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Abstract
This paper addresses improved stability results for T-S fuzzy systems with mixed
delays and nonlinear perturbations. By introducing the geometric sequence division
(GSD) method, the discrete delay interval can be separated into multiple subintervals
with unequal lengths based on the common ratio α. Meanwhile integral partitioning
method is applied to deal with the distributed delay. A Lyapunov-Krasovskii
functional (LKF) is newly established with augmented factors and triple integral terms
which are constructed by means of the length of every subintervals. In addition, in
order to reduce the enlargement when we deal with the estimation of the LKF
derivative, a free-matrix-based integral inequality, an extended reciprocal convex
combination, and free weight matrices techniques are employed. A stability analysis
of the delayed T-S fuzzy systems is presented with much less conservative criteria. At
the end numerical examples are given to demonstrate the significant improvements
of this proposed design.

Keywords: geometric sequence division; mixed delays; nonlinear perturbations; T-S
fuzzy systems

1 Introduction
Because complex mathematical modeling in higher order commonly exists in engineer-
ing field, nonlinearity is frequently encountered in dynamic systems. The Takagi-Sugeno
(T-S) fuzzy model introduced in [], has recently attracted special attention for stability
analysis and control design of complex dynamic systems due to its practical application.
This T-S fuzzy based theory can be applied with expected approximation to the complex
nonlinear systems. The T-S fuzzy system is commonly given by combining with various
membership functions. In fact, the T-S fuzzy model is basically considered as a multi-
mode method, where the sub-models can be directly consolidated to analyze the original
nonlinear system behavior [, ]. Therefore, recently many efforts have been made as re-
gards the stability analysis of the T-S fuzzy systems [–].

Time delay often exists in dynamic systems such as chemical reaction processes, com-
munication networks, and biological systems; it is considered as the main source of poor
performance and instability [–]. Stability analysis of time delayed T-S fuzzy systems
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has thus been paid special attention to; they are commonly classified into two categories:
delay-independent and delay-dependent criteria [, ]. As much of information on the
delay is concerned, the delay-dependent criteria are quite useful for providing less conser-
vatism [, , ].

Delay partitioning, alternatively known as a fractionizing method, was first proposed
in []. It was proved that delay partitioning method can improve the stability conditions
significantly. Less conservative results can be obtained as soon as the partition segments
get thinner [, ].

In the recent decades, distributed delay is researched as a different type of delays for
stability analysis in nonlinear dynamic systems which commonly appears in some en-
gineering applications, such as logistics, traffic communication, and biological systems.
A number of research works have been carried out to investigate stability problems of
systems with distributed delays [–]. In [], Jensen’s inequality and elimination meth-
ods were applied to deal with inequalities to improve stability conditions under the effects
of distributed delay. Another work was proposed by using an analytic solution to han-
dle the Lyapunov functionals in []. Then the necessary and sufficient condition for this
distributed delay system is derived by considering a bounded constant delay. Later on, re-
search work on the neutral system in the case of both discrete and distributed delays has
been studied [–]. However, due to the absence of the distributed delay information in
the weighting matrices of the Lyapunov functionals, the proposed work may lead to con-
servative results. An integral partitioning technique is therefore proposed in [], which
is applied to the construction of a new form of LKF to enhance the feasible region of the
distributed delay-dependent conditions. Motivated by this approach, it is expected one
may employ this integral partitioning method to solve the stability issues of perturbed T-S
fuzzy systems with mixed delays.

In addition, because of the existence of process uncertainties and slowly varying param-
eters, nonlinear perturbations commonly occur in both current and delayed states [].
Under this circumstance, previously developed approaches for deterministic systems are
rarely employed for the stability analysis under the appearance of nonlinear perturbations.

In this research work, stability criteria are investigated by considering a nonlinear per-
turbed T-S fuzzy system with the appearance of mixed delays. The main contribution of
this paper is described as follows.

() The discrete time delay interval is unequally separated into multiple segments with
variable length which is based on the geometric sequence division (GSD) for a
common ratio α. As a result, less conservatism is obtained efficiently. In addition, to
deal with this distributed delay, integral partitioning method is introduced which is
used to build a new form of LKF with double and triple integral forms.

() By employing the free-matrix-based integral inequality, an extended reciprocal
convex combination and free weight matrices techniques, the less enlargement of
bounding the derivative of the LKF is achieved. The implementation in the
Matlab/Simulink is enhanced efficiently.

() Numerical results are given to show that the proposed stability conditions are much
less conservative than some of the existing results. Significant stability conditions
are derived in this proposed method in the case of T-S fuzzy systems with mixed
delays and nonlinear perturbations.
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Notations R
n is the n-dimensional Euclidean space. P > (≥)  means that the matrix P is

positive (semi-positive) definite. In (n) is the identity (zero) matrix with n-dimensions;
AT denotes the transpose, and He(A) = A + AT. The symbol ∗ denotes the elements below
the main diagonal of a symmetric block matrix. ‖ • ‖ is the Euclidean norm in R

n.

2 Problem statements and preliminaries
Considering a nonlinear perturbed T-S fuzzy system with mixed delays, for each l =
, , . . . , r (r is the number of the plant rules), the lth rule of this fuzzy model with r plant
rules is described as follows.

Rule l: IF z(t) is Ml and · · · zp(t) is Mlp THEN

ẋ(t) = Alx(t) + Blx
(
t – τ (t)

)
+ Clf

(
x(t), t

)

+ Dlf
(
x
(
t – τ (t)

)
, t
)

+ El

∫ t

t–d
x(s) ds, t ≥ , (.)

x(t) = ϕ(t), t ∈ [–φ, ],

where x(t) ∈ R
n is the state variable, zs(t), Mls (s = , , . . . , p) are premise variables and

the related fuzzy sets, respectively. Al , Bl , Cl , Dl , El are the real constant matrices with
appropriate dimensions. τ (t) is the time-varying delay. f (x(t), t) and f (x(t – τ (t)), t) are
unknown nonlinear perturbations with respect to the current state x(t) and the delayed
state x(t – τ (t)). ϕ(t) ∈ C([–τq, ],Rn) is the initial function, and φ = max{τq, d}.

Then the fuzzy model can be inferred to be

ẋ(t) =
r∑

l=

hl(t)
[

Alx(t) + Blx
(
t – τ (t)

)
+ Clf

(
x(t), t

)

+ Dlf
(
x
(
t – τ (t)

)
, t
)

+ El

∫ t

t–d
x(s) ds

]

= A(t)x(t) + B(t)x
(
t – τ (t)

)
+ C(t)f

(
x(t), t

)
(.)

+ D(t)f
(
x
(
t – τ (t)

)
, t
)

+ E(t)
∫ t

t–d
x(s) ds, t ≥ ,

x(t) = ϕ(t), t ∈ [–φ, ],

where r is the number of fuzzy implications, hl(t) = Wl(t)∑r
l= Wl(t) , Wl(t) =

∏p
s= Mls(zs(t)) with

Mls(zs(t)) is the grade of membership of zs(t) in Mls. A(t) =
∑r

l= hl(t)Al , B(t) =
∑r

l= hl(t)Bl ,
C(t) =

∑r
l= hl(t)Cl , D(t) =

∑r
l= hl(t)Dl , E(t) =

∑r
l= hl(t)El . For Wl(t) ≥ , hl(t) ≥  and

∑r
l= hl(t) =  thus holds.
The time-varying delay τ (t) is considered as

 ≤ τ ≤ τ (t) ≤ τq, τ̇ (t) < μ, ∀t ≥ , (.)

where τ, τq, μ are constants.

Assumption  f (, t) ≡  and

f Tf ≤ xT(t)FTFx(t), (.)
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where F is for known constant matrices, ∀x ∈ R
n, and f is short for the expressions of

f (x(t), t).

A few lemmas are used for stability analysis as follows.

Lemma  ([, ]) For the n×n matrix Q > , the scalar τ > , the vector-valued function
ẋ : [–τ , ] −→ R

n such that the following integrations are well defined:

–τ

∫ t

t–τ

ẋT(s)Qẋ(s) ds ≤ [xT(t) xT(t – τ )
]
[

–Q Q
∗ –Q

][
x(t)

x(t – τ )

]

, (.)

–
τ 



∫ 

–τ

∫ t

t+θ

ẋT(s)Qẋ(s) ds dθ

≤
[
τxT(t)

∫ t
t–τ

xT(s) ds
][–Q Q

∗ –Q

][
τx(t)

∫ t
t–τ

x(s) ds

]

. (.)

Lemma  (Free-matrix-based integral inequality []) Let x be a differentiable function:
[a, b] → R

n, Z ∈ R
n×n and W, W ∈ R

n×n be symmetric matrices, and W ∈ R
n×n,

N, N ∈R
n×n satisfying this condition:

⎡

⎢
⎣

W W N

∗ W N

∗ ∗ Z

⎤

⎥
⎦≥ ,

we have

–
∫ b

a
ẋT(s)Zẋ(s) ds ≤ � T�� , (.)

where � = [xT(b) xT(a) 
b–a
∫ b

a xT(s) ds]T, � = (b – a)(W + 
 W) + He(N	 + N	), 	 =

ē – ē, 	 = ē – ē – ē, ē = [I  ], ē = [ I ], ē = [  I].

Lemma  (Extended reciprocal convex combination (RCC) []) For any vectors f, . . . , fN

with appropriate dimensions, scalars ki(t) ∈ [, ],
∑N

i= ki(t) = , and matrices Ri > , there
exists a matrix Sij (i = , . . . , N – , j = i + , . . . , N ) that satisfies

[
Ri Sij

∗ Rj

]

≥ ;

then the following inequality holds:

–
N∑

i=


ki(t)

f T
i Rifi ≤ –

⎡

⎢⎢
⎣

f
...

fN

⎤

⎥⎥
⎦

T⎡

⎢⎢
⎣

R · · · S,N

∗ . . .
...

∗ ∗ RN

⎤

⎥⎥
⎦

⎡

⎢⎢
⎣

f
...

fN

⎤

⎥⎥
⎦ .

Proof For N = , the following inequality always holds:

⎡

⎣

√
k(t)
k(t) f

–
√

k(t)
k(t) f

⎤

⎦

T [
R S

∗ R

]⎡

⎣

√
k(t)
k(t) f

–
√

k(t)
k(t) f

⎤

⎦≥ .
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Because k(t) + k(t) = , then it is deduced that


k(t)

f T
 Rf +


k(t)

f T
 Rf =


k(t)

f T

(
k(t) + k(t)

)
Rf +


k(t)

f T

(
k(t) + k(t)

)
Rf

= f T
 Rf +

k(t)
k(t)

f T
 Rf + f T

 Rf +
k(t)
k(t)

f T
 Rf

≥ f T
 Rf + f T

 Rf + f T
 Sf + f T

 Sf

=

[
f

f

]T [
R S,

∗ R

][
f

f

]

.

In the case of i = N , the proof procedures are similar and omitted. �

Lemma  (Finsler’s lemma []) Let ζ ∈ R
n, � = �T ∈ R

n×n, and B ∈ R
m×n with

rank(B) < n. The following statements are equivalent:
(i) ζ T�ζ < , ∀Bζ = , ζ 
= ;

(ii) B⊥T
�B⊥ < ;

(iii) ∃L ∈R
n×m: � + He(LB) < ;

where B⊥ ∈ R
n×(n–rank(B)) is the right orthogonal complement of B.

3 Main results
Based on the geometric sequence division method, a new delay partitioning approach is
proposed in Figure . The stability criteria of T-S fuzzy system in the presences of mixed
delays and nonlinear perturbations are analyzed in this section. For any integral q ≥ , the
delay interval [τ, τq] is separated into q unequal geometric subintervals by

{
δi = αq–i+,
τi = τ +

∑i
a= αq–a+, i = , , . . . , q,

(.)

where q is the number of segments of interval [τ, τq]. It is expressed as [τ, τq] =
[τ, τ]

⋃q
i=(τi–, τi] � I ∪ I ∪ · · · ∪ Iq. α is a real positive number, and δi is the length

of the ith subinterval which equals αq–i+.
In addition, using the integral partitioning method proposed in [], the distributed

delay [, d] is divided into L equivalent segments as ρ = d
L . ρ is the length of the subinterval

of the distributed delay.
The following expressions are used for notational simplification:

ej =
[
n, . . . , n︸ ︷︷ ︸

j–

, In, n, . . . , n︸ ︷︷ ︸
q+L–j+

]T ∈R
(q+L+)n×n, j = , , . . . , q + L + . (.)

Figure 1 GSD based delay partitioning.
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The augmented vector is defined by

ξ (t) =
[

ẋT(t), xT(t), xT(t – τ),σ T(t), xT(t – τ (t)
)
,σ T

 (t),σ T
 (t),σ T

 (t),

∫ t–Lρ

t–(L+)ρ
xT(s) ds, f T(x(t)

)
, f T(x

(
t – τ (t)

))
]T

, (.)

where

σ (t) =
[
xT(t – τ), . . . , xT(t – τq)

]T,

σ(t) =
[∫ t

t–τ

xT(s) ds, . . . ,
∫ t

t–τq–

xT(s) ds
]T

,

σ(t) =
[


δ

∫ t–τ

t–τ

xT(s) ds, . . . ,

δq

∫ t–τq–

t–τq

xT(s) ds
]T

,

σ(t) =
[∫ t

t–ρ

xT(s) ds,
∫ t–ρ

t–ρ

xT(s) ds, . . . ,
∫ t–(L–)ρ

t–Lρ

xT(s) ds
]T

.

Next, the new delay-dependent stability criteria are presented for the T-S fuzzy system in
the presence of mixed delays and nonlinear perturbations described in (.).

Theorem  Given a positive integer q, L, and δi = αq–i+. The system (.) is asymptotically
stable if there exist symmetric positive definite matrices Zi,Z, Qi, Ri, Ri, R ∈ R

n×n (i =
, , . . . , q), Q̃ ∈ R

n×n, P = [Pij](q+)×(q+) ∈R
(q+)n×(q+)n, Q = [Qij]L×L ∈ R

Ln×Ln, symmetric
matrices W, W ∈ R

n×n, and J ∈ R
n×n, matrices W ∈ R

n×n, N, N ∈ R
n×n, N̂, N̂,

N̂ ∈R
n×n and Y ∈R

(q+L+)n×n, such that the following LMIs hold:

Wi =

⎡

⎢
⎣

W W N

∗ W N

∗ ∗ Zi

⎤

⎥
⎦≥ , (.)

�k,l + He(Y�l) < , l = , , . . . , r, k = , , . . . , q, (.)

where

�l = AleT
 + BleT

q+ + CleT
q+L+ + DleT

q+L+ + El

L∑

j=

eT
q++j – eT

 ,

�k,l = � + � + �k + � + �l, + � + eZeT
 ,

� = He

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

⎡

⎢⎢
⎢⎢
⎣

eT


eT
q+
...

eT
q+

⎤

⎥⎥
⎥⎥
⎦

T

P

⎡

⎢⎢
⎢⎢
⎢
⎣

eT



δ

(eT
 – eT

 )
...


δq

(eT
q+ – eT

q+)

⎤

⎥⎥
⎥⎥
⎥
⎦

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

,

� =

[
eT



eT
q+L+

]T

Q̃

[
eT



eT
q+L+

]

– ( – μ)

[
eT

q+

eT
q+L+

]T

Q̃

[
eT

q+

eT
q+L+

]
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+
q∑

i=

(
xT(t – τi–)Qix(t – τi–) – xT(t – τi)Qix(t – τi)

)

+

⎡

⎢⎢
⎢⎢
⎣

eT
q+

eT
q+
...

eT
q+L+

⎤

⎥⎥
⎥⎥
⎦

T

Q

⎡

⎢⎢
⎢⎢
⎣

eT
q+

eT
q+
...

eT
q+L+

⎤

⎥⎥
⎥⎥
⎦

–

⎡

⎢⎢
⎢⎢
⎣

eT
q+

eT
q+
...

eT
q+L+

⎤

⎥⎥
⎥⎥
⎦

T

Q

⎡

⎢⎢
⎢⎢
⎣

eT
q+

eT
q+
...

eT
q+L+

⎤

⎥⎥
⎥⎥
⎦

,

�k =
q∑

i=,i
=k

⎡

⎢
⎣

eT
i+

eT
i+

eT
q++i

⎤

⎥
⎦

T

�

⎡

⎢
⎣

eT
i+

eT
i+

eT
q++i

⎤

⎥
⎦

+

⎡

⎢
⎣

eT
k+

eT
q+

eT
k+

⎤

⎥
⎦

T⎡

⎢
⎣

–Zk Zk – J J
∗ –Zk + JT + J Zk – J
∗ ∗ –Zk

⎤

⎥
⎦

⎡

⎢
⎣

eT
k+

eT
q+

eT
k+

⎤

⎥
⎦

– eq+

ρ
ZeT

q+ + eρZeT
 ,

� =
q∑

i=

[
τi–eT



eT
q++i

]T [
–Ri Ri

∗ –Ri

][
τi–eT



eT
q++i

]

+
q∑

i=

δ
i

[
eT



eT
q++i

]T [
–Ri Ri

∗ –Ri

][
eT



eT
q++i

]

+

[
ρeT



eT
q+

]T [
–R R

∗ –R

][
ρeT



eT
q+

]

,

�l, =

⎡

⎢⎢⎢
⎢⎢
⎢⎢
⎢
⎣

eT


eT


eT
q+

eT
q+L+

eT
q+L+∑L

j= eT
q++j

⎤

⎥⎥⎥
⎥⎥
⎥⎥
⎥
⎦

T

×

⎡

⎢
⎢⎢
⎢⎢⎢
⎢⎢
⎣

–N̂ – N̂T
 N̂Al – N̂T

 N̂Bl N̂Cl – N̂T
 N̂Dl N̂El

∗ N̂Al + AT
l N̂T

 N̂Bl N̂Cl + BT
l N̂T

 N̂Dl N̂El

∗ ∗  CT
l N̂T

  
∗ ∗ ∗ N̂Cl + CT

l N̂T
 N̂Dl N̂El

∗ ∗ ∗ ∗  
∗ ∗ ∗ ∗ ∗ 

⎤

⎥
⎥⎥
⎥⎥⎥
⎥⎥
⎦

×

⎡

⎢⎢
⎢⎢
⎢⎢
⎢⎢
⎣

eT


eT


eT
q+

eT
q+L+

eT
q+L+∑L

j= eT
q++j

⎤

⎥⎥
⎥⎥
⎥⎥
⎥⎥
⎦

,

� = eλFTFeT
 – eq+L+λIeT

q+L+,
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with

Z =
q∑

i=

δiα
q–i+Zi +

q∑

i=




τ 
i–Ri +

q∑

i=



(
τ 

i – τ 
i–
)Ri +

ρ


R,

� = δ
i

(
W +




W

)
+ δi He(N	 + N	).

Proof For any t ≥ , there should exist an integer k ∈ {, , . . . , q}, such that τ (t) ∈ Ik . The
new Lyapunov-Krasovskii functional is as follows:

V (xt , k)|τ (t)∈Ik = V(xt) + V(xt) + V(xt , k) + V(xt), (.)

where

V(xt) = εT(t)Pε(t),

V(xt) =
∫ t

t–τ (t)

[
x(s)

f (x(s))

]T

Q̃

[
x(s)

f (x(s))

]

ds

+
q∑

i=

∫ t–τi–

t–τi

xT(t)Qix(t) ds +
∫ t

t–ρ

ηT
 (s)Qη(s) ds,

V(xt , k) =
q∑

i=

δi

∫ –τi–

–τi

∫ t

t+β

ẋT(s)Ziẋ(s) ds dβ +
∫ 

–ρ

∫ t

t+θ

xT(s)Zx(s) ds dθ ,

V(xt) =
q∑

i=

τ 
i–


∫ 

–τi–

∫ 

θ

∫ t

t+λ

ẋT(s)Riẋ(s) ds dλdθ

+
q∑

i=

τ 
i – τ 

i–


∫ –τi–

–τi

∫ 

θ

∫ t

t+λ

ẋT(s)Riẋ(s) ds dλdθ

+
ρ



∫ 

–ρ

∫ 

θ

∫ t

t+λ

ẋT(s)Rẋ(s) ds dλdθ

with ε(t) = [xT(t),σ T
 (t)]T.

The derivative of the Lyapunov functional V (xt , k)|τ (t)∈Ik along the trajectory of the T-S
fuzzy system shown in (.) is given by

V̇ (xt , k)|τ (t)∈Ik = V̇(xt) + V̇(xt) + V̇(xt , k) + V̇(xt), (.)

where

V̇(xt) = εT(t)P ε̇(t) = ξT(t)�ξ (t), (.)

V̇(xt) ≤
[

x(t)
f (x(t))

]T

Q̃

[
x(t)

f (x(t))

]

– ( – μ)

[
x(t – τ (t))

f (x(t – τ (t)))

]T

Q̃

[
x(t – τ (t))

f (x(t – τ (t)))

]

+
q∑

i=

(
xT(t – τi–)Qix(t – τi–) – xT(t – τi)Qix(t – τi)

)
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+ ηT
 (t)Qη(t) – ηT

 (t – ρ)Qη(t – ρ)

= ξT(t)�ξ (t), (.)

V̇(xt) = ẋT(t)

( q∑

i=

δiα
q–i+Zi

)

ẋ(t) –
q∑

i=

δi

∫ t–τi–

t–τi

ẋT(s)Ziẋ(s) ds

+ xT(t)ρZx(t) –
∫ t

t–ρ

xT(s)Zx(s) ds, (.)

τ (t) ∈ Ik ( ≤ k ≤ q), the second term in (.) is derived as follows:

–
q∑

i=

δi

∫ t–τi–

t–τi

ẋT(s)Ziẋ(s) ds

= –
q∑

i=,i
=k

δi

∫ t–τi–

t–τi

ẋT(s)Ziẋ(s) ds – δk

∫ t–τk–

t–τk

ẋT(s)Zkẋ(s) ds. (.)

Using Lemma  to deal with (.), we have

–
q∑

i=,i
=k

δi

∫ t–τi–

t–τi

ẋT(s)Ziẋ(s) ds ≤
q∑

i=,i
=k

� T
i(t)��i(t), (.)

where �i(t) = [xT(t – τi–) xT(t – τi) 
δi

∫ t–τi–
t–τi

xT(s) ds]T.
In the case of i = k, applying Jensen’s inequality and the extended RCC in Lemma , it is

given by

–(τk – τk–)
∫ t–τk–

t–τk

ẋT(s)Zkẋ(s) ds

= –(τk – τk–)
(∫ t–τk–

t–τ (t)
ẋT(s)Zkẋ(s) ds +

∫ t–τ (t)

t–τk

ẋT(s)Zkẋ(s) ds
)

≤ –
(τk – τk–)

(τ (t) – τk–)

(∫ t–τk–

t–τ (t)
ẋT(s) ds

)
Zk

(∫ t–τk–

t–τ (t)
ẋ(s) ds

)

–
(τk – τk–)
(τk – τ (t))

(∫ t–τ (t)

t–τk

ẋT(s) ds
)

Zk

(∫ t–τ (t)

t–τk

ẋ(s) ds
)

= –
(τk – τk–)

(τ (t) – τk–)

[
x(t – τk–)
x(t – τ (t))

]T [
Zk –Zk

∗ Zk

][
x(t – τk–)
x(t – τ (t))

]

–
(τk – τk–)
(τk – τ (t))

[
x(t – τ (t))
x(t – τk)

]T [
Zk –Zk

∗ Zk

][
x(t – τ (t))
x(t – τk)

]

≤ –ηT
 (t)

⎡

⎢
⎣

Zk –Zk + J –J
∗ Zk – JT – J –Zk + J
∗ ∗ Zk

⎤

⎥
⎦η(t), (.)

where σ(t) = [xT(t – τk–) xT(t – τ (t)) xT(t – τk)]T.
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Using Jensen’s inequality, the last term of (.) is deduced:

–
∫ t

t–ρ

xT(s)Zx(s) ds ≤ –

ρ

(∫ t

t–ρ

x(s)T ds
)
Z

(∫ t

t–ρ

x(s) ds
)

. (.)

It follows from (.)-(.) that

–
q∑

i=

δi

∫ t–τi–

t–τi

ẋT(s)Ziẋ(s) ds + xT(t)ρZx(t) –
∫ t

t–ρ

xT(s)Zx(s) ds

≤ ξT(t)�kξ (t). (.)

The derivative of V(xt) is presented as

V̇(xt) = ẋT(t)

( q∑

i=




τ 
i–Ri +

q∑

i=



(
τ 

i – τ 
i–
)Ri

)

ẋ(t)

–
q∑

i=

τ 
i–


∫ 

–τi–

∫ t

t+θ

ẋT(s)Riẋ(s) ds dθ

–
q∑

i=

τ 
i – τ 

i–


∫ –τi–

–τi

∫ t

t+θ

ẋT(s)Riẋ(s) ds dθ

–
ρ



∫ 

–ρ

∫ t

t+θ

ẋT(s)Rẋ(s) ds dθ . (.)

By applying Lemma , the last three terms of (.) are derived as

–
q∑

i=

τ 
i–


∫ 

–τi–

∫ t

t+θ

ẋT(s)Riẋ(s) ds dθ

≤
q∑

i=

[
τi–x(t)

∫ t
t–τi–

x(s) ds

]T [
–Ri Ri

∗ –Ri

][
τi–x(t)

∫ t
t–τi–

x(s) ds

]

–
q∑

i=

τ 
i – τ 

i–


∫ –τi–

–τi

∫ t

t+θ

ẋT(s)Riẋ(s) ds dθ

≤
q∑

i=

[
(τi – τi–)x(t)
∫ t–τi–

t–τi
x(s) ds

]T [
–Ri Ri

∗ –Ri

][
(τi – τi–)x(t)
∫ t–τi–

t–τi
x(s) ds

]

=
q∑

i=

(τi – τi–)

[
x(t)


δi

∫ t–τi–
t–τi

x(s) ds

]T [
–Ri Ri

∗ –Ri

][
x(t)


δi

∫ t–τi–
t–τi

x(s) ds

]

–
ρ



∫ 

–ρ

∫ t

t+θ

ẋT(s)Rẋ(s) ds dθ

≤
[

ρx(t)
∫ t

t–ρ
x(s) ds

]T [
–R R

∗ –R

][
ρx(t)

∫ t
t–ρ

x(s) ds

]

. (.)

Thus (.) implies that

V̇(xt) ≤ ẋT(t)

( q∑

i=




τ 
i–Ri +

q∑

i=



(
τ 

i – τ 
i–
)Ri +

ρ


R

)

ẋ(t) + ξT(t)�ξ (t). (.)
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According to the system in (.), with N̂, N̂ and N̂ are defined as N̂ =
∑r

l= hl(t)N̂l ,
N̂ =

∑r
l= hl(t)N̂l , and N̂ =

∑r
l= hl(t)N̂l ; N̂l , N̂l , N̂l are constant matrices. Then it is

given as

 = 
[
ẋT(t)N̂ + xT(t)N̂ + f T(x(t), t

)
N̂
]

×
[

Alx(t) + Blx
(
t – τ (t)

)
+ Clf

(
x(t), t

)

+ Dlf
(
x
(
t – τ (t)

)
, t
)

+ El

∫ t

t–d
x(s) ds – ẋ(t)

]

= ξT(t)�l,ξ (t). (.)

Referring to (.), for any scalars λ ≥ , the nonlinear perturbations can be derived as

 ≤ λ
(
xT(t)FTFx(t) – f Tf

)
= ξT(t)�ξ (t). (.)

Hence, the following inequality holds:

V̇ (xt , k)|τ (t)∈Ik ≤
r∑

l=

hl(t)ξT(t)�k,lξ (t). (.)

Using the augmented vector (.) with the simplification equation (.), the T-S fuzzy
system (.) is represented as

 =
r∑

l=

hl(t)�lξ (t), (.)

where �l is defined in Theorem .
Therefore, the asymptotic stability condition for the T-S fuzzy system (.) with mixed

delays and nonlinear perturbations is expressed as

r∑

l=

hl(t)ξT(t)�k,lξ (t) < 

subject to:  =
r∑

i=

hl(t)�lξ (t).

(.)

So, in terms of Lemma , there exists a matrix Y with appropriate dimensions such that
(.) is equivalent to

r∑

l=

hl(t)ξT(t)
[
�k,l + He(Y�l)

]
ξ (t) < . (.)

As a result, the derivative of the proposed Lyapunov functionals is derived as
V̇ (xt , k)|τ (t)∈Ik < . It means V̇ (xt , k)|τ (t)∈Ik < γ ‖x(t)‖ for sufficiently small γ > . There-
fore, the T-S fuzzy system in (.) is globally asymptotically stable. This completes the
proof. �
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Remark  For the absence of a perturbation, that is, C(t) = , D(t) = , and E(t) = , the
T-S fuzzy system (.) is simplified as

ẋ(t) = A(t)x(t) + B(t)x
(
t – τ (t)

)
, t ≥ ,

x(t) = ϕ(t), t ∈ [–τq, ].
(.)

This system has been widely researched [, , ]. The stability conditions for the
system are presented below.

Theorem  Given a positive integer q, and δi = αq–i+. The system (.) is asymptot-
ically stable if there exist symmetric positive definite matrices Zi, Qi, Ri, Ri, Q̃ ∈ R

n×n

(i = ,  . . . , q), P = [Pij](q+)×(q+) ∈R
(q+)n×(q+)n, symmetric matrices W, W ∈R

n×n, and
J ∈ R

n×n, matrices W ∈ R
n×n, N, N ∈ R

n×n, N̂, N̂ ∈ R
n×n and Y ∈ R

(q+)n×n, such
that the following LMIs hold:

⎡

⎢
⎣

W W N

∗ W N

∗ ∗ Zi

⎤

⎥
⎦≥ , (.)

�̃k,l + He(Y�l) < , l = , , . . . , r, k = , , . . . , q, (.)

where �l = AleT
 + BleT

q+ – eT
 .

By ignoring all the distributed delay and nonlinear perturbation related elements in The-
orem , we find �̃k,l = � + �̃ + �̃k + �̃ + �̃l, + eZ̃eT

 , where �̃, �̃k , �̃, �̃l,, and Z̃
are amended by removing all the distributed delay related elements based on the definition
in Theorem . Also �̃l, are deduced by removing the perturbed elements Clf (x(t), t) and
Dlf (x(t – τ (t)), t) in (.).

Proof The Lyapunov-Krasovskii functional (.) is modified for system (.) for stability
analysis. The augment vector (.) is modified as

ξ̃ (t) =
[
ẋT(t), xT(t), xT(t – τ),σ T(t), xT(t – τ (t)),σ T

 (t),σ T
 (t)

]T, (.)

where σ (t), σ(t) and σ(t) are defined in Theorem . Then following similar procedures
to the proof of Theorem , the asymptotic stability condition for the T-S system (.) is
equivalent to

r∑

l=

hl(t)̃ξT(t)
[
�̃k + He(Y�l)

]
ξ̃ (t) < . (.)

This completes the proof. �

Remark  Consider a fixed value of the common ratio α, i.e., the lengths of the subinter-
vals are equal to each other. The existing research results using the equivalent partition
method [, , ] can be considered as a special case of this proposed approach. So, the
developed partitioning method is more general.
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4 Numerical example
Numerical examples are conducted in this section, to investigate the stability of the T-S
fuzzy system by considering the mixed delays and nonlinear perturbations.

Example . Consider the nominal T-S fuzzy systems (.) with the fuzzy rules de-
scribed in [, , ] as follows:

Rule : If z(t) is ± π/, then ẋ(t) = Ax(t) + Bx
(
t – τ (t)

)
,

Rule : If z(t) is ± , then ẋ(t) = Ax(t) + Bx
(
t – τ (t)

)
,

(.)

where the parameters widely discussed are given by

A =

[
–. .
–. –.

]

, B =

[
–. .
–. –.

]

,

A =

[
–. 
–. –.

]

, B =

[
–. 
–. –.

]

.

In Rules  and , the membership function are h(z(t)) = 
+exp(–z(t)) , h(z(t)) = –h(z(t)).

Considering the lower bound τ = , different values of the delay derivative rate μ are
selected to compare the upper bound of hN with some previous results in Table .

In Table , considering different values of μ, the comparisons of the maximum upper
bounds τq are given for τ = . Remarkable improvements of this proposed partitioning
method have been illustrated.

By means of the simulation results in Table , selecting μ = , τq = . and μ = .,
τq = . the state response of the T-S fuzzy system (.) is shown in Figure .

Figure  displays the state response performance under the maximum tolerant delay τq

shown in Table ; the nominal T-S fuzzy system (.) is asymptotically stable.
Regarding the results of Example ., by comparing with recent results in [, , ], one

illustrates that the derived stability condition can increase the upper bound of the interval
time-varying delay in T-S fuzzy system as given in Table . Figure  is presented to show
that the system state response performs well based on the obtained results.

Example . Consider the T-S fuzzy systems (.) with mixed delays in the presence of
nonlinear perturbations with the fuzzy rules as follows:

Rule : If z(t) is ± π/,

then ẋ(t) = Ax(t) + Bx
(
t – τ (t)

)
+ Cf

(
x(t), t

)

+ Df
(
x
(
t – τ (t)

)
, t
)

+ E

∫ t

t–d
x(s) ds, (.)

Table 1 Upper bounds of τq for τ0 = 0 and different values of μ

Methods μ = 0 μ = 0.1 μ = 0.5

Liu et al. [33] 3.30 2.65 1.50
Zeng et al. [5] (q = 3) 4.37 3.41 1.95
Lian et al. [34] 4.35 3.55 2.32
Theorem 2 (q = 4) 5.75 5.11 4.17
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Figure 2 The state response of system (4.1).

Rule : If z(t) is ± ,

then ẋ(t) = Ax(t) + Bx
(
t – τ (t)

)
+ Cf

(
x(t), t

)

+ Df
(
x
(
t – τ (t)

)
, t
)

+ E

∫ t

t–d
x(s) ds.

Referring to Assumption , the system parameters are given by

A =

[
–. .
–. –.

]

, B =

[
–. .
–. –.

]

,

A =

[
–. 
–. –.

]

, B =

[
–. 
–. –.

]

,

C = C = D = D =

[
 
 

]

, E =

[
. –.
. .

]

,

E =

[
. .

–. –.

]

, F = F =

[
. 
 .

]

.

In Rules  and , the membership function are h(z(t)) = 
+exp(–z(t)) , h(z(t)) =  – h(z(t)).

For the delay derivative μ = ., by considering the integral partitioning number L =
 and the GSD partitioning number q =  and q = , respectively, the lower bounds are
selected as τ =  and τ = . with the distributed delay d = . and d = . to find the
upper bound of τq in Table .

Considering nonlinear perturbations with different values of d and τ and μ = ., the
upper bound of delays are conducted. It is shown that the proposed method works well in
the perturbed T-S fuzzy system (.). For μ = ., selecting τ = ., τq = ., d = ., the
state responses of the T-S system (.) are presented in Figure .
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Table 2 Upper bounds of τq for μ = 0.1 with different values of d and τ0

τ0 \ d d = 0.1 (q = 3) d = 0.5 (q = 3) d = 0.1 (q = 4) d = 0.5 (q = 4)

τ0 = 0 3.57 1.29 4.56 2.07
τ0 = 0.8 4.17 1.46 5.13 1.68

Figure 3 The state response of system (4.1) with μ = 0.1, τ0 = 0.8, τq = 1.68, d = 0.5.

Table 3 Upper bounds of τq for different values of τ0, d, and μ

Methods L = 3, q = 3 τ0 = 0, d = 0.1 τ0 = 0, d = 0.5 τ0 = 0.8, d = 0.1 τ0 = 0.8, d = 0.5

μ = 0 3.77 3.00 4.37 1.56
μ = 0.1 3.57 1.29 4.17 1.46

For different values of τ and d, and L = , q = , the upper bound of τq of this proposed
work is evaluated for μ =  and μ = . in Table .

Table  shows the upper bound of the time-varying discrete delay with different values
of μ. From the simulation results in Table , for μ = , τ = ., τq = ., d = . the state
responses are given in Figure .

Remark  Selecting different values of τ and μ, simulations are given to show the re-
markable improvements of the proposed method. Based on the numerical results, it is
noticed that the upper bound of the time-varying delay is reduced when the derivative μ

increasing. Conservatism can be dramatically reduced for the nominal T-S fuzzy system
by comparing with the results in [, , ].

Remark  Based on the geometric progression method, excellent stability criteria are pre-
sented in the T-S fuzzy systems with nonlinear perturbations by splitting the delay interval
into unequal subintervals. Table  shows less conservativeness can be provided by increas-
ing the partitioning number from q =  to q = . However, a system with a high number of
dimensions will increase the computation burden so one can hardly find the feasible solu-
tions. Commonly, systems with a lower number of dimensions are employed for stability
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Figure 4 The state response of system (4.1) with μ = 0, τ0 = 0.8, τq = 1.56, d = 0.5.

analysis. In addition, the cost time becomes longer as soon as the delay partitioning num-
ber is increased. We will focus on reducing the number of dimensions of the researched
system and find a better solution for compromising the computation cost in the future.

5 Conclusions
In this paper, by introducing the geometric sequence division and integral delay parti-
tioning approaches, stability problems of the perturbed T-S fuzzy systems with mixed de-
lays are investigated. Comparing with some existing work, in a nominal T-S fuzzy system,
the maximum upper bound τq is conducted to show the improvements of the proposed
method with less conservative results. Numerical results are obtained in LMI toolbox of
Matlab/Simulink to demonstrate that remarkable stability criteria are provided in the case
of T-S fuzzy systems with mixed delays and nonlinear perturbations. Recently, the con-
trol design of T-S systems has attracted special attention. Future work will focus on the
implementation of H∞ control with stochastic disturbances and uncertainties.
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