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Abstract

A system of elliptic equations which are irregularly degenerate at an inner point is
considered in this article. The equations are weakly coupled by a matrix that has
multiple zero eigenvalue and corresponding to it adjoint vectors. Two statements of
a well-posed Dirichlet type problem in the class of smooth functions are given and
sufficient conditions on the existence and uniqueness of the solutions are obtained.
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1 Introduction and statement of the problems

The first results in the area of boundary value problems for an elliptic equation with
degeneracy at an inner point of the considered domain are obtained in [1]. In that
study, the Dirichlet problem for a weakly (regularly) degenerating elliptic equation with
the main part of Laplace’s operator is studied. These results are developed in [2],
where the degenerate elliptic operator is generalized and, over and above, the second
boundary value problem is investigated. In [3], the existence of a weak solution to the
Dirichlet problem for an elliptic equation degenerating at isolated points in the class of
Holder functions is proved. In the case of the strong (irregular) degeneracy, can new
effects emerge which influence the well-posedness of the boundary value problems.
For instance, in [4], it is shown that in a well-posed Dirichlet type problem the asymp-
totic of the solution near the degeneracy point is supposed to be known. Many more
difficulties come into being in the investigation of the systems of degenerate elliptic
equations. Some results for weakly related degenerate elliptic systems are obtained in
[5-7]. Particularly, these articles deal with Dirichlet type problems for the elliptic
system

n
a(r)Au + ZBi(x)uxi +C(x)u=0, xe€D, (1)

i=1
where r = |x|, a is a continuous function such that a(r) = o(1) as r > 0, and a(r) > 0
for r > 0, x = 0 is an inner point of domain D, A is Laplace’s operator, B;(x) and C(x)
are diagonal and square matrices, consequently, which are smooth enough in p. In [5,6],
the Dirichlet problem in the class of vector functions u# bounded in D, = D\{x = 0} is
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solved under the assumption that elements of the matrices B;(x) tend to zero, as x — 0,
fast enough. In [7], a weighted Dirichlet problem with supplementary weighted condi-
tion of the shape

lim (@ ()u(x) - b (f)) -0 2)

is considered under the condition a(r) = O(*%), o >1, as r — 0. In the same study, ¥
(x) is some matrix entries of which are decreasing as x — 0, and / is a given vector func-
tion smooth on the unit sphere. It is noteworthy that the matrix C(x) is assumed to be
negatively definite in D, i.e, it does not have any zero eigenvalue. Moreover, C(0) should
be a normal matrix for the weighted Dirichlet problem to be well-posed. (If coefficients
B;(x) have the main influence to the asymptotic of the solutions of system (1), then the
last requirement is dispensable [8,9]). Therefore, it is important to consider the case
where C(0) has multiple zero eigenvalue and corresponding to it adjoint vectors.

Hence, the present article deals with a particular case of system (1) of the shape

Au—q(r)Au=0 3)
in the ball ¥z = {x : |x| <R}C R® with the Dirichlet condition
uls, = f. (4)

In this article, A is a real constant non-negative definite N x N matrix having the

eigenvalue A = 0, ¢ is scalar continuous function positive for r # 0 and such that
q(r) = O(r?*),a > 1,as 1 — 0, (5)

Sg = X, = (fi, for o Sy and u = (U3, Uy, ..., uy) are the given and unknown vector
functions, respectively. (Condition (5) means with respect to system (1) that a(r)
vanishes as » — 0 not faster than any power of r.) Hence, the order of system (3) is
strongly degenerate at the point x = 0 because of o > 1.

Let S be a non-degenerate matrix such that

SAS™' =] = diag (Lm, (*0)Lm, (A1) - .- L, (Ap))

is the canonical Jordan form of A with m; x m; lower blocks

A0 ... 00
1 A ... 00
Ly(i)=| oo oer |, i=0,p.
0 0 ... O
0 O 1 A

Multiplying both (3) and (4) from the left by S, we get the system

Av—(q(r)Jav=0 (6)
and the Dirichlet condition

Vs, =& @)

where v = Su, and g = Sf. Therefore, system (6) and Dirichlet condition (7) can be
split into p + 1 separate systems

AV — q(r)Ly, (M) = 0,
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and Dirichlet conditions

vilsR =gi,i =0,p,

which correspond to the blocks of Jordan matrix /,, where both v* and ¢ are m;-
dimensional vector functions. If A is a matrix of simple structure, then all m; = 1, i.e,
(6) splits into N separate equations, obviously.

Let Ao = 0 and, for convenience, only one eigen vector corresponds to this eigen-
value of A. Then, Re 4; < 0 for the rest i = 1,p, since the matrix A is non-negatively
defined. As mentioned above, the solvability of a Dirichlet type problem under the
condition Re 4; < 0 is investigated in [6,7].

The main aim of this article is to give a well-posedness of the Dirichlet type pro-
blems to the system

AV’ — q(r)Ly, (0)r° = 0, 8)

which is in accordance with eigenvalue 15 = 0 of A. In order to avoid the compli-
cated notations, instead of (8), we consider the system

Av — q(r)Ls(0)v = 0, )

where v = (v, vo, ..., V) and Ly(0) is a s x s lower Jordan block with zero diagonal
entries. It is easily seen that

AUl = 0,
AV =q(r)ve, k=1,5—1,

is the outspread form of (9).

Denote X9 = Zg\{x = 0}. Let ||v|| be the Euclidian norm of a vector v. We propose
the two following statements of the Dirichlet type problem to system (9).

Problem D;. Find a solution v = (v1,v5,...,v5) € C*(Z3) U C(Zp U Sg) of Equation

9 that satisfies Dirichlet condition
Vs, = & (10)
and relation

rllv(x)|| =o(1), as x—0 (11)

Problem D,. Find a solution v € C?(Zg) U C(ZQ U Sg) of Equation 9, such that it

satisfies Dirichlet condition (11) and is bounded in 9.

2 The properties of particular solutions of Equation 8

Let H)'(x) be mth the harmonic of a homogeneous harmonic polynomial of degree #,
i.e., H'(Ax) = A"H'(x) and AH}}(x) = 0. Then, r"H}}(x) = H)'(®) (here ® = x /r) is
the mth spherical harmonic of order n continuous on the unit sphere S;. Let ¢,,,, be
any constant vector, and let Q,(r) be a matrix solution of ODEs system

In(w) —q(r)Ls(O)w=0, O0<r<R, (12)
where

&> 2mn+1)d
dr? " T dr

I, =
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and w is an unknown s-dimensional vector function. Then, the functions
Vam (%) = ""H) (0)Qn(1)eam, n=0,1,2,..., m=0,%£1,...,4n, (13)

represent the particular solutions of system (9).

We seek for a solution Q,(r) of system (12), which satisfies condition Q(R) = E,
where E is the unit matrix. To this end, on the set of functions y bounded on the
interval (0, R), we consider the integral operator

R

Ka(9)(1) = f Kn(r, () (1),
0

242 2l Rl o<t <
Ku(r,t) = Tonel { 721 _R=2"1 y <t <R,

and its integer powers
Ky (v)(r) = Ka (K71 (¥) (1),

where by definition K(y)(x) = v (x). Obviously, according to this definition

r

N (G f 2R q(OK; T (¥) (0 de

0

K =- "

+

(14)
R t 2n+1
+ /t(l - (R) )q(t)KZ_l(lﬂ)(t)dt , o=1,2,....
Lemma 1. Let relation (5) hold. If n > o(a — 1) — :1)_, then
o Mg 20(1—a)
Ke)m) = 7 ) on (O, R), (15)
nO'

where M, is some constant independent of 7, and K (¥)(R) =0 (6 = 1, 2, ...).

Proof. We prove relation (15) by induction.

Since vy (r) is bounded on (0, R), inequality (15) holds for 6 = 0 with some constant
M. It follows from relation (5) that 0 <g(r) < Mr* Vr e (0, R), where M is a positive

constant. Then, q(t)|¥(t)] < MMot=2* V¢ € (0, R). Assuming that n > o — i, we
obtain that
T R
M r—2n—l/t2(n+l—a)dt+/t1—2adt
2n+1
0

r

M 1 , ! 201-0)
2n+1\2n—2a+3 2(a—1) '

|Kn(v)(1)]

IA

i.e., the estimate
M, 7(1
[Kaw)()] = 120

with some constant M; independent of # holds. Thus, the validity of (15) is proved
foroc = 1.
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1
Let (15) be valid for ¢ = k -1 under the condition n > (k— 1)(a — 1) — . Then,

MM;,—
t2n+2q(t) Kﬁ—l (lﬁ)(t)‘ < ) kl 1t2(n+k(1fut)) vt € (0,R),
k-

. . . 1
i.e., the first integral in expression (14) converges, if n > k(o — 1) — > and

r R
MM}¢71 —n— — —o)—
Kk ‘< 2n 1/t2(n+k(1 @) q; /t2k(1 @)=14¢
HO G +
p
MM 1 . 1 2k(1-0)
Tkl 2n+ 1) \2n+2k(1 —a)+ 1 2k(a —1) '

Therefore, there exists a constant M; such that (15) holds for ¢ = k under the condi-

. 1
tionn > k(e — 1) — .

Ifn>o(a—1)— ;, then the first integral on the right-hand side of (14) converges

asre (0, R), and, evidently, KJ(¥)(R) = 0. =
It is easy to verify that

L (K7 (%)) =a(K; ' (w)(r), o=1,2,..., (16)

under the conditions of Lemma 1.

Note that w; = 1 and w, = ¥>* ! are linearly independent solutions of the differential
equation [, (w) = 0. Thus, if w is the solution of this equation such that w(r) = o(r*"")
as r — 0, then w(r) = const.

Denoting, as usual, by [4] the integer part of the real number a, we introduce the
1
integer oy, = |:k(a —1)+ 2], where k is a non-negative integer. (Note that ¢y = 0.)

We use below denotation K¢~1(r) = KI~!(y)(r) in the case y (x) = 1.
Theorem 1. Let relation (5) hold. If n > a_;, then there exists a unique matrix solu-
tion Q,(r) = {g,;(r)} of Equation 12 such that

Guij(r) =o(r™>"" "), as  1—0, ij=15 (17)
and
Qu(R) = E. (18)

Proof. Let the condition n > o1 be valid. Then, according to Lemma 1, the functions
0=0,5—1,0=0,5s— 1, are continuous on the interval (0, R). Introduce the s x s
matrix Q,(r) = {g,;(r)} by the formula

0, ifi<j,

dnij(1) = {Kf,j(r), ifi>] (19)

Note that estimate (15) yields the relations

Gnij(r) = O (rz(i’j)(lfa)) ,as r—0, 1<j<ic<s. (20)
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This implies the validity of condition (17), because 2n+1 > 2(s -1)(ex - 1) = 2(i - j)(ot -

1), for i,j = 1, s. Moreover,
ln(Qn) = Q(T)Ls(O)Qn on (O,R)

because of (16), i.e., Q, is the matrix solution of Equation 12. Evidently, equality (18)
follows from (14).

It remains to prove the uniqueness of the solution of problems (12), (17), and (18).
Let Qu(r) = {qnij} be a matrix solution of system (12) continuous on (0, R), and satisfy-
ing both conditions gyuij(r) = o(r~2""'), as r — 0, and Q,(R) = ©, where © is zero
matrix. Then, the equalities

a(qnij) = 0,
L(@njeerj) = () Gug(r),  k=1,5—1,

on the interval (0, R) hold. Since §u1j(r) = o(r>""!) as r — 0, we obtain that
dmj(r) = const on the interval (0, R). Then, the condition §n1j(R) = 0 yields the identity
Z],,U(r) = 0 because of the continuity of the function Z]nlj on (0, R). In such a case, the
elements of the second row of matrix (), satisfy the equation I(qu;) = 0. For the same
reason as above, we obtain that gnyj(r) = 0 (j = 1,5) on (0, R). Further, continuing this
process, we get that §u3j(r) = 0, ..., dusj(r) = 0 (j = 1,5) on (0, R). Hence, Q,(r) = ® on
(0, R). This yields the uniqueness of the solution of problems (12), (17), and (18).

What is the structure of the solutions of system (12) that increase slower than 7"
in the case where n does not satisfy the condition # > a;,? In order to get the answer

to this question, we introduce s x s matrices Ej, = { elg.k) } (k =1,s) with entries el(l.k) =1
fors-k+1<i<s, and el%k) = 0 for all rest i and j. (Note that E; = E according to this

definition.) Let us compose the matrixes

QP(1) = QunE, k=15,
where Q, is matrix elements of which are given by (19). It is easily seen that
st)(r) = Qu(r)E = Qu(r) and the elements qfl’;) (r) of rest matrixes lek)(r) (k=1,5-1)

are defined by following formula

q(’?.)(r)= K@), ifs—k+l<j<i<s
" 0, ifl<j<s—Fkandi>j.

If n > 0y q, then the powers K;_j(r) exist for all i and j such thats - k+ 1 <j<i<s,
and according to (20), the relation
qﬂf])(r) = O(rz(ifj)(lf"‘)) = o(r’Z"’I), as r—0 (21)

holds. Moreover, we obtain by direct calculation that

QYY) = 4(NL(0)QY” on (0, R),

(22)
QY(R) = Ex

for vk = 1,5 — 1 due to the definition of matrix ng). Hence, there holds the following

Page 6 of 11
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Theorem 2. Let relation (5) hold, and let natural &, 1 < k < s - 1, be such that o, <
n oy. Then, there exists a unique matrix solution Q (r) = {qm] (r)} of Equation 12

such that relation (21) holds, and boundary value condition (22) is satisfied.
The uniqueness of the matrix solution Qak) can be proved in the same way as that of

the matrix solution Q,. In this case, condition (21) is essential, just similar to condition
(17) in Theorem 1.

Hence, we obtain to system (9) the following set of particular solutions (see (13)):
k T\" k
W) = (R) H;”(w)Q£, )(r)cnm forme_1 <n<a, k=1:s5-1,
r\"
V), = (R) H} (0)Qu(r)cnm for n > oy,
where c,,, is arbitrary constant column vector.

3 Existence and uniqueness of the solutions of problems D, and D,
Let us compose the superposition

3> (7)) Y H@)m

k=1 op—1=n<oy |m|<n
S (23)
-y (R) Qi) Y H (@)cm
n=as_1 |m|<n

of the particular solutions obtained above. Note, if o, = 0 for some ky, 1 < ko < s -1,
then oy = 0 for all natural k < ky - 1. (Such a situation can come to exist, if o < 2.)
Therefore, all the sums ZaHskak in (23), in which the inequality oy 1 <o is impossi-
ble, are taken to be equal to zero.

Evidently, if the series (23) converges and its sum v is twice differentiable in the
spherical layer %9 = {x: § < |x| < R} with arbitrarily small J, then this series satisfies
system (9) in the ball 9. Note that

vl = }: > Y () B

=1 ap_1=<n<ay |m|<n

L3 X () o

n=as_1 [m|<n

(24)

due to both (18) and (22).
Assume that the boundary vector function g = (g1, g5, ... &) (see (10)) is twice differenti-
able on unit sphere S;. Thus, it can be expressed on the sphere Sz by Laplace series [10]:

8(x) =Y > Hy(w)amm, x€Sg (25)

n=0 |m|<n
which converge (component-wise) uniformly and absolutely according to the
assumed smoothness of the vector function g. The coefficients g,,, = (agn), aﬁgn),, . aﬁfr)n
in (25) can be calculated as follows ?:
(,*) 2n+1 (n
" 47R2 (n+m)!

" [[ 0120, 030000, i <n

SR
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where #; (¢, 9) = gi(x), for |x| = R and Y]'(¢,9) =H}} (w), $, 9 (0 < ¢ <2m,0< 9 <
) are spherical coordinates which are introduced by the rule: x; = r sin 9cos ¢, x, = r
sin 9sin ¢, and x3 = r cos 9.

It is easily seen that series (24) coincides with series (25), if ¢, = a,,, for n = o, 4,
and Exc,, = @y for oy < m <oy, k=1,s — 1, ie, if components iy, hs, ..., kg1 of vec-
tor function / satisty the following orthogonality conditions

/ he(e, 9)Y) (¢, ¥)dedd® =0 forO <n <oy, hk=15-—1, (26)

Sk

on sphere Sp. Let us consider series (23), in which ¢,,,, = @,,,.:

-3 Y ()0 X s

k=1 ap—1=<n<a |m|<n (27)
0 ran
3 (R) Qi) Y H (@)amm.
n=cs_1 Im|<n

Assume that condition (26) is fulfilled in addition to the smoothness of g. Then,
vls, = g, i.e., series (27) converges (component-wise) uniformly and absolutely on the
sphere Sx.

We shall prove that series (27) converges uniformly and absolutely in the spherical
layer ¥} with arbitrarily small 6. Note that components v; (i = 1,s) of the vector func-

tion v = (vq, Vo, ..., V) in (27) can be formally represented in the form

v =wi(x), v = we(x) + Wi(x), k=25, (28)
where
T\" (k)
wi(x) = ) (R) > amHy (@), k=15 (29)
n=0_j, |m|<n
k—1 -~ 0
k—1
Wi =S Y (R) K Y aHY @), k=2,s. (30)
I=1 n=0s_ Im|<n
The terms
\"
(i) X aHy @)
Im|<n

of the series on the right-hand side of (29) are harmonic functions in Xz. Since these
series converge uniformly on the sphere S, they also converge uniformly in Y, and
their sums wy(r, ), k = 1, s, are harmonic functions in Y because of Harnack’s theo-
rem [11].

Further, according to Lemma 1 estimates

My,
stl(r) < nkkillrz(kfl)(lfa), l=k—1,s+k—1,

hold, where n > o4_; and M, is a constant independent of n. Consequently,

T\ he I Mt 501 (1 - I

R
|m|<n |m|<n

Page 8 of 11
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in X for Vi > o4 ;. Note that the constants My, k = 1,5 — 1, do not depend on # as
well as on . Evidently, they yield the uniform and absolute convergence of series (30)
in 33 = %) USp U Ss

Let Gs(x, &) be the Green function of the Dirichlet problem to Laplace equation in
Eg, and let wy,(x) and Wy, (x) be the nth partial sum of corresponding series (29) and
(30). Since

AWy (x) = g(r)win(x),
in =9, relations
Wz,,(x) = / Gs (x/ é)wln é) d6$'
i

Win(x) = / Gs (%, ) (We—1)n () + W(i—1yn (§)) doe, ke =3,5,

D

hold, where do; is a volume element of Eg. These yield the equalities

32 Won(x) 32Gs(x, &)
e =f W ©) dos (31)
=
32 Wi (x 32Gs(x, £
83};.2( ) =/ ;9512 ) (We—1yn &) + W(—1)n (§)) dog, k=3, (32)

1
8
ER

Owing to the uniform and absolute convergence in Eg of sequences {wy, (r, )} and

{Win (r, ®)}, as n — oo, we obtain, from (31) and (32), coherently, that the functions
wi(r, ®) and Wi(r, @), defined by (29) and (30), are twice differentiable and

Pwe(x) = 92 T\" 1)y m
NERD D (R) 2 amHy @ |, k=1s
1, :

n=oey O i<
aZWk(x) k—1 o0 32 N l
a2 Z Z 9x2 (R) K1) Z aﬁn),,Hnm (@], k=25
P ke T jml<n

in % (i = 1,2, and 3).
Hence, the vector function v = (vy, vy, ..., v5) with the components v; defined by (28)-
(30) is from class C*(Z9 U Sg), and it satisfies system (9) in 9 and the Dirichlet condi-

tion v|s, = &, only if orthogonality conditions (26) hold. Besides, it follows from Lemma
1 that

ve(x) = O 2Dy agx >0, k=1,s.
Therefore, 7||v(x)|| = o(1) as x — 0, if
a1 —2(s—1)(@¢—1) > —1. (33)

Note that this inequality holds, if, for instance,
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We prove thereby the existence of the solution of problem D,, if both o and s are
related by (33).

If the coefficients a%(k = 1,5 —1)in (28) and (29) are such that
a) =0 foro<n<2(—k (a—1)

i.e., the components hy(k = 1,s — 1)of the vector function / satisfy the orthogonality

conditions

// hi(@, 9)Y,) (¢, 9)dedd =0 for 0 <n < 2(s —k)(x — 1), (34)
SR

then the solution v of system (8), given by (28)-(30), is bounded in £9 and continu-
ous in ¥ Thus, under ortogonality conditions (34), we obtain the solution v = (vy, v,,
..., V5) of problem D, of the shape

k 00
n(x) = ZZ 3 (;) Kﬁ*’(r);‘: dDH" @), k=15 (35)
-1 n=ne_ m|<n

where

_— 2k( — 1), if2k(a — 1) is an integer,
"7 [2k(e — 1)] +1 in the opposite case.

The uniqueness of the solutions of both the problems D; and D, yields the following
lemma.

Lemma 2. Let v = (11, vy, ..., v5) be a solution of problem D; or problem D, with the
homogeneous Dirichlet condition v|s, = 0. If relation (33) holds, then v; = 0 in
(i =1,n)

Proof. Assume that v = (vy, vy, .., V) is a solution of problem D;. Since Av; = 0 in £
and v1[s, = 0, we get that v; = 0 in X9 because of the relation v;(x) = o(r'"), as x — 0,
which holds because of the validity of condition (11). Then, it follows from system (9)
that Av, = 0 in £9. Both the conditions v2]s, = 0 and v5(x) = o(r'!), as x —> 0, yield the
identity v, = 0 in X to (11). Continuing this process, we obtain that all the compo-
nents v; = 0(i = 1,n) in Y.

If v=(vy, vy ..., ¥5) is a solution of problem D,, then it satisfies (11), too. This
implies the identity v = 0 in £9, without doubt.

One can summarize the reasoning given above as follows:

Theorem 3. Let g€ C*(Sg), and let relation (5) hold. If orthogonality conditions (26)
are fulfilled, and the parameters o and s satisfy inequality (33), then there exists a
unique solution v of problem D;, which can be represented by formulas (28)-(30). If
orthogonality conditions (34) hold, then there exists a unique solution v of problem D,
with the components v; of the shape (35).

Endnotes
?One can express the spherical function H}}(x) in Cartesian coordinates x = (x1, x5, X3)
by formula [12]:

m
H:,n (x) — rn(rz _ xg)_ 2 Pllm\ (x3/r) X { Re (xl - le)r lfO =m=n,

Im (x; —ixy), if —n<m<O,
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where P is adjoint Legendre’s function, and i is the imaginary unit. “Our opinion is
that spherical coordinates are more convenient than Cartesian in the calculation of the
coefficients a,,,, of series (25). The matter is such that spherical functions Y}''(¢, 9)
have quite a simple expresion:

cosme, —n <m <0,

m _ pm
Y (9, 9) = Pyi(cos ) x { sinmep, 0 < m <n.
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