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Abstract

In this article, we study the stability of a class of singular linear matrix difference
equations whose coefficients are square constant matrices and the leading
coefficient matrix is singular. Speciffically we analyze the stability, the asymptotic
stability and the Lyapunov stability of the equilibrium states of an homogeneous
singular linear discrete time system and we define the set of all equilibrium states.
After we prove that if every equilibrium state of the homogeneous system is stable
in the Lyapounov’s sense, then all solutions of the non homogeneous system are
continuously depending on the initial conditions and are bounded provided that the
input vector is also bounded. Moreover, we consider the case where the equilibrium
states of the system are not stable. For this case we provide necessary and sufficient
conditions for stabilization.

Keywords: matrix difference equations, linear, discrete time system, stability, equili-
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1 Introduction
Linear discrete time systems (or linear matrix difference equations), are systems in

which the variables take their value at instantaneous time points. Discrete time systems

differ from continuous time ones in that their signals are in the form of sampled data.

With the development of the digital computer, the discrete time system theory plays

an important role in control theory. Thus many authors have studied the stability of

such systems, see [1-27]. In most cases these articles are referred to regular discrete

time systems. In this article we study singular linear matrix difference equations. Thus

we consider the singular discrete time system

FYk+1 = GYk + Vk (1)

with known initial conditions

Yk0 (2)

where F,G ∈ M(m × m;F) , (i.e. the algebra of square matrices with elements in the

field F ) with Yk,Vk ∈ M(m × 1;F) and F is a singular matrix (detF = 0). For the

sake of simplicity we set Mm = M(m × m;F) and Mnm = M(n × m;F) . With

0m,n ∈ Mmn we will denote the zero matrix. For Vk = 0m,1 we get the homogeneous

system of (1)
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FYk+1 = GYk (3)

Because of the singularity of the matrix F, in order to solve and to study these type

of systems there are in the literature two methods. The first method is by using the

theory of the Drazin inverse, see [4], and the second is by using matrix pencil theory

and the Weierstrass canonical form which is a generalization of the Jordan canonical

form. The advantage of the second method is that it gives a better understanding of

the structure of the system and more deep, elegant results. In this article we will pre-

sent a theory based on the matrix pencil of the system and we will show how the

eigenvalues of the pencil are related with the stability of singular systems.

2 Mathematical backround
2.1 The matrix pencil

Matrix pencil theory has been used many times in articles for the study of linear dis-

crete time systems with constant matrices, see for instance [9,14,21,27-33]. A matrix

pencil is a family of matrices sF-G, parametrized by a complex numbers, see

[14,21,23,27,34-36]. When G is square and F = Im, where Im is the identity matrix, the

zeros of the function det(sF-G) are the eigenvalues of G. Consequently, the problem of

finding the nontrivial solutions of the equation

sFX = GX (4)

is called the generalized eigenvalue problem. Although the generalized eigenvalue

problem looks like a simple generalization of the usual eigenvalue problem, it exhibits

some important differences. In the first place, it is possible for det(sF-G) to be identi-

cally zero, independent of s. Second, it is possible for F to be singular, in which case

the problem has infinite eigenvalues. To see this, write the generalized eigenvalue pro-

blem in the reciprocal form

FX = s−1GX (5)

If F is singular with a null vector X, then FX = 0m,1, so that X is an eigenvector of

the reciprocal problem corresponding to eigenvalue s-1 = 0; i.e., s = ∞.

Definition 2.1.1. Given G ∈ Mmn and an indeterminate s ∈ F , the matrix pencil

sF-G is called regular when m = n and det(sF - G) ≠ 0. In any other case, the pencil

will be called singular.

In this article, we consider the case that pencil is regular.

The class of sF-G is characterized by a uniquely defined element, known as complex

Weierstrass canonical form, sFw - Qw, see [14,21,27,34-36], specified by the complete

set of invariants of sF-G.

This is the set of elementary divisors (e.d.) obtained by factorizing the invariant poly-

nomials into powers of homogeneous polynomials irreducible over field F . In the case

where sF-G is regular, we have e.d. of the following type:

• e.d. of the type (s − aj)pj , are called finite elementary divisors (f.e.d.), where aj is a

finite eigenavalue of algebraic multiplicity pj

• e.d. of the type ŝq = 1
sq are called infinite elementary divisors (i.e.d.), where q the

algebraic multiplicity of the infinite eigenvalues
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We assume that
∑ν

i=1 pj = p and p+q = m.

Definition 2.1.2. Let B1, B2, . . . , Bn be elements of Mn . The direct sum of them

denoted by B1 ⊕ B2 ⊕ . . . ⊕ Bn is the blockdiag [B1 B2 . . . Bn].

From the regularity of sF-G, there exist nonsingular matrices P, Q ∈ Mm such that

PFQ = Fw = Ip ⊕ Hq

PGQ = Gw = Jp ⊕ Iq
(6)

Where sFw - Qw is the complex Weierstrass form of the regular pencil sF-G and is

defined by

sFw − Qw := sIp − Jp ⊕ sHq − Iq (7)

where the first normal Jordan type element is uniquely defined by the set of the

finite eigenvalues,

(s − a1)p1 , . . . , (s − aν)pν

of sF-G and has the form

sIp − Jp := sIp1 − Jp1 (a1) ⊕ · · · ⊕ sIpν
− Jpν

(aν) (8)

The second uniquely defined block sHq - Iq corresponds to the infinite eigenvalues

ŝq1 , ..., ŝqσ ,
σ∑
j=1

qj = q

of sF-G and has the form

sHq − Iq := sHq1 − Iq1 ⊕ ... ⊕ sHqσ
− Iqσ (9)

Thus, Hq is a nilpotent element of Mn with index q̃ = max{qj : j = 1, 2, ..., σ } , where

Hq̃
q = 0q,q

and Ipj , Jpj(aj),Hqj are defined as

Ipj =

⎡
⎢⎢⎢⎣
1 0 · · · 0 0
0 1 · · · 0 0
...
...
. . .

...
...

0 0 · · · 0 1

⎤
⎥⎥⎥⎦ ∈ Mpj ,

Jpj(aj) =

⎡
⎢⎢⎢⎢⎢⎣

aj 1 · · · 0 0
0 aj · · · 0 0
...
...

. . .
...
...

0 0 · · · aj 1
0 0 · · · 0 aj

⎤
⎥⎥⎥⎥⎥⎦ ∈ Mpj

Hqj =

⎡
⎢⎢⎢⎢⎢⎣

0 1 · · · 0 0
0 0 · · · 0 0
...
...
. . .

...
...

0 0 · · · 0 1
0 0 · · · 0 0

⎤
⎥⎥⎥⎥⎥⎦ ∈ Mqj .

(10)
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For algorithms about the computations of the Jordan matrices, see [14,21,34-36].

2.2 The solution of an homogeneous singular linear discrete time system

In this subsection, we will obtain formulas of the solutions of homogeneous singular

linear matrix difference equations.

Definition 2.2.1. Consider the system (1) with known initial conditions (2). Then the

initial conditions are called consistent should they satisfy (3) and non-consistent should

they not.

For the regular matrix pencil of system (3), there exist nonsingular matrices

P, Q ∈ Mm as applied in (6), see subsection 2.1. Let

Q =
[
Qp Qq

]
(11)

where Qp ∈ Mmp is a matrix with columns the p linear independent (generalized)

eigenvectors of the p finite eigenvalues of sF-G and Qp ∈ Mmq is a matrix with col-

umns the q linear independent (generalized) eigenvectors of the q infinite eigenvalues

of sF-G.

Proposition 2.2.1. The initial conditions (2) of the system (3) are consistent if and

only if

Yk0 ∈ colspanQp (12)

Proof. See [14,21,30,32]

Proposition 2.2.2. Consider the system (3) with initial conditions (2). Then the solu-

tion is unique if and only if the initial conditions are consistent. Moreover the analytic

solution is given by

Yk = QpJ
k−k0
p Zp

k0
(13)

where Zp
k0

is the unique solution of the algebraic system Yk0 = QpZ
p
k0
.

Proof. See [14,21,28-33,37-39]

2.3 The solution of a non homogeneous singular linear discrete time system

Consider the singular discrete time system (1) with known initial conditions (2).

For the regular matrix pencil sF-G, there exist nonsingular matrices P, Q ∈ Mm as

applied in (6), see also Section 2.1. Let

P =
[
P1
P2

]
(14)

with P1 ∈ Mpm , P2 ∈ Mqm and

Q =
[
Qp Qq

]
where Qp ∈ Mmp is a matrix with columns the p linear independent (generalized)

eigenvectors of the p finite eigenvalues of sF-G and Qq ∈ Mmq is a matrix with col-

umns the q linear independent (generalized) eigenvectors of the q infinite eigenvalues

of sF-G.
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Proposition 2.3.1. Consider the system (1) with initial conditions (2). Then the solu-

tion is unique if and only if

Yk0 ∈ colspanQp − Qq

q∗−1∑
i=0

Hi
qP2Vk0+i (15)

Moreover the analytic solution is given from the formula

Yk = Qp

⎛
⎝Jk−k0

p Zp
k0
+

k−1∑
i=k0

Jk−i−1
p P1Vi

⎞
⎠ − Qq

q∗−1∑
i=0

Hi
qP2Vk+i (16)

where Zp
k0

is the unique solution of the algebraic system

Yk0 = QpZ
p
k0

− Qq

q∗−1∑
i=0

Hi
qP2Vk0+i

Proof. See [14,21,28-33,37-39]

3 Stability of equilibrium state(s) of homogeneous singular discrete time
systems
Definition 3.1. For any system of the form (1), with a constant input vector Vk = V, Y*
is an equilibrium state if it does not change under the initial condition, i.e.: Y* is an

equilibrium state if and only if Yk0 = Y∗ implies that Yk = Y* for all k ≥ k0+1.

The set of equilibrium states for a given singular linear system in the form of (3) is

given by the following Proposition.

Proposition 3.1. Consider the system (3). Then if 1 is not an eigenvalue of the

matrix pencil sF-G then

Y∗ = 0m,1 (17)

is the unique equilibrium state of the system (3). If 1 is a finite eigenvalue of the

matrix pencil sF-G, then the set E of the equilibrium points of the system (3) is the

vector space defined by

E = Nr(F − G) ∩ colspanQp (18)

where Nr is the right null space of the matrix F-G, Qp is a matrix with columns the p

linear independent (generalized) eigenvectors of the p finite eigenvalues of the matrix

pencil sF-G or from Proposition 2.2.1 the set of the consistent initial conditions of (3).

Proof. If Y* is an equilibrium state of system (3), then this implies that for

Yk0 = Y∗

we have

Y∗ = Yk = Yk+1

If 1 is not an eigenvalue of the matrix pencil sF-G then det(F-G)≠0 and from the sys-

tem (3) we have

FY∗ = GY∗
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or

(F − G)Y∗ = 0m,1

Then the above algebraic system has the unique solution

Y∗ = 0m,1

which is the unique equilibrium state of the system (3). If 1 is a finite eigenvalue of

the matrix pencil sF-G then det(F-G) = 0. If Y* is an equilibrium state of system (3),

then this implies that for

Yk0 = Y∗

we have

Y∗ = Yk = Yk+1

This requires that Y* must be a consistent initial condition which from Proposition

2.2.1 is equal to

Y∗ ∈ colspanQp

Moreover from system (3) we have

FY∗ = GY∗

or

(F − G)Y∗ = 0m,1

or

Y∗ ∈ Nr(F − G)

So

Y∗ ⊆ Nr(F − G) ∩ colspanQp

or

E ⊆ Nr(F − G) ∩ colspanQp (19)

Let now Y* Î Nr(F - G) ∩ colspanQp then we can consider

Yk0 = Y∗

as a consistent initial condition and

(F − G)Y∗ = 0m1

or

FY∗ = GY∗

where Y* is solution of system (3) and combined with Yk0 = Y∗ we have Y* Î E or

Nr(F − G) ∩ colspanQp ⊆ E

From (19) and (20) we arrive at (18).
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Definition 3.2 [25]. Let X ∈ Mr1 and ||X|| ∈ F be norm of vector X. Then if

||A|| = max
{ ||AX||

||X|| : X ∈ Mr1,X �= 0r,r

}

||A|| = max
{ ||AX||

||X|| : X ∈ Mr1,X �= 0r,r

}
(21)

Definition 3.3 [25]. Let A = [aij]i, j = 1,2,..., r be a square matrix with A ∈ Mrr and let

X = [xi]i = 1,2,..., r be a vector with X ∈ Mr1 , then

||A||1 = max
1≤j≤r

r∑
i=1

|aij|

||X||1 =
r∑
i=1

|xi|
(22)

is by definition the 1-norm for matrices and the 1-morm for vectors respectively,

which is simply the maximum absolute column sum of the matrix and the absolute

column sum of the vector respectively. Furthermore

||A||∞ = max
1≤i≤r

r∑
j=1

|aij|

||X||∞ = max
1≤i≤r

|xi|
(23)

is by definition the ∞-norm for matrices and the ∞-norm for vectors respectively,

which is simply the maximum absolute row sum of the matrix and the maximum

absolute row of the vector.

Definition 3.4 [7]. An equilibrium state Y* Î E of the system (3) is stable in the

sense of Lyapounov if, for every δ >0, there exists � > 0, such that the trajectories start-

ing in

||Yk0 − Y∗|| ≤ δ (24)

do not leave

||Y − Y∗|| ≤ ε (25)

as k increases indefinitevely.

Definition 3.5 [7]. An equilibrium state Y* Î E of the system (3) is asymptotically

stable if it is stable in the sense of Lyapounov and if every solution starting within (24)

converges without leaving (25) to Y* as k increases indefinitely, i.e.

lim
k→∞

Yk = Y∗ (26)

Definition 3.6. An equilibrium state Y* Î E of the system (3) is asymptotically stable

in the large if, asymptotic stability holds for every equilibrium state of the system. In

this case the system (3) is asymptotically stable in the large. Consequently, a necessary

condition for asymptotic stability in the large is that there exists a unique equilibrium

state since the limit limk®∞ Yk is unique. For system (3) this unique equilibrium state

is Y* = 0m,1.
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Theorem 3.1. Consider the system (3) and its solution (13). Then an equilibrium

state Y* Î E of the singular discrete time system (3) is stable in the sense of Lyapounov

if there exist a constant c Î (0, +∞), such that
∥∥∥Jk−k0

p

∥∥∥ ≤ c < +∞ , for all k ≥ k0.

Proof. The solution of the system (3) is given from (13),

Yk = QpJ
k−k0
p Zp

k0

where Zp
k0

is the solution of the algebraic system

Yk0 = QpZ
p
k0

Since the columns of the matrix Qp are linear independent, the matrix is left inverti-

ble. Thus we can define its left inverse matrix Q−1
p ∈ Mpm such that

Q−1
p Qp = Ip

Then

Yk = QpJ
k−k0
p Q−1

p Yk0

We assume that there exist a constant c Î (0, +∞) such that
∥∥∥Jk−k0

p

∥∥∥ ≤ c < +∞ , for

all k >k0. Furthermore let an equilibrium state Y* Î E. Then

Y∗ = QpJ
k−k0
p Q−1

p Y∗

and easy we obtain

Yk − Y∗ = QpJ
k−k0
p Q−1

p (Yk0 − Y∗)

or

Yk − Y∗ =
[
Qp0m,q

] [
Jk−k0
p 0p,q
0q,p 0q,q

] [
Q−1

p

0q,m

]
(Yk0 − Y∗) (27)

If we set
∥∥Qp

∥∥ =
∥∥[
Qp0m,q

]∥∥ and
∥∥Q−1

p

∥∥ =

∥∥∥∥
[
Q−1

p

0q,m

]∥∥∥∥ . Then by taking norms for

every k≥k0 in (27) we have

||Yk − Y∗|| ≤ ||Qp||
∥∥∥Jk−k0

p

∥∥∥ ∥∥∥Q−1
p

∥∥∥ ||Yk0 − Y∗|| (28)

Hence for any � >0, if we chose δ(ε) = ε

‖Qp‖ ‖Q−1
p ‖c , then for

||Yk0 − Y∗|| ≤ δ(ε)

implies that for every � >0

||Yk−Y∗|| ≤ ||Qp||
∥∥∥Jk−k0

p

∥∥∥ ∥∥∥Q−1
p

∥∥∥ ||Yk0 −Y∗|| ≤ ||Qp||c
∥∥∥Q−1

p

∥∥∥ ε

||Qp||
∥∥Q−1

p

∥∥ c ≤ ε
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or

||Yk − Y∗|| ≤ ε (29)

Theorem 3.2. The system (3) is asymptotically stable in the large, if and only if, all

the finite eigenvalues of the matrix pencil sF-G lie within the open disc,

|s| < 1

Proof. The solution of the system (3) is

Yk = QpJ
k−k0
p Zp

k0

Let aj be a finite eigenavalue of the matrix pencil sF-G with algebraic multiplicity pj.

Then the Jordan matrix Jk−k0
p can be written as

Jk−k0
p = blockdiag

[
Jk−k0
p1 (a1)J

k−k0
p2 (a2) ... J

k−k0
pν

(aν)
]

with Jk−k0
p ∈ Mpj be a Jordan block. Every element of this matrix has the specific

form

(k − k0)pja
k−k0
j

The sequence

(k − k0)pj |ak−k0
j |

can be written as

(k − k0)pje(k−k0)ln|aj|

The system (3) has the unique equilibrium state Y* = 0m,1 when for every j, aj ≠ 1,

(see Proposition 3.1) and then the system is asymptotically stable in the large, when

lim
k→∞

Yk = Y∗

Thus this holds if and only if

ln |aj| < 0

or

|aj| < 1

Then for k ®+∞

(k − k0)pje(k−k0)| ln aj| → 0

or

(k − k0)pj |aj|(k−k0) → 0
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or for every k≥k0

Jk−k0
p → 0p,p

Then for every initial condition Yk0

lim
k→∞

Yk = 0m,1

Corollary 3.1. Let r(sF-G) = max1≤j≤ ν |aj| be the spectral radius of the finite eigen-

values of the matrix pencil sF-G. Then the system (3) is asymptotically stable in the

large, if and only if

r(sF − G) < 1

3.1 Lyapounov theorem on uniform stability

Definition 3.1.1 [23]. The singular linear discrete time system (3) is called uniformly

stable if there exists a finite positive constant c such that for any k0 and Yk0 the corre-

sponding solution satisfies

||Yk||2 ≤ c||Yk0 ||2
Where ||·||2 is the Euclidean norm.

It can be shown for regular linear discrete time systems, see [7,23], that if a positive

scalar function W(Yk) can be found such that its forward difference ΔW (Yk), where

�W(Yk) = W(Yk+1) − W(Yk)

taken along the trajectory is always negative, then as time increases, W(Yk) takes

smaller and smaller values and finally shrinks to zero, and therefore Yk also shrinks to

zero. This implies the asymptotic stability of the origin of the state space. Lyapounov’s

main stability Theorem, provides a sufficient condition for asymptotic stability. This

Theorem states that if there exists a scalar function W(Yk) satisfying the conditions, W

(Yk) is posistive definite and ΔW(Yk) is negative definite, then the equilibrium state at

the origin is uniformly asymptotically stable.

We consider the singular discrete time system described by (3). We shall investigate

the stability of this state by using this method of Lyapounov. Let us choose as a possi-

ble Lyapounov function

W(Yk) = Y∗
k F

∗TFYk

where ()* is the Hermitian tensor and T is a positive Hermitian (or a positive definite

real symmetric) matrix. Then

�W(Yk) = Y∗
k+1F

∗TFYk+1 − Y∗
k F

∗TFYk

or

�W(Yk) = (FYk+1)∗TFYk+1 − Y∗
k F

∗TFYk

or

�W(Yk) = (GYk)∗TGYk − Y∗
k F

∗TFYk
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or

�W(Yk) = Y∗
k G

∗TGYk − Y∗
k F

∗TFYk

or

�W(Yk) = Y∗
k (G

∗TG − F∗TF)Yk

Since W(Yk) is chosen to be positive definite, we require ΔW(Yk) be negative definite.

Therefore,

�W(Yk) = −Y∗
k SYk

where

S = −(G∗TG − F∗TF)

must be positive definite. Note that a positive definite T is a necessary and sufficient

condition.

Theorem 3.1.1. Consider the singular linear discrete time system (3) with

n1Im ≤ F ≤ n2Im

A necessary and sufficient condition for the system (3) to be uniformly stable is that,

given any positive definite Hermitian (or any positive definite real symmetric) matrix S,

there exists a positive definite Hermitian (or any positive definite real symmetric)

matrix T with

m1Im ≤ T ≤ m2Im

such that the matrix

S = −(G∗TG − F∗TF)

is positive definite. Where n1, n2, m1 and m2 are finite positive constants.

Proof. Suppose T satisfies the stated requirements. Given a consistent initial condi-

tion (2) and the corresponding unique solution of the system (3) from (13), we have

(Yk)∗F∗TFYk − (Yk0 )
∗F∗TFYk0 =

k−1∑
j=k0

[
(Yj+1)

∗F∗TFYj+1 − (Yj)
∗F∗TFYj

]

or

(Yk)∗F∗TFYk − (Yk0 )
∗F∗TFYk0 =

k−1∑
j=k0

[
(Yj)

∗G∗TGYj − (Yj)
∗F∗TFYj

]

or

(Yk)∗F∗TFYk − (Yk0 )
∗F∗TFYk0 =

k−1∑
j=k0

(Yj)
∗ [G∗TG − F∗TF] Yj

or

(Yk)∗F∗TFYk − (Yk0 )
∗F∗TFYk0 = −

k−1∑
j=k0

(Yj)
∗SYj
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where S is positive definite and thus we have

(Yk)∗F∗TFYk − (Yk0 )
∗F∗TFYk0 ≤ 0

Furthermore

(Yk)∗F∗TFYk ≤ (Yk0 )
∗F∗TFYk0

or

(n1)2m1||Yk||2 ≤ (n2)2m2||Yk0 ||2
Therefore

||Yk||2 ≤ (n2)
2m2

(n1)
2m1

||Yk0 ||2

And thus the system (3) is uniformly stable by Definition 3.1.1.

Example 3.1.1. Consider the system (3) and let

F =
[
2 0
0 0

]

and

G =
[
1 2
0 −3

]

Let us choose

−(G∗TG − F∗TF) = I2

If the matrix T is found to be positive definite, then the system is uniformly stable.

Let T =
[
a b
b d

]
. Then

[
1 0
2 −3

][
a b
b d

] [
1 2
0 −3

]
−

[
2 0
0 0

][
a b
b d

] [
2 0
0 0

]
= −

[
1 0
0 1

]

Consequently,

T =
[ 1

3
2
9

2
9

1
9

]

By applying Sylvester’s criterion for the positive definiteness of matrix T, we find T is

positive definite. Hence, the system is uniformly stable.

4 Stability of non homogeneous singular matrix difference equations
The definition of an equilibrium state of a non homogeneous system in the form of (1)

is given from definition 3.1.

Proposition 4.1. Consider the system (1) with a constant input vector Vk = V. Then

if 1 is not an eigenvalue of the matrix pencil sF-G

Y∗ = (F − G)−1V
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is the unique equilibrium state of the system (1). If 1 is a finite eigenvalue of the

matrix pencil sF-G, then the set Ê of the equilibrium points of the system (1) is the

vector space defined by

Ê = Nr(F − G) ∩ (colspanQp − Qq

q∗−1∑
i=0

Hi
qP2V)

where Nr is the right null space of the matrix F-G and Qp, Qq, P2 are matrices

defined in (11), (14).

Proof. The proof is similar to the proof of Proposition 3.1. Note that from Proposi-

tion 2.3.1, the system (1) has a unique solution if and only if the given initial conidtion

(2) lies inside the set

Yk0 ∈ colspanQp − Qq

q∗−1∑
i=0

Hi
qP2V

Thus from Proposition 4.1, the unique equilibrium state for a system in the form of

(1) with a constant input vector Vk = V is Y* = (F - G)-1V, when det(F-G) ≠ 0.

Theorem 4.1. Consider the system (1) with a constant input vector Vk = V and a

consistent initial condition (2). Then the equilibrium state is asymptotically stable in

the large, if and only if, all the finite eigenvalues of the matrix pencil sF-G lie within

the open disc,

|s| < 1

Proof. The general solution of the linear system

FYk+1 = GYk + V

is the sum of a partial solution and the solution of the homogeneous system (3).

Since an equilibrium state Y* can be assumed as a partial solution, the general solution

of this system is

Yk = QpJ
k−k0
p Zp

k0
+ Y∗

Given a consistent initial condition Yk0 and since the columns of the matrix Qp are

linear independent, the matrix is left invertible. Thus we can define its left inverse

matrix Q−1
p ∈ Mpm and the general solution can be written in the form of

Yk = QpJ
k−k0
p Q−1

p (Yk0 − Y∗) + Y∗

Let aj be a finite eigenavalue of the matrix pencil sF-G with algebraic multiplicity pj.

Then the Jordan matrix Jk−k0
p can be written as

Jk−k0
p = blockdiag

[
Jk−k0
p1 (a1)J

k−k0
p2 (a2) ... J

k−k0
pν

(aν)
]

with Jk−k0
p ∈ Mpj be a Jordan block. Every element of this matrix has the specific

form

(k − k0)pja
k−k0
j
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The sequence

(k − k0)pj |ak−k0
j |

can be written as

(k − k0)pje(k−k0)ln|aj|

The system has a unique equilibrium state when for every j, aj ≠ 1, because then det

(F-G) ≠ 0 and the unique equilibrium state is Y* = (F - G)-1V. In this case the system

is asymptotically stable in the large, when

lim
k→∞

Yk = Y∗

Thus this holds if and only if

ln |aj| < 0

or

|aj| < 1

Then for k ®+∞

(k − k0)pje(k−k0)| ln aj| → 0

or

(k − k0)pj |aj|(k−k0) → 0

or for every k≥k0

Jk−k0
p → 0p,p

From (30)

Yk − Y∗ =
[
Qp0m,q

] [
Jk−k0
p 0p,q
0q,p 0q,q

][
Q−1

p

0q,m

]
(Yk0 − Y∗) (31)

If we set
∥∥Qp

∥∥ =
∥∥[
Qp0m,q

]∥∥ and
∥∥Q−1

p

∥∥ =

∥∥∥∥
[
Q−1

p

0q,m

]∥∥∥∥ , then by taking norms for

every k≥k0 in (31), for every consistent initial condition Yk0 we have

||Yk−Y∗|| =
∥∥∥QpJ

k−k0
p Q−1

p (Yk0 − Y∗)
∥∥∥ || ≤ ||Qp||

∥∥∥Jk−k0
p

∥∥∥∥∥Q−1
p

∥∥ ||Yk0−Y∗|| → 0

and thus

lim
k→∞

Yk = Y∗

or

lim
k→∞

Yk = (F − G)−1V

Knowing from Proposition 2.3.1 the closed formula that provides the unique solution

of the singular system (1), we can prove the following Theorem.
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Theorem 4.2. The unique solution of the non homogeneous finite (k0 ≤ k ≤ kN) dis-

crete time system with a bounded input vector Vk (1) is bounded if every equilibrium

state of the homogeneous system (3) is stable in the sense of Lyapounov.

Proof. The solution of system (1) is given from the formula (16),

Yk = Qp

(
Jk−k0
p Zp

k0
+

k−1∑
i=k0

Jk−i−1
p P1Vi

)
− Qq

q∗−1∑
i=0

Hi
qP2Vk+i.

or

Yk =
[
Qp0m,q

]
(
[
Jk−k0
p 0p,q
0q,p 0q,q

] [
Zp
k0

0q,m

]
+

k−1∑
i=k0

[
Jk−i−1
p 0p,q
0q,p 0q,q

] [
P1
0q,m

]
Vi)−

− [
Qq0m,p

] q∗−1∑
i=0

[
Hi

q 0q,p
0p,q 0p,p

][
P2
0p,m

]
Vk+i.

(32)

If we set
∥∥Qp

∥∥ =
∥∥[
Qp0m,q

]∥∥ , ∥∥Q−1
p

∥∥ =

∥∥∥∥
[
Q−1

p

0q,m

]∥∥∥∥ , ‖P1‖ =

∥∥∥∥
[
P1
0q,m

]∥∥∥∥ and

‖P2‖ =

∥∥∥∥
[
P2
0q,m

]∥∥∥∥ , then by taking norms in (32)

||Yk|| ≤ ||Qp||
∥∥∥Jk−k0

p

∥∥∥ ∥∥∥Zp
k0

∥∥∥+||Qp||
k−1∑
i=k0

∥∥∥Jk−i−1
p

∥∥∥ ||P1|| ||Vi|| − ||Qq||
q∗−1∑
i=0

∥∥∥Hi
q

∥∥∥||P2|| ||Vk+i|| (33)

If every equilibrium state of the system (3) is stable in the sense of Lyapounov, the

matrix Jk−k0
p is bounded,

||Jk−k0
p || ≤ c1 (34)

and moreover for a finite discrete time system, k0 ≤ k ≤ kN, we have

k−1∑
i=k0

||Jk−i−1
p || ≤ (kN − 1 − k0)c1 (35)

If the input vector Vk is bounded, we have

||Vk|| ≤ c2 (36)

By applying (34), (35) and (36) into (33) we have

||Yk|| ≤ ||Qp||c1
∥∥∥Zp

k0

∥∥∥ + ||Qp||kNc1||P1||c2 − ||Qq||c3||P2||c2

where

c3 =
q∗−1∑
i=0

||Hi
q||

and thus we have proved that every solution of a finite discrete time system in the

form of (1) is bounded.
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Theorem 4.3. Let the system (3) be asymptotically stable in the large. Then after a δ

perturbation in the set of consistent initial conditions of the non homogeneous discrete

time system (1), the unique solution changes by an amount depending on δ.

Proof. The solution of system (1) is given from the formula (16),

Yk = Qp

⎛
⎝Jk−k0

p Zp
k0
+

k−1∑
i=k0

Jk−i−1
p P1Vi

⎞
⎠ − Qq

q∗−1∑
i=0

Hi
qP2Vk+i.

where Zp
k0

is the solution of the algebraic system

Yk0 = QpZ
p
k0

− Qq

q∗−1∑
i=0

Hi
qP2Vk+i

Since the columns of the matrix Qp are linear independent, the matrix is left inverti-

ble. Thus we can define its left inverse matrix Q−1
p ∈ Mpm such that

Q−1
p Qp = Ip

Then

Zp
k0

= Q−1
p Yk0 +Q−1

p Qq

q∗−1∑
i=0

Hi
qP2Vk+i

and the solution can be written as

Yk = Qp

⎛
⎝Jk−k0

p Q−1
p Yk +Q−1

p Qq

q∗−1∑
i=0

Hi
qP2Vk+i +

k−1∑
i=k0

Jk−i−1
p P1Vi

⎞
⎠ − Qq

q∗−1∑
i=0

Hi
qP2Vk+i

If we perturb the initial conditions of the system accordingly

||Yk0 − Ỹk0 || ≤ δ

then the solution of the system with initial conditions Ỹk0 changes to

Ỹk = Qp

⎛
⎝Jk−k0

p Q−1
p Ỹk +Q−1

p Qq

q∗−1∑
i=0

Hi
qP2Vk+i +

k−1∑
i=k0

Jk−i−1
p P1Vi

⎞
⎠ − Qq

q∗−1∑
i=0

Hi
qP2Vk+i

and substracting Ỹk from Yk, we obtain

Yk − Ỹk = QpJ
k−k0
p Q−1

p (Yk0 − Ỹk0)

or

Yk − Ỹk =
[
Qp0m,q

] [
Jk−k0
p 0p,q
0q,p 0q,q

][
Q−1

p

0q,m

]
(Yk0 − Ỹk0 ) (37)

If we set
∥∥Qp

∥∥ =
∥∥[
Qp0m,q

]∥∥ and
∥∥Q−1

p

∥∥ =

∥∥∥∥
[
Q−1

p

0q,m

]∥∥∥∥ . Then by taking norms for

every k≥k0 in (37) we have
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∥∥∥Yk − Ỹk
∥∥∥ ≤ ||Qp||

∥∥∥Jk−k0
p

∥∥∥ ∥∥Q−1
p

∥∥∥∥∥Yk0 − Ỹk0
∥∥∥ (38)

If every equilibrium state of the system (3) is stable in the sense of Lyapounov, the

matrix Jk−k0
p is bounded,

∥∥∥Jk−k0
p

∥∥∥ ≤ c1

Then from (38) we have∥∥∥Yk − Ỹk
∥∥∥ ≤ c1c2c3δ

where c1 =
∥∥Qp

∥∥ , c2 =
∥∥∥Q−1

p

∥∥∥ . Therefore if we chose � = �(δ) = c1c2c3δ, we obtain,

∥∥∥Yk − Ỹk
∥∥∥ ≤ ε

5 State feedback stabilization
In this section we will study the case where the system (3) has non stable equilibrium

states. We state the following question. Under what conditions is it possible to apply

to the initial unstable system (3) an external input vector

Vk = BUk (39)

where B ∈ Mmr , Uk ∈ Mr1 and a state feedback law

Uk = G̃1Yk (40)

such that the new system has stable equilibrium states. If it is possible, the system (3)

will be called stabilizable. So, the initial system (3) takes the form, first

FYk+1 = GYk + BUk (41)

and after applying the feedback law (40)

FYk+1 = G̃Yk (42)

where G̃ = G + BG̃1 and G̃1 ∈ Mrm is the feedback gain.

Proposition 5.1. Consider the singular system (3) and the corresponding singular

system of the form (41). We also suppose that some of the finite eigenvalues of the

matrix pencil sF-G does not lie within the open disc |s| <1. Then this system becomes

stable by a feedback law of the form (40) if

rank [sF − G, B] = m (43)

Proof. Since the system (3) has finite eigenvalues of the matrix pencil sF-G that don’t

lie within the open disc |s| <1, there exists non stable equilibrium state(s). We consider

the system (41) and we want to apply an appropriate feedback law in the form (40),

such that all finite eigenvalues of the matrix pencil sF - G̃ of the system (41) lie within

the open disc |s| <1. Thus

det(sF − G̃) �= 0
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and

rank(sF − G̃) = m (44)

Thus we require

rank[sF −G,B] = rank[sF −G,B]
[

Im
−G̃1

]
= rank(sF −G− BG̃1) = rank(sF − G̃) = m

or

rank[sF − G,B] = m

Example 5.1. Consider the system (3) with

F =

⎡
⎣1 0 −1
0 1 0
0 0 0

⎤
⎦ ,G =

⎡
⎣−2 0 2

−1 1
3 −1

0 0 1

⎤
⎦ (45)

Then

det(sF − G) = (s + 2)
(
s +

2
3

)

the equilibrium state is not stable. We consider now the system (41) with

B =

⎡
⎣1
0
0

⎤
⎦ (46)

Since for s = 2, 2
3

rank[sF − G,B] = 3

the system is stabilizable. We assume the feedback law

Uk =
[ 3
2 0 0

]
Yk

and by applying it in (41) we get the system (42), with

G̃ =

⎡
⎣− 1

2 0 2
−1 1

3 −1
0 0 1

⎤
⎦ (47)

with

det(sF − G̃) =
(
s +

1
2

) (
s − 2

3

)

and since the matrix pencil doesn’t have the finite eigenvalue 1 the system has the

unique equilibrium state 0m,1 and moreover since all the finite eigenvalues are inside

the unite circle, the unique equilibrium state is asymptotically stable in the large and

lim
k→∞

Yk = 0m,1

Dassios Advances in Difference Equations 2012, 2012:75
http://www.advancesindifferenceequations.com/content/2012/1/75

Page 18 of 20



6 Conclusions
In this article, we studied the stability of a class of linear singular discrete time systems

whose coefficients are square constant matrices and the leading matrix coefficient is

singular. We presented a theory based on the matrix pencil of the system and we

showed how the eigenvalues of the pencil are related with the stability of singular sys-

tems. We studied the stability of systems in the form of (3) and the behavior of the

solution Yk as k increases from k0 to ∞. Furthermore we reformulated the Lyapounov

Theorem for uniform stability to be applied in singular systems. After we considered

the system (1) and proved that all solutions of the non homogeneous system are

bounded provided that the homogeneous system (3) is asymptotically stable in the

large. Moreover we provided properties to avoid a “blow up” in the system when hav-

ing small perturbations in the initial conditions. Finally for the case of not stable equil-

librium states we gave necessary and sufficient conditions for state feedback

stabilization. As a further extension of this article, we can discuss possible applications

based on the presented approach, as is the very famous Leondief model, see [4], or the

very important Leslie population growth model and backward population projection,

see also [4], the Host-parasitoid Models in physics, see [38] or the distribution of heat

through a long rod or bar as suggested in [24]. Furthermore another interesting case

for further studies is the case of systems with a singular pencil. This is the case where

the constant matrices of the system are not square or they are square with an identi-

cally zero matrix pencil. For all these, there is some research in progress.
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