell Signaling
Technology (Danvers, MA, USA). Mouse monoclonal
anti-actin Ab was purchased from Chemicon
International (Temecula, CA, USA). Abs were used
according to the manufacturer’s instructions.

Cell viability assay

NK92 cells were grown at 1� 105 cells/well in 96-well
plates (Corning, Corning, NY, USA). Cells were incubated
in culture medium (90ml) containing the indicated concen-
tration of water or ethanol mycelium extract for 24h. Ten
ml MTT reagent (5mg/ml, MTT In Vitro Toxicology
Assay kit; Sigma) was added to the wells and the plates
were incubated for 3h at 37�C. Solubilization solution
(100ml) was added followed by incubation for 18h. Cell
viability was determined based on instructions from the
supplier. Experiments were done in triplicate.

NK cell killing assay

Cell killing was monitored using a commercial assay
(CytoTox 96 Non-Radioactive Cytotoxicity Assay;
Promega, Madison, WI, USA). The assay measures col-
orimetric changes representing the presence of lactate
dehydrogenase, a cytosolic enzyme released from cells fol-
lowing lysis. Briefly, NK effector cells cultured at densities
of 5� 104, 2.5� 104 and 5� 103 cells/well in 96-well plates
were treated with water or ethanol mycelium extract for
24h at the dose indicated. Cells were pretreated with
MAPK inhibitors for 30min followed by treatment with
0.1–5% mycelium extract for 4h. Alternatively, cells were
pretreated with MAPK siRNA for 18h. Washed K562
target cells (5� 103/well) cultured in complete cell culture
medium were added at the effector-target ratios of 1:1, 5:1
or 10:1. Microplates were centrifuged for 4min at 250 g to
pellet cells prior to incubation for 4h at 37�C in cell cul-
ture conditions. Following co-incubation, supernatants
(50ml) were collected, mixed to 50ml of substrate mix
and incubated 10min in the dark at 25�C. The enzymatic
reaction was stopped by adding the stop solution (50ml).
Absorbance was measured at 490nm using a spectropho-
tometer. Maximum release (TM) was determined by
lysing target cells with lysis solution (10ml).
Spontaneous release by target cells (TS) or effector cells
(ES) was determined after incubation. Results represent
percentage of cell killing based on the following equation:
[(experimental – ES –TS)/(TM – TS)]� 100.

Flow cytometry analysis

The following fluorophore-coupled Abs were used for
cell sorting: anti-NKG2D-allophycocyanin (APC),

anti-NKp46-fluorescein-isothiocyanate (FITC), anti-
NKp30-phycoerythrin (PE; R&D Systems), and anti-
NKp44-phycoerythrin (Becton Dickinson, Franklin
Lakes, NJ, USA). Blocking of non-specific Ags on
NK92 cells (5� 105) was performed using cold 1%
BSA–PBS at 4�C for 30min. Cells were treated with
Abs in the dark at 4�C for 30min prior to washing
twice in cold PBS and re-suspension in 1ml cold PBS.
Flow cytometry was done using a FACSCaliburTM

flow cytometer (Becton Dickinson).

RNA isolation and PCR analysis

NK92 cells were treated with mycelium extracts
for 24 h. mRNA were isolated using the commercial
Qiagen RNeasy kit (Qiagen, Valencia, CA, USA).
Total RNA was converted to cDNA using a reverse
transcriptase kit (Taqman; Applied Biosystems,
Foster City, CA, USA). Quantitative PCR was done
by using 1/50 of the cDNA preparation in an
Mx3000P (Stratagene, La Jolla, CA, USA), using a
final volume of 25 ml with Brilliant QPCR Master Mix
(Stratagene). The PCR protocol consisted of initial
denaturation at 95�C for 10min, followed by 50
cycles of 95�C for 30 s, 55�C for 1min and 72�C for
1min.

Western blot analysis

NK92 cells (106/well in six-well plates) were cultured
with water or ethanol extract for 24 h at the dose indi-
cated. Washed cells were lysed using the Mammalian
Protein Extraction Reagent (Pierce Chemicals,
Rockford, IL, USA). Proteins (40mg/lane) were sepa-
rated on a 10% SDS polyacrylamide gel and electro-
blotted onto polyvinylidenedifluoride membranes
(Immobilon-P; Millipore, Billerica, MA, USA).
Membranes were blocked with 5% non-fat milk for
2 h at 25�C in Tris-buffered saline (Tris 10mM, NaCl
150mM, pH 7.6) containing 0.1% Tween 20.
Membranes were probed for 18 h at 4�C with primary
Ab (1:1,000 for anti-ERK, anti-granulysin, anti-
JNK, anti-NKG2D, anti-p38, anti-perforin, anti-
phosphorylated-ERK, anti-phosphorylated-JNK and
anti-phosphorylated-p38; 1:10,000 for anti-actin).
Membranes were incubated with HRP-conjugated sec-
ondary Ab (1:10,000). Protein signals were developed
using enhanced chemiluminescence (Amersham
Pharmacia Biotech, Piscataway, NJ, USA).

Gene silencing

siRNA against human p38 (sc-29433), JNK-1
(sc-29380), ERK-2 (sc-35335), NKG2D (sc-42948),
NKp44 (sc-72170), NKp46 (sc-63344), NKp30
(sc-42950) and control siRNA (sc-37007) were pur-
chased from Santa Cruz Biotechnology (Santa Cruz,
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CA, USA). siRNA were transfected into NK92 cells by
electroporation using a commercial kit (Amaxa,
Gaithersburg, MD, USA).

Statistical analysis

Statistical analysis was performed using ANOVA tests
(SPSS 12.0 software; IBM, Armonk, NY, USA) with
correction for multiple comparisons. Results giving a
P-value< 0.05 were considered statistically significant.

Results

Effects of water and ethanol mycelium extracts
on NK cell viability and cytotoxic activity

Medicinal mushrooms such as ABM, AC, GL and
HSM are non-comestible owing to their rough, wood-
like texture and, for this reason, have usually been pre-
pared in water and served as soups or decoction.
Alcohols, mainly ethanol, have also been used as
extraction solvents in order to obtain tincture contain-
ing active compounds of hydrophobic nature. We
therefore prepared water and ethanol extracts of
ABM, AC, GL and HSM mycelium and monitored
the effects of these extracts on the viability of NK92
cells. While treatment with 0.1% water extract did not
affect NK cell viability compared with control water,
treatment with 2%, or in some cases 5%, enhanced cell
viability (Figure 1a). In comparison, the ethanol
extracts (0.5–2%) did not affect cell viability compared
with control ethanol (Figure 1b).

We monitored the effects of the mycelium extracts
on NK cytotoxic activity against K562 leukemia cancer
cells. For these experiments, NK cells used as effectors

were cultured with target cancer cells at different effec-
tor-target ratios (1:1, 5:1 and 10:1), which were deter-
mined experimentally based on previous work.19 As
expected, NK cell cytotoxic activity increased as a func-
tion of the effector–target ratio (Figure 2a,b, ‘Control’
curves). Notably, we observed that the mycelium water
extracts enhanced the cytotoxic activity in a dose-
dependent manner (Figure 2a), whereas the ethanol
extracts reduced cytotoxicity (Figure 2b). These results
suggest that the water and ethanol extracts of the same
mycelium may produce opposite effects on NK cells.

Modulation of perforin and granulysin production by
water and ethanol mycelium extracts

We have shown earlier that perforin is a pore-forming
protein that mediates the delivery of pro-apoptotic
proteins such as granulysin and granzyme into the cyto-
sol of target cells, thereby inducing apoptosis.20–23

We examined the possibility that water and ethanol
mycelium extracts may regulate the expression and
production of perforin and granulysin by NK cells.
Indeed, treatment of NK cells with the water mycelium
extracts for 24 h enhanced perforin and granulysin
mRNA expression in a dose-dependent manner
(Figure 3a). In contrast, treatment with the ethanol
extracts reduced perforin and granulysin mRNA
expression (Figure 3b).

Western blot analysis was performed to determine
whether the mycelium extracts modulate perforin and
granulysin protein levels. As shown in Figure 3c, water
mycelium extracts enhanced the production of perforin
and granulysin proteins in a dose-dependent manner.
In comparison, ethanol extracts inhibited the produc-
tion of cytolytic proteins (Figure 3d). The modulatory
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Figure 1. Effects of water and ethanol mycelium extracts on NK cell viability. NK92 cells were treated with (a) water or (b) ethanol

extracts of the indicated mycelium for 24 h and cell viability was assessed using the MTTassay. In (b), NK92 cells were treated with 1%

or 2% of a 95% ethanol solution as controls. (a) At 5%, water extract enhanced NK92 cell viability. The experiments shown in this

study were performed in triplicate (#P< 0.01; ¥P< 0.001).
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effects of water and ethanol extracts on cytolytic pro-
teins are consistent with the effects produced by the
extracts on NK cell cytotoxic activity as described
above (Figure 2a,b), further supporting the concept
that water and ethanol extracts produce opposite effects
on NK cell function.

NK cell receptor expression is differentially affected
by water and ethanol mycelium extracts

Expression of the cytolytic proteins perforin and gran-
ulysin in NK cells is induced by activation of signaling
pathways acting downstream of NKG2D, NKp30,
NKp44 and NKp46 cell surface receptors.19,24

Moreover, activation of NK cell cytotoxicity may
induce mRNA and protein expression of NK cell sur-
face receptors,19 a process that possibly enhances NK
cell activation. To examine whether the expression level
of these NK cell receptors is affected by mycelium
extracts, we measured their mRNA levels using real-
time qRT-PCR, 24 h after treatment with the mycelium
extracts. mRNA levels of the receptors increased in a
dose-dependent manner following treatment of NK
cells with water extracts (Figure 4a). However, treat-
ment with ethanol extracts inhibited receptor mRNA
expression (Figure 4b).

Similar to the results obtained for mRNA expres-
sion, the level of NK cell receptor proteins in cell
lysate was also modulated differentially by the myce-
lium extracts. Treatment of NK cells with water myce-
lium extracts increased production of the receptor
proteins in a dose-dependent manner (Figure 4c),

while ethanol extracts slightly reduced protein levels
of the receptors (Figure 4d).

The levels of NK cell surface receptors were also
monitored using flow cytometry. As with the results
of total cellular protein levels (Figure 4c), treatment
of NK cells with water extracts increased production
of the cell surface receptors in a dose-dependent
manner (Figure 5a). However, cell surface receptor
levels remained at basal levels in cells treated with
ethanol extracts (Figure 5b). In these experiments,
non-specific binding was ruled out using a matched
isotype control Ab (Figure 5, ‘Isotype’ columns).
Taken together, these observations indicate that water
and ethanol mycelium extracts produce opposite
effects on the production of cytolytic proteins as well
as cell surface receptors responsible for activation of
cytotoxicity.

Water mycelium extracts enhance MAP kinase
activity in NK cells

MAP kinases act downstream of NK cell receptors and
induce the expression of cytolytic proteins.25–27

Accordingly, inhibition of JNK and ERK-1/2 kinases
abrogates NKG2D-mediated NK cytotoxic activity.28

Therefore, we examined whether the water mycelium
extracts modulate MAP kinase activity by monitoring
the level of phosphorylated (active) kinases using
Western blot analysis. As shown in Figure 6a, phos-
phorylated kinase levels (p-JNK, p-ERK, and p-p38)
were enhanced in a dose-dependent manner in NK
cells treated with the water extracts.
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To confirm the involvement of MAP kinases in mod-
ulating the effects produced by mycelium extracts, we
used chemical inhibitors that specifically target each
kinase. Blocking of JNK kinase using the SP inhibitor

reduced NK cytotoxic activity induced by treatment
with the water extracts (Figure 6b). Similarly, blocking
ERK1/2 or p38 reduced NK cytotoxic activity induced
by the water mycelium extracts (Figure 6c,d;
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Figure 4. Effects of water and ethanol mycelium extracts on NKG2D and NCR receptors in NK cells. NK92 cells were treated with

(a, c) water or (b, d) ethanol extracts of mycelium for 24 h and total cellular mRNA and proteins were prepared for quantification of
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using (c, d) Western blotting. The results correspond to means of three independent experiments performed in triplicate (*P< 0.05;
#P< 0.01; ¥P< 0.001).
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inhibitors labeled as PD and SB, respectively).
These results indicate that MAP kinases are involved
in mediating the effects of water extracts on NK cell
function.

We also performed knockdown assays using small
interfering RNA (siRNA) to silence MAP kinase
expression and confirmed the effects of these treatments
on NK cell cytotoxicity. Expression of siRNA effect-
ively reduced kinase protein expression, whereas the
electroporation treatment, expression of the empty
vector or a scramble control had no effect
(Figure 7a). While treatment with water mycelium
extracts increased perforin and granulysin protein
levels, both proteins were down-regulated following
silencing of JNK kinase (Figure 7a). Moreover, silen-
cing of JNK reduced NK cytotoxicity induced by the
water extracts (Figure 7b). Using the same knockdown
strategy, we observed that knockdown of ERK and
p38 reduced perforin and granulysin protein levels
(Figure 7c,e) and inhibited cytotoxicity in NK cells
treated with water mycelium extracts (Figure 7d,f).
We conclude that the mycelium extracts modulate
NK cell killing activity at least partially by affecting
MAP kinase activity.

Discussion

Previous studies have shown that a single medicinal
mushroom may produce both immunostimulatory
and immunosuppressive effects on cultured cells and
animals.7,29 The reason for this apparent contradiction
has not been thoroughly addressed in the literature. In
the present study, we observed that water extracts of
medicinal mushrooms activate NK cell cytotoxicity,
whereas ethanol extracts reduce cytotoxicity. Our
results thus indicate that the extraction protocol may
determine the effects of medicinal mushrooms on
immune cells, presumably owing to the differential
solubility of the bioactive compounds in the extracts.
Given that medicinal mushrooms are currently being
evaluated for the prevention and treatment of various
human diseases,7,9 our results provide a convenient
experimental platform for determining the optimal
extraction method required to produce specific
immunological effects in humans.

Consistent with the hypothesis proposed here, a
large majority (83%) of studies that examined the
effects of mushroom and mycelium extracts on cultured
cells and animal models show that water extracts of the
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four medicinal mushrooms studied here activate
immune responses, while ethanol (or methanol) extracts
inhibit immune cells (see Supplementary Table 1; 83
studies out of 100 selected at random support the
hypothesis). Of note, the immunomodulatory effects
described in the previous studies listed in
Supplementary Table 1 cover a wide range of immune
cells (B cells, dendritic cells, or DCs, eosinophils,
macrophages, neutrophils, NK cells, T cells), primary
cells and immortalized cell lines (ANA-1, GG2EE,

HeNC2, J774A.1, NK92, NR8383, R309, RAW264.7,
THP-1, U937), species (humans, mice, rats), disease
models (allergy, cancer, cerebral ischemic injury, colitis,
graft rejection, hypoxia, infection, inflammation, insu-
lin resistance, lupus, obesity, skin wound), and immune
reactions (Ab production; cell differentiation, prolifer-
ation and maturation; cytokine expression and secre-
tion; phagocytosis; targeted cell killing), suggesting
that this phenomenon is not limited to NK cells or
the experiments presented here.
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Figure 7. Mycelium extracts regulate perforin and granulysin secretion by modulating kinase activity. NK92 cells were transfected

with MAPK siRNA against (a, b) JNK, (c, d) ERK and (e, f) p38 by electroporation, followed by treatment with 5% water mycelium

extracts. Scramble siRNA was used as negative control. Kinase protein levels and cytotoxic activity was analyzed using Western blot

and the MTT assay, respectively. The results are representative of three independent experiments performed in triplicate (*P< 0.05;
#P< 0.01; ¥P< 0.001).

Lu et al. 531



However, some studies do not support the hypoth-
esis presented here (Supplementary Table 1; 17 studies
highlighted with an asterisk out of 100), including a
study in which a single OS water extract produced
stimulatory effects on immature DCs but inhibitory
effects on mature DCs.30 This study illustrates the
importance of the physiological state of the tested
organism. Based on these observations, it appears
that, in addition to the solvent used for extraction, add-
itional factors—such as the source of fungal species, the
amount and potency of immunomodulatory com-
pounds found in each species or specimens, the
sample preparation used, or the physiological condition
of the cell or organism on which samples are tested—
may play a role in determining the immunological
activity of mushroom and mycelium extracts.

Another factor possibly affecting the activity of
mycelium extracts in vivo is the gut microbiota, which
has been shown to regulate a vast range of physio-
logical processes, including immune reactions.31,32 We
showed recently that a water extract of GL mycelium
produces anti-obesity, anti-inflammatory and insulin-
sensitizing effects in mice fed with a high-fat diet and
that these effects are mainly due to modulation of the
gut microbiota.4 Water-soluble polysaccharides, which
were identified as the major active compounds in our
study, can be fermented by the intestinal microbiota of
the colon, producing short-chain fatty acids that induce
systemic anti-inflammatory activities on the host.33

Commensal bacteria and microbiota-derived com-
pounds therefore may influence the immunomodula-
tory effects of mushrooms in vivo, contrasting with
some of the effects observed on cell lines in vitro.

Further studies are needed to identify the active
compounds responsible for the immunological effects
described in the present study. Most immunosuppres-
sive compounds currently in use in humans can be clas-
sified as hydrophobic compounds (e.g. azathioprine,
cortisol, dexamethasone, laquinimod, opioids, prednis-
one, sirolimus, tacrolimus; with some compounds such
as ciclosporin and fingolimod being derived from fungi
and mushrooms), whereas several known immunosti-
mulatory compounds consist of hydrophilic molecules
(e.g. cytokines, b-glucan, histamine, polysaccharides).
However, notable exceptions have been noted: for
instance, vitamin D and estrogens possess hydrophobic
properties but are usually considered as immunostimu-
lants. These observations indicate that, while a trend
can be observed between the water–ethanol solubility
of immunomodulatory compounds and their effects on
the immune system, exceptions also exist.

The present study was performed to examine why a
medicinal mushroom may produce dual effects on
immune cells, a phenomenon that has possible implica-
tions for disease treatment in humans. For instance, in
a phase I/II clinical trial, Deng et al.34 showed that the
medicinal mushroom maitake (Grifola frondosa)

produces both immunostimulatory and immunosup-
pressive effects on B, NK and T cells in patients with
breast cancer and, for this reason, the authors cau-
tioned against the use of this mushroom for cancer
treatment. However, the authors used a Maitake prep-
aration that had been extracted with both water and
alcohol, suggesting that compounds with opposite
immunomodulatory effects may be present in the
extract and be responsible for the mixed effects
observed. Other clinical studies have shown promising
results with the use of ABM to increase NK cell activity
and reduce the side effects of chemotherapy in patients
with gynecological cancer,35 as well as the use of OS to
reduce the development of chronic allograft nephropa-
thy and the side effects of ciclosporin A in renal trans-
plant patients,36–38 or the use of OS for the treatment of
asthma, cancer and liver disease (reviewed by Brigham
et al.39). However, most of these trials were conducted
either with mycelium-derived powder or unspecified
extracts, preventing comparison with the results
described in the present study.

In addition to providing information regarding the
preparation of mushroom extracts for the prevention
and treatment of human diseases, our results should
also prove useful for the identification of bioactive
compounds found in medicinal mushrooms, a field of
research that offers promise for the development of
novel disease treatments.
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