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Abstract

The endothelium forms a vast network that dynamically regulates vascular barrier function, coagulation pathways and

vasomotor tone. Microvascular endothelial cells are uniquely situated to play key roles during infection and injury, owing

to their widespread distribution throughout the body and their constant interaction with circulating blood. While not

viewed as classical immune cells, endothelial cells express innate immune receptors, including the Toll-like receptors

(TLRs), which activate intracellular inflammatory pathways mediated through NF-kB and the MAP kinases. TLR agonists,

including LPS and bacterial lipopeptides, directly upregulate microvascular endothelial cell expression of inflammatory

mediators. Intriguingly, TLR activation also modulates microvascular endothelial cell permeability and the expression of

coagulation pathway intermediaries. Microvascular thrombi have been hypothesized to trap microorganisms thereby

limiting the spread of infection. However, dysregulated activation of endothelial inflammatory pathways is also believed to

lead to coagulopathy and increased vascular permeability, which together promote sepsis-induced organ failure. This

article reviews vascular endothelial cell innate immune pathways mediated through the TLRs as they pertain to sepsis,

highlighting links between TLRs and coagulation and permeability pathways, and their role in healthy and pathologic

responses to infection and sepsis.
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Introduction

Endothelial cells line the inner surface of blood vessels
and capillary beds, and serve as the interface between
circulating blood and surrounding tissues. The average
human adult is estimated to contain over 1 trillion endo-
thelial cells that cover a surface area in excess of 1 mil-
lion cm2 and altogether weigh approximately 1 kg.1–4 To
put this vast number of endothelial cells in perspective,
the average human adult is estimated to have roughly
20–50 billion peripheral blood mononuclear cells
(PBMCs) and 1–4 billion monocytes circulating in
their bloodstream.5 Endothelial cells dynamically regu-
late the vascular barrier, modulate vasomotor tone, play
central roles in coagulation and hemostasis, and are crit-
ically involved in the movement of leukocytes between
the bloodstream and extravascular tissues (Figure 1).
Endothelial cells are also increasingly being recognized
as being key active participants in the host’s innate
immune response to infection and injury.6,7

Whereas a great deal is known about the effects of
microorganisms on monocyte and macrophage

inflammatory pathways, substantially less is known
about their effects on endothelial cells, which have not
classically been viewed as immune cells. However, simi-
lar to leukocytes, endothelial cells express innate
immune receptors, including members of the Toll-like
receptor (TLR) family (Figure 2; Table 1),8–38 as well
as NOD-like receptors and RIG-I like receptors.39–42

Engagement of endothelial innate immune receptors
with microbial and host-derived agonists upregulates
the expression of specific cytokines, chemokines and
adhesion molecules, and increases the binding of neutro-
phils to the endothelium.6,10,11,14,17,18,20,26,30–32,34,43–50
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The direct activation of endothelial innate immune path-
ways by TLR2, TLR4 and TLR9 agonists have been
reported to modulate endothelial pathways involved in
permeability and coagulation.8,16,22,26,30,38,46,51–57 The
combination of inflammation, activation of coagulation
pathways and increased vascular permeability may serve
to create a physical barrier that limits the spread of infec-
tion into the bloodstream. The hypothetical concept of
‘hemostatic containment’ postulates that leukocyte
adhesion to vessel walls and microvascular thrombosis
directly obstruct vessels draining sites of infection, and
that tissue edema resulting from increased vascular per-
meability further limits blood outflow by externally com-
pressing vessels.58,59 In contrast to these putative
beneficial functions, the dysregulated activation of
endothelial inflammatory pathways leads to pathologic
coagulopathy with diffuse microvascular thrombosis,
increased leukocyte activation within multiple organs,
and capillary leak leading to intravascular hypovolemia
and edema. These latter dysfunctional endothelial
responses are believed to promote the life-threatening
syndromes of septic shock and sepsis-induced multiple
organ failure.

Although monocytes, macrophages and endothelial
cells all express innate immune receptors and share
many similar inflammatory responses (Table 2), there
are distinct differences between inflammatory pathways
between the two cell types. For example, in response to
treatment with TLR agonists such as LPS or Pam3Cys,
monocytes and macrophages robustly express TNFa
and IL-1b, whereas endothelial cells produce little or
no TNFa or IL-1b.49,60,61 In contrast, similar levels of
IL-6 and IL-8 are induced by TLR agonist treatment of
primary human endothelial cells and mono-
cytes.31,34,49,62,63 A recent report points to divergent
roles for ERK1/2 in the inflammatory activation of

endothelial cells and leukocytes.31 We propose that dif-
ferences between the endothelial and leukocyte innate
immune pathways, and unique aspects of endothelial
activation by innate immune pathways (such as perme-
ability and coagulopathy) might be exploited thera-
peutically to reduce the complications of sepsis, such
as sepsis-induced organ failure and immunosuppres-
sion. However, this will require further elucidation of
the respective roles of endothelial cells and leukocytes
in the complications of sepsis, and the interplay that
exists between these cells and their intracellular path-
ways in an integrated system.

Herein we review vascular endothelial innate
immune pathways as they pertain to sepsis. We will
focus on endothelial cell TLRs, intracellular signaling
pathways, normal and dysregulated endothelial inflam-
matory responses, and immunomodulatory pathways
in the endothelium.

Endothelial innate immune pathways in

sepsis-induced endothelial dysfunction

Sepsis remains a major healthcare problem worldwide,
with continued high morbidity and mortality.64

Currently, sepsis is treated with antimicrobial agents,
localized control of the source of infection with surgery
or drainage, and the supportive care of dysfunctional
or failing systems and organs.65 With the recent
negative outcomes of several Phase 3 clinical
trials, there are currently no approved sepsis-directed
adjuvant therapies.64,66–68 Although roughly half of
patients who succumb to sepsis die of multiple organ
failure, the mechanisms underlying sepsis-induced
organ failure have yet to be fully unraveled, which is
a barrier to developing effective sepsis-directed thera-
pies.69,70 Endothelial dysregulation, coagulopathy with
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Figure 1. Major outputs after endothelial cell TLR pathways are activated. Endothelial cell TLRs engage microbial- and host-derived

factors present within the vascular lumen to initiate inflammation. Activated endothelial cells (1) secrete cytokines and chemokines

and express adhesion molecules that facilitate leukocyte movement between the blood and tissues at sites of infection and injury; (2)

dysregulate coagulation homeostasis by activating the tissue factor (TF) pathway, causing increased levels of factors that induce

thrombosis, and reduced levels of factors involved in clot breakdown (fibrinolysis); and (3) increase permeability of the endothelium

which results in the movement of plasma fluid and proteins into tissues.
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microvascular thrombosis, excessive vascular leak and
increased leukocyte activation in organs lie at the heart
of tissue injury and organ failure during sepsis. These
interconnected processes occur within the microvascu-
lature, and involve multiple cell types.

Microvascular endothelial cells are critically
involved in the pathogenesis of sepsis-induced organ
failure by virtue of their participation in coagulation,
the vascular barrier, and neutrophil activation and traf-
ficking.71,72 Because of their ubiquitous distribution
throughout all vascular beds, endothelial cells partici-
pate in early and delayed inflammatory responses in
sepsis. During the early phases of sepsis, endothelial
cells are directly activated by microbial factors such
as LPS and bacterial lipoproteins. Subsequently,
endogenous inflammatory agonists that are newly

synthesized or released by activated leukocytes and
endothelial cells or by injured cells, such as IL-1b,
TNFa, HMGB1, NO and pro-inflammatory prosta-
noids, further promote endothelial dysfunction, either
on their own or in synergy with circulating microbial
TLR agonists.

Sepsis-induced dysregulation of the balance of
coagulation and fibrinolysis (clot breakdown)
(Figure 1), leads to coagulopathy and, at the extreme,
to the development of disseminated intravascular
coagulation (DIC).73 Even in the absence of overt
DIC, diffuse microvascular thrombosis is believed to
reduce blood flow and to promote organ injury.
Despite recent negative human trials using recombinant
activated protein C and tissue factor pathway inhibitor
the pathologic coagulopathy of sepsis remains a focus
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Figure 2. Vascular endothelial cell TLR pathways. After inflammatory agonists bind their cognate TLR receptors on endothelial cells,

TLR dimers associate with MyD88 and/or TRIF adaptor proteins and activate downstream signaling via MAPK family members (i.e.

p38, JNK and ERK5) and NF-kB to modulate pathways involved in inflammation, coagulation and vascular permeability. Of note, ERK5

has recently been shown to promote TLR signaling outcomes in endothelial cells, while ERK1/2 differentially regulates TLR signaling

outcomes in endothelial cells and leukocytes.
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Table 1. TLR expression in different endothelial cell types.

Human Endothelial Cells Murine Endothelial Cells

Large vessel Micro-vascular Lymphatic Immortalized Primary Immortalized References

TLR1 + + " + +/� ! + + Humans8,10–12,16,20,25,34

Mm25,37

TLR2 +/� " + " + +/� " + " + Hs8,10–16,20,23–25,30,31,34

Mm25,28,33,34,36,37

TLR3 +/� " + " + + " + " + Hs8,10–12,16,18,20,25–27

Mm25,36,37

TLR4 + " + "! + + "! + " + Hs8,10–16,20,23–25,29,34,35

Mm19,22,25,28,34,37,172

TLR5 +/� ! + #! + +/� ! + + Hs8,10–12,16,17,20

Mm25,37

TLR6 + + ! + + # + + Hs8,11,12,16,18,20,25,34

Mm25,37

TLR7 +/� � D � � D + " + Hs8,11,12,16,18,20,25

Mm25,36,37

TLR8 +/� � D � � D + " � Hs8,11,12,16,20,25

Mm25,36,37

TLR9 +/� + ! + +/� ! + + Hs8,11,12,16,20,25,32

Mm9,25,37

TLR10 + � D � +/� ! nd nd Hs8,11,16,20,25

TLR11 nd nd nd nd

TLR12 nd nd nd nd

TLR13 nd nd nd nd + Mm21

+: expressed at baseline; -: not expressed at baseline; ": increased; #: decreased; !: unchanged; D: de novo expression after stimulation with

inflammatory agonists (e.g. LPS, Pam3Cys, TNFa, IFNg, IL-1b, or histamine); nd: not detected; Hs: Homo sapiens; Mm: Mus musculus.

Table 2. Responses of endothelial cells and leukocytes to TLR stimulation.

Endothelial cells Leukocytes References

Cytokines Increased expression: IFN-b, IL-1a,

IL-1b,* IL-6, IL-10, IL-28, IL-29,

G-CSF, GM-CSF, TNF-a*

Increased expression: G-CSF, IL-

1a, IL-1b, IL-2, IL-6, IL-9, IL10,

IL-12 (p35, p40, p70), IL-13, IL-

15, IFN-a, IFN-b, IFN-g, TGF-b1,

TNF-a

Endothelial

cells11,14,18,20,26,30,31,34,43-47,49

Leukocytes27,106,221,222,306–316

Chemokines Increased expression: CCL2/

MCP1, CCL5/RANTES, CCL20,

CCL21, CXCL8/IL-8, CXCL9,

CXCL10/IP-10, CXCL11,

CXCL12, CXCL12

Increased expression: CCL2/MCP-

1, CCL3/MIP-1a, CCL4/MIP-1b,

CCL5/RANTES, CCL7/MCP3,

CXCL1/KC, CXCL8/IL-8,

CXCL10/IP-10, MIF

Endothelial cells11,20,30,34,45,48,49

Leukocytes106,221,306,310,312,315,317

Adhesion

molecules

Increased expression: E-selectin,

ICAM-1, VCAM-1

Increased expression: CD11b,

CD18, ICAM-1

Decreased expression: L-selectin

Endothelial cells11,17,20,31,32,45

Leukocytes221,312,314,318

Coagulation

intermediaries

Increased expression: Fibrin, PAI-1,

PAI-2, tissue factor, u-Pa, vWF

Decreased expression: TFPI, tPa

Release: Weibel–Palade bodies

Increased expression: tissue factor Endothelial

cells22,26,30,31,38,46,51,53,54,57

Leukocytes
319,320

Permeability

factors

Increased expression: endothelin-

1, iNOS, VEGF-c,

Decreased expression: claudin-5,

occludin

Increased expression: angiopoetin-

II, iNOS, NO

Endothelial cells8,16,56

Leukocytes311,313,321

*Minimal to no induction of TNFa and IL-1b expression reported in human endothelial cells.
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of research on development sepsis therapeutics.67,74

Higher plasma levels of plasminogen activator inhibi-
tor-1 (PAI-1) correlate with increased rates of organ
failure and death in patients with sepsis.75 PAI-1 inhi-
bits fibrinolysis, thereby facilitating the persistence of
microvascular thrombi, and the pro-coagulants tissue
factor and thrombin are activated in sepsis. The direct
activation of endothelial TLR2, TLR4 and TLR9 all
modulate endothelial expression of coagulation path-
way mediators in a pattern that is consistent with that
observed in humans with sepsis (Table 2), suggesting
that the activation of endothelial TLRs promotes
sepsis-induced coagulopathy.22,30,38,46,51–54,57

Sepsis causes increased endothelial permeability,
leading to fluid and protein leakage across the vascular
wall with resultant intravascular hypovolemia with
reduced tissue perfusion, as well as tissue edema. The
mechanisms by which sepsis induces vascular perme-
ability are complex, and most likely involve both
the activation of endothelial cells by microbial TLR
agonists and by host inflammatory mediators such as
TNF-a.8,16,30,55,76,77 Studies suggest that activated neu-
trophils also independently promote endothelial dys-
function and contribute to barrier dysfunction.78–80

The direct activation of endothelial TLR2 or TLR4
by bacterial lipopeptides or LPS, respectively, increases
endothelial permeability.8,16,30,55 In contrast, TLR9
agonists induce endothelial permeability in a neutro-
phil-dependent fashion.81 Together, and perhaps syner-
gistically, host and microbial inflammatory agonists
induce paracellular permeability.55,76 LPS has been
reported to TLR4-dependently induce paracellular per-
meability of human lung microvascular endothelial
cells via TRAF6 and SRC family kinase-mediated
tyrosine phosphorylation of zonula adherens proteins,
including VE-cadherin, g-catenin and p120ctn.55

As outlined above endothelial cells actively contrib-
ute to the pathophysiology of sepsis. The constellation
of intravascular hypovolemia, microvascular throm-
bosis and vasodilatation, tissue edema and extravasa-
tion of activated neutrophils into tissues leads to organ
injury and ultimately multiple organ failure. Some still
unanswered fundamental questions about the endothe-
lium in sepsis include whether endothelial innate
immune pathway activation directly promotes, or con-
versely protects against, sepsis-induced multiple organ
failure, and the relative and integrated roles of endo-
thelial and leukocyte innate immune pathways in sepsis
outcomes.

Innate immune pathways and the healthy
endothelial response to infection

Long underappreciated is that endothelial cells play a
key role in sensing microorganisms and promoting
early innate immune responses in sepsis.19,82 Because
of their location, endothelial cells are among the first

cell types to be exposed to circulating microbes and
microbial toxins such as LPS. Indeed, the activation
of endothelial TLRs upregulates endothelial cell secre-
tion of cytokines and chemokines, including IL-6,
CXCL8/IL-8 and CCL2/MCP-1, and upregulates
endothelial expression of adhesion molecules, such as
E/P-selectin, vascular cell adhesion molecule (VCAM)-
1, and intercellular adhesion molecule (ICAM)-1,
which facilitate leukocyte adherence to the endothelium
and promote transendothelial migration into surround-
ing tissues (Figure 1; Table 2).6,30,49,50 Upon their
release from endothelial cells, cytokines play key roles
in leukocyte production, activation and survival.49,83,84

Furthermore, secreted chemokines, such as IL-8 and
CCL2 form intravascular gradients on the surface of
the endothelium near the site of inflammation that
direct neutrophils and inflammatory monocytes,
respectively, to the site of infection or injury.85–87 In
addition to acting as chemoattractants, IL-8 and
CCL2 also activate signaling pathways in leuko-
cytes that lead to conformational changes of b2 - and
a4-containing integrins to higher affinity states,
which further promotes their adherence to the
endothelium.88–90

At sites of endothelial cell activation, E- and
P-selectins mediate leukocyte capture and rolling
through relatively weak associations with molecules
such as P-selectin glycoprotein 1 (PSGL1) and L-selec-
tin present on the leukocyte cell surface. These associ-
ations also increase integrin affinity for its substrate,
which facilitates a more robust attachment of leuko-
cytes and their eventual arrest on the endothelium, des-
pite the shear forces of ongoing blood flow.91–93

Resident/patrolling monocytes utilize the integrin
LFA-1/aLb2 and CX3CR1 to crawl along the endothe-
lium, while inflammatory monocytes arrest via an asso-
ciation between the integrin VLA-4/a4b1 on their
surface and VCAM-1 on the surface of activated endo-
thelium.94–97 Neutrophils, however, arrest via a stable
association between the integrins LFA-1/aLb2 or Mac-
1/aMb2 on their surface and ICAM-1.7 Additionally,
neutrophil and endothelial sialidase activity has been
reported to desialylate the endothelial cell surface,
which leads to hyperadhesiveness of neutrophils to
the endothelium and facilitates neutrophil diapedesis.
This sialidase-mediated desialylation is independent of
protein upregulation or the adhesion molecules, and is
believed to cause the rapid and early amplification of
neutrophil-mediated host responses.98,99 After their
arrest along the vascular endothelium, leukocytes
migrate out of the vasculature to sites of infection
and inflammation using para- or transcellular routes.100

Once leukocytes extravasate to infected or injured
tissues, they can eliminate pathogens or necrotic cellu-
lar debris through phagocytosis.101 Neutrophils, which
are the first leukocytes to accumulate in sites of infec-
tion, generate neutrophil extracellular traps (NETs),
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which directly bind, kill and prevent the spread of
invading microorganisms.102–104 Neutrophils can also
release chemokines directed at the recruitment of
other leukocytes, including macrophages and dendritic
cells (DCs), such as CCL4, alarmins, such as cathepsin
G, the antimicrobial peptide LL-37 and defensins.102,105

Because of their specialized ability to clear pathogens
and/or present antigens to lymphocytes, leukocytes that
are activated by TLR stimulation express a distinct
series of effector molecules, dominated by cytokines
such as IL-12p70, in order to initiate activation of the
adaptive immune system (Table 2).106,107

In addition to their role in leukocyte activation and
trafficking, endothelial cells also respond to infections
and sterile injury by regulating hemostasis.108

Hemostasis is a finely tuned balance of coagulation,
anticoagulation and fibrinolysis. The activation of
endothelial TLRs causes a shift toward a pro-
coagulant/pro-thrombotic state that promotes fibrin
clot formation and reduces clot breakdown
(Figure 1).30,109 Strong links between inflammation
and coagulation are evolutionarily conserved, suggest-
ing a survival advantage to this linkage.58,59 For exam-
ple, horseshoe crabs (Limulus polyphemus) are ancient
arthropods that have an open circulatory system, with
the hemocyte as their only blood element.110 When
activated by pathogens, Limulus hemocytes induce clot-
ting which sequesters an infected area from the remain-
der of its body, thereby containing the infection. The
link between inflammation and clotting is the basis of
the Limulus amoebocyte lysate (LAL) assay that is used
to quantify LPS.111 Similarly to the ancient horseshoe
crab, activation of coagulation may serve a beneficial
role in humans by promoting the formation and per-
sistence of thrombi, which help to physically contain a
microbial threat by trapping microbes in the fibrin clots
themselves.112–117 In addition, activation of coagulation
may facilitate antibacterial defenses, as suggested by
reports that the binding of leukocytes to fibrin-immo-
bilized pathogens via integrin Mac-1/aMb2 promotes
bacterial clearance.118,119 Furthermore, coagulation
factors can act as chemotactic agents and the presence
of thrombi restricts blood flow, which together can
increase the likelihood of recruiting circulating leuko-
cytes to inflamed tissues.120–123

Because of their proximity to smooth muscle cells,
endothelial cells also control vasomotor tone.124 After
TLR activation, endothelial cells increase the expres-
sion of vasodilators, such as NO (Table 2), which
decreases blood pressure and has variable effects on
tissue blood flow.125 The vasodilation and concurrent
downregulation of junctional proteins cause the expan-
sion of the gaps between endothelial cells, which allows
fluids and small molecules to leak into the extravascular
compartment.126–128 The increased endothelial perme-
ability also enhances the ability of leukocytes to adhere
to the endothelium and extravasate into surrounding

tissues to initiate immune activation and repair
pathways.126,129–131

Importantly, these primary effects of endothelial
TLR activation work in interconnected feedback
loops that themselves can amplify endothelial cell
inflammatory responses. For example, cytokines
released by endothelial cells can regulate the expression
of coagulation factors, and coagulation factors can, in
turn, modulate the expression of cytokines and adhe-
sion molecules.132–136 Factors involved in coagulation
and fibrinolysis, such as PAI-1 and tissue factor, also
affect vascular permeability pathways.137–139 Thus, the
inflammatory pathways of endothelial cells are intri-
cately structured and are crucial to the host’s response
to infection.

Endothelial cells as targets and reservoirs

of bacteria

While endothelial cells are known targets of several
bacteria, including Porphyromonas gingivalis,
Rickettsia rickettsii, Staphylococcus aureus and
Bartonella,140–143 limited work has focused on under-
standing mechanisms by which endothelial cells them-
selves clear intracellular bacteria. Murine endothelial
cells have been reported to clear Rickettsia conorii via
the NO production and the induction of autophagy.144

Studies with HUVECs suggest that the clearance of
Rickettsia via NO is dependent upon the specific cyto-
kine environment of the endothelium and requires the
production of hydrogen peroxide.145 Although these
reports indicate that endothelial cells are capable of
targeting and degrading intracellular pathogens, intra-
cellular survival of S. aureus has been reported in
human endothelial cells.146–148 In fact, endothelial
cells that are infected with S. aureus are believed to
serve as a reservoir for recurrent S. aureus bacter-
emia.146,149 In particular, small colony variants of S.
aureus can survive inside of endothelial cells for pro-
longed periods, and persist intracellularly during infec-
tion.150,151 These latter studies with S. aureus support
the basic hypothesis that microorganisms dwell quies-
cently in endothelial cells evading host immune
responses, and causing recurrent bacteremia and the
development of metastatic tissue foci of infection.

Endothelial cell TLRs

The TLRs were first identified based on their sequence
homology with the Drosophila Toll protein. Toll was
originally characterized as a gene necessary for proper
development of dorsal–ventral polarity in the
Drosophila embryo, but subsequently was found to
be indispensible for the antifungal immune
response.152–155 To date, 10 TLRs have been identified
in humans (TLRs 1–10) and 12 in mice (TLRs 1–9
and 11–13). Tlr10 appears nonfunctional in a variety
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of mouse strains, owing to a retroviral insertion, but
may be functional in rats, while the gene encoding
TLR11 in humans contains premature stop codons,
and orthologs for Tlr12 and Tlr13 have not been iden-
tified in EST database screens.156–158 Most of the
TLRs form homodimers, with the exceptions of
TLR2, which forms heterodimers with either TLR1
or TLR6 and TLR10, which has been reported to
form heterodimers with TLR1 and TLR2.156,159 The
TLRs are expressed in intracellular compartments or
at the cell surface in a variety of cell types and each
member binds a conserved subset of PAMPs derived
from viral [i.e. dsRNA (TLR3) and ssRNA (TLR7/8)],
fungal [i.e. zymosan (TLR2)] or bacterial [i.e. lipopro-
teins (TLR1/2/6), LPS (TLR4), flagellin (TLR5) and
CpG-DNA (TLR9)] pathogens.160–170 TLR2, TLR4
and TLR9 also bind several endogenous damage-
associated molecule patterns (DAMPs) such as heat-
shock proteins, hyaluronan and versican, HMGB1
and heparin sulfate or mitochondrial DNA.171

Binding of TLR agonists to their cognate TLR
induces TLR dimerization, and activation of down-
stream signaling pathways that can lead to substan-
tially different outcomes depending on the cell type.
Here we will focus on TLR2, TLR4 and TLR9, which
have been most extensively studied in endothelial cells
and are the principal TLRs that are known to play
important roles in bacterial sepsis.

Endothelial cells have been reported to express all of
the TLRs with the possible exception of TLR8
(Table 1).8–37,172 Compared with leukocytes endothelial
cells express relatively low levels of most of the TLRs at
baseline, except for TLR3 and TLR4, which are
robustly expressed in HUVECs and human micro-
vascular endothelial cells (HMVECs) from multiple
vascular beds. Studies suggest that in contrast to their
surface expression in monocytes, in endothelial cells
TLR2 and TLR4 are also localized intracellularly.31,173

Figure 3 shows data from our laboratory on the expres-
sion of TLR transcripts in different endothelial cells,
including HUVEC, human coronary artery endothelial
cells (HCAEC), HMVEC-brain, HMVEC-liver and
HMVEC-lung, as well as in primary human monocytes,
which we have included to demonstrate the relative
levels of the different TLRs in endothelial cells and
monocytes. Although TLR2 is expressed at low levels
at baseline, we and others have found that treatment of
human endothelial cells with microbial and host factors
(i.e. histamine, HMGB1, Pam3Cys, MALP-2, TNFa,
IFNg, LPS and IL-1b) induces a robust upregulation of
TLR2.14,15,28,31,33,173–175 This induction of TLR2
expression in endothelial cells has not been observed
in human leukocytes,176 which suggests that the tran-
scription of TLR2 is regulated differently in human
endothelial cells and leukocytes.

Despite reasonably low baseline TLR2 expression,
bacterial lipopeptide and lipoprotein TLR2 agonists

strongly activate human endothelial cells. For
example, treatment with bacterial lipopeptides TLR2-
dependently activates NF-kB and induces the phos-
phorylation of p38 MAPK, JNK and ERK5 at
30min in primary human lung HMVECs and
HUVECs, and upregulates tissue factor levels in
HUVEC lysates as early as 1 h.30,31 We hypothesize
that endothelial cells dynamically express TLR2 in
order to calibrate the host’s response to different
levels of infectious threats or injury. Because TLR2
recognizes a broad range of microbial and host inflam-
matory agonists, the low basal expression of TLR2 may
serve to limit excessive systemic endothelial activation
during minor infections or the transient episodes of
bacteremia that occur during normal daily life when
there is a break in mucosal or skin integrity. The upre-
gulation of endothelial TLR2 after exposure to inflam-
matory agonists may promote a more robust
endothelial inflammatory response that serves both to
facilitate and augment leukocyte responses, and regu-
late endothelial permeability and localized coagulation
pathways. Furthermore, while TLR2 is primarily loca-
lized at the plasma membrane in leukocytes, we have
reported the intracellular localization of TLR2 in pri-
mary human endothelial cells.31 This suggests that simi-
lar to TLR4 and TLR9 agonists, bacterial lipopeptides
may have to be first internalized to activate endothelial
TLR2.32,173 Alternately, intracellularly localized
TLR2 may be necessary to recognize intracellular
pathogens.140,177,178

In addition to being critical in inflammatory
responses to microbial factors, activation of TLRs
by endogenous inflammatory agonists exacerbates
endothelial dysfunction and promotes sepsis-induced
organ injury. Endogenous inflammatory agonists are
released by activated leukocytes and endothelial cells,
and by cells that have undergone ischemia reperfu-
sion (IR) injury resulting from the tissue hypoperfu-
sion. IR injury complicates sepsis, as well as a variety
of sterile inflammatory processes that also cause
organ injury such as trauma, hemorrhage, cardiac
arrest and organ transplantation. TLR2, TLR4 and
TLR9 have each been implicated in IR injury, and
endogenous TLR4 agonists have been reported to
circulate in sepsis and other forms of IR
injury.179–188 The specific role of endothelial TLR4
in sensing endogenous mediators and promoting
sepsis-induced organ injury has not been clearly
defined, but multiple host factors, including
HMGB1, hyaluronan, HSP70 and S100A8 have
been found to circulate in sepsis and TLR4-
dependently induce the inflammatory activation of
endothelial cells.189–193 These studies support the
widely held belief that the activation of TLR4 by
circulating host mediators serves to generate, amplify
and/or perpetuate inflammation, and to promote
sepsis-induced organ failure.
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Figure 3. Human endothelial cells from different endothelial cell niches express comparable levels of TLR mRNA transcripts. Human

cells were cultured, lysed and mRNA isolated in order to compare the relative expression of TLR gene transcripts in different

endothelial cell populations compared with human monocytes at baseline. (A) HUVEC (passage 2, multiple donors; Lonza), (B)

HCAEC (passage 4, female donor; Lonza, Walkersviille, Maryland, US), (C) HMVEC-brain (passage 4, unknown donor sex; Cell

Sciences, Canton, Massachusetts, US), (D) HMVEC-liver (passage 4, unknown donor gender; Cell Sciences), (E) HMVEC-lung (passage

4, two female donors; Lonza), were grown in either EGM-2 or EGM-2 MV media (Lonza), incubated at 37�C under humidified 5% CO2

and lysed with Trizol (Invitrogen, Carlsbad, CA, USA) upon confluency. (F) Primary human monocytes were isolated from PBMCs by

gradient centrifugation using Lymphoprep (Axis-Shield, Oslo, Norway) followed by purification on magnetic columns using MACS

CD14+ beads (Miltenyi Biotech Inc, San Diego, California, US), and immediately lysed in Trizol. Heparinized whole blood was collected

by venipuncture from a healthy human volunteer. Three biological replicates were analyzed for each donor. Specific gene expression

assays and the manufacturer’s suggested assay reagents were purchased from Applied Biosystems (Foster City, CA, USA). mRNA

concentrations were determined with a ND-1000 (NanoDrop;Thermo Fisher Scientific, Grand Island, New York, US) and mRNA was

reverse transcribed to cDNA using the High Capacity RNA-to-cDNA Kit using 2mg of mRNA per reaction (Invitrogen). An input of

10 ng cDNA in 10ml total reaction volume per well containing TaqMan Fast Advanced Master Mix (Applied Biosystems) was used in all

qPCR experiments and qPCR was performed using the StepOnePlus System (Applied Biosystems). Run method: PCR activation at

95�C for 20 s was followed by 40 cycles of 1 s at 95�C and 20 s at 60�C. The mean Ct value for HPRT1 and GUSB was used as the

reference in calculating the �Ct values for each biological replicate. The data analysis was performed using the 2 -��Ct method;

however, for multiple donor assays, the data were corrected using log transformation, mean centering and auto scaling to ensure

appropriate scaling between biological replicates.322,323 The relative quantification (RQ) values shown in the graphs are relative to

lowest detectable expressing TLR gene for each cell type. When gene expression was not detected in more than half of the technical

replicates, it was defined as not expressed (nde: not detectably expressed). The methods of calculation utilized assume an amplification

efficiency of 100% between successive cycles. Note: in our previously published manuscript, TLR expression analysis in HUVEC was

performed using 2.5 ng cDNA, and therefore the lowest expressing TLRs were not detected.31
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Endothelial TLR-dependent signaling

The majority of research on TLR signaling pathways is
derived from studies using leukocytes. In both leuko-
cytes and endothelial cells, homodimerization of TLR4
or TLR9, and heterodimerization of TLR2 with either
TLR1 or TLR6, initiates intracellular signaling cas-
cades that ultimately lead to the activation of the
MAPK family members, and the transcription factor
NF-kB.194,195 TLR4 associates with the adapter protein
MD2 in order to recognize LPS and initiate down-
stream signaling.196,197

TLR4 has been reported to function intracellu-
larly in endothelial cells.173 LPS binding protein
catalyzes the formation of LPS–CD14 complexes
and their uptake and delivery to intracellular
TLR4–MD2.173 This multiprotein complex, which
includes soluble CD14 (sCD14), is required for the
activation of endothelial cells by low concentrations
of LPS (0.1–10.0 ng/ml).173 CD14 is necessary for the
activation of endothelial cells by low and moderate
LPS concentrations, but it is not required for acti-
vation by high LPS concentrations (� 1 mg/ml).198

While studies suggest that sCD14 may be relatively
more important than membrane CD14 (mCD14) in
endothelial activation by LPS, low-dose LPS has
been reported to require both sCD14 and mCD14,
suggesting that the two forms of CD14 differentially
regulate LPS-induced activation of endothelial
cells.173,198,199 Finally, while at high concentrations
of LPS neither sCD14 nor mCD14 is required for
the induction of E-selectin in endothelial cells,
mCD14 is necessary for MyD88-independent activa-
tion of IFN-b.198 Variability in the endothelial cell
expression of CD14 between studies may have
resulted from the loss of expression of CD14 with
the passage of endothelial cells, as suggested by a
report that CD14 expression becomes undetectable
in HUVECs at passage three.199

With the notable exception of TLR3, TLR signaling
originates with the association of the cytosolic Toll-
interleukin-1 receptor (TIR) domain of the TLRs and
the TIR domain-containing adapter MyD88.200–204

TLR3 and TLR4 TIR domains can also associate
with TIR-domain-containing adapter-inducing inter-
feron-b (TRIF/TICAM1) to activate the transcription
factor IRF3.101,205,206 TLR2 and TLR4 also utilize the
adaptor TIR domain-containing adapter protein
[TIRAP or MyD88-adaptor-like (MAL)], which is
required to bridge MyD88 to the cytoplasmic domains
of TLR2 and TLR4.206–210 The pathways that lead to
the activation of MAPKs and NF-kB downstream of
TLR2, TLR4 and TLR9 have been extensively
described elsewhere for leukocytes.101,211,212 Notably
endothelial cells, like leukocytes, express the intermedi-
ary TLR signaling components that are required for
activation of the MAPKs and NF-kB.

NF-�B

NF-kB activity is centrally involved in inflammatory
gene expression in endothelial cells, including those
induced by TLR2, TLR4 and TLR9.9,15,31,32,50,213,214

NF-kB is also necessary for the upregulation of
TLR2 observed in endothelial cells activated with bac-
terial lipoprotein or LPS.15,31 While TLR4 and TLR9
agonists strongly activate NF-kB in human endothelial
cells, we found that TLR2 agonists induce a less robust
activation of NF-kB, especially in comparison to
human leukocytes.31 Interestingly, however, the
TLR2-induced activation of NF-kB has a prolonged
duration, whereas in monocytes the kinetics of NF-kB
activation is strong but relatively short.31 Conceivably,
these differences in NF-kB activation profiles in human
endothelial cells and monocytes are responsible for the
differences observed in downstream inflammatory out-
comes in these two cell types.

MAPKs

The conventional MAPK family members include p38-
MAPK (a, b, g and d), c-Jun N-terminal kinase (JNK;
1, 2 and 3), extracellular-signal-regulated kinase
(ERK)-1/2 and ERK5.215 These serine/threonine kin-
ases are activated by upstream MAPK kinases
(MAP2Ks), which are themselves activated by
MAP2K kinases (MAP3Ks). The MAPKs, and their
downstream MAPK-activated protein kinases
(MAPKAPKs), can induce inflammatory gene expres-
sion by three distinct mechanisms: (1) directly influen-
cing the activity of transcription factors, (2) regulating
proteins involved in transcriptional and translational
control, including chromatin reorganization, and (3)
modulating the integrity of protein complexes.215–227

Furthermore, substantial crosstalk between the NF-
kB and the MAPK pathways may exist in some cell
types.228–234 Treatment with the TLR2 agonist
Pam3Cys has been reported to activate p38-MAPK,
JNK and ERK5, but not ERK1/2 in HUVECs, and
p38-MAPK, JNK and ERK1/2 in HMVECs.31,235

Treatment with the TLR4 agonist LPS has been
reported to activate p38-MAPK and JNK in
HUVECs, and p38-MAPK, JNK and ERK1/2 in
HMVECs.214,235,236 Finally, treatment with the TLR9
agonist CpG DNA has been reported to activate p38-
MAPK, but not ERK1/2, in mouse lung endothelial
cells.9 Because of the importance of the conventional
MAPKs in endothelial cell signaling, and because there
are some apparent differences in the role of the ERKs
in endothelial cells and leukocytes, each is reviewed in
more detail below.

Both p38-MAPK and JNK have been studied exten-
sively and play critical roles in multiple cellular pro-
cesses, including inflammation. p38-MAPK can
promote gene and protein expression in several ways:
(1) regulating activator protein (AP)-1 transcription
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factors (e.g. members of the ATF, Jun and Fos
families); (2) stabilizing mRNA; (3) influencing
NF-kB activity; (4) modulating gene expression by reg-
ulating chromatin modifiers and remodelers; and (5)
influencing protein translation.215,223,224,228,237–244 The
primary role of JNK activation downstream of TLRs
is to regulate transcription factors such as ATF family
members (e.g. ATF2) and JUN family members (e.g. c-
Jun).215 In conjunction with c-Fos, these transcription
factors form AP-1 heterodimers that promote inflam-
mation. However, whether specific AP-1 dimers either
positively or negatively regulate gene transcription is
dependent upon may factors, including the proteins
levels of the dimerization partners, the composition of
the AP-1 dimers, various post-translational modifica-
tions and the availability of certain accessory
proteins.245

The role of ERK1/2 downstream of TLRs is
complex. Evidence suggests that ERK1/2 generally
promote pro-inflammatory responses in leukocytes
but negatively regulate inflammation in endothelial
cells.31,101,246 Studies to define the role of ERK1/2
have been hampered by the fact that several com-
monly used pharmacological inhibitors of MEK1, the
upstream kinase of ERK1/2, inhibit the activity of both
MEK1 and MEK5, the upstream kinase of ERK5 [e.g.
PD98059, U0126 or PD184352 (> 1 mM)].247–251

Therefore, it is not always clear whether the observed
outcomes are due to the loss of ERK1/2 or ERK5
kinase activity. We observe that inhibition of endothe-
lial MEK1 (PD184352;< 1 mM) induces the upregula-
tion of TLR2 even in the absence of TLR agonists, and
augments TLR2-dependent expression of TLR2, PAI-1
and inflammatory proteins (i.e. IL-6, GM-CSF and G-
CSF) in endothelial cells.31 The mechanism by which
MEK1 negatively regulates TLR2 signaling in endothe-
lial cells is currently not known.

ERK5 is a recently identified mediator of the inflam-
matory response, but the signaling pathways that lead
to the activation of ERK5 downstream of TLRs are not
known. Several reports suggest ERK5 has an anti-
inflammatory role,252–257 while others, including ours,
have reported a pro-inflammatory role in a variety
of cell types, including downstream of TLRs in endo-
thelial cells.31,258–266 It is possible that blood flow
conditions dictate whether ERK5 serves a pro- vs.
anti-inflammatory role in endothelial cells. For exam-
ple, under normal physiologic conditions where blood
flow is laminar ERK5 protects against vascular inflam-
mation, whereas during sepsis and tissue injury/distress
where there are areas of decreased and non-laminar
blood flow, ERK5 promotes inflammation. In support
of this concept is the finding that the small ubiquitin-
like modifier (SUMO)-ylation of ERK5 promotes
inflammatory pathways under conditions of disrupted
laminar flow, which points to the possibility that post-
translational modifications of ERK5 may switch

its function from anti- to pro-inflammatory.253

Furthermore, ERK5 may downregulate NF-kB activity
through the expression of Krüppel-like factor 2
(KLF2), which has been proposed to have anti-
inflammatory properties in healthy endothelial cells
under laminar flow but not in areas of compromised
blood flow.267–272 Further study is required to fully
understand the mechanism of ERK5 inflammatory
pathway regulation downstream of endothelial TLRs.

Immune-modulating pathways in the
endothelium

Upon TLR activation, negative feedback loops are acti-
vated that initially moderate the inflammatory
response, and eventually return TLR signaling path-
ways to homeostasis. Many mediators and pathways
that negatively regulate TLR signaling have been iden-
tified in myeloid cells but their role in negatively regu-
lating endothelial TLR signaling has not been
established.273 Several mechanisms are plausible in
endothelial cells, including (1) the degradation of
TLR signaling intermediaries (e.g. via SOCS-1); (2)
the disruption of protein associations (e.g. via A20 or
other DUBs); (3) sequestration of TLR signaling com-
ponents (e.g. via ST2); (4) the inactivation of the
MAPKs [e.g. via dual specificity phosphatases
(DUSPs)]; (5) the synthesis of inhibitory proteins (e.g.
IkBs, RelB and IkBNS); or (6) the silencing of signaling
molecules by microRNAs (e.g. miR-146 a).273–276 There
is also accumulating evidence that ERK1/2 activates
negative feedback pathways that help terminate
innate immune signaling pathways. For example, in
leukocytes, treatment with LPS activates MSK1/2
downstream of ERK1/2, which leads upregulated
expression and activation of DUSP-1 (MSK-1), which
negatively regulate the activation of both p38-MAPK
and JNK.212,277–279 Interestingly, the treatment of
macrophages deficient in either MSK1/2 or DUSP1
with various TLR agonists, including bacterial lipopep-
tide, results in an augmented expression of pro-inflam-
matory cytokines, which is similar to our observations
in TLR2 agonist activated endothelial cells treated with
MEK1/2 inhibitor.31,277,280 This suggests ERK1/2 may
play an important role in negative feedback loops TLR
signaling pathways in endothelial cells.

Maladaptive responses in sepsis and tissue injury
are, in part, caused by a failure to shift to the pro-
resolving phase of inflammation. It is now recognized
that the resolution of inflammation is an active process
that is promoted by pro-resolving lipid mediators.281

The group of specialized pro-resolving lipid mediators
(SPMs), including lipoxins, resolvins, protectins and
maresins, reduce inflammation and restore homeostasis
to an infected or injured area by preventing the influx of
more neutrophils, stimulating efferocytosis, and pro-
moting the clearance of cellular debris by resolving
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macrophages.281–283 SPMs promote inflammatory reso-
lution by suppressing NF-kB activation, in part via
PPAR-g.284 Because SPMs do not seem to compromise
host defense, inducers of SPM pathways are being con-
sidered for inflammatory therapeutics.281 Additionally,
while some prostaglandins (PGs) are pro-inflammatory,
others promote the resolution of inflammation.
For example, PGD2 upregulates IL-10 release via the
receptor D prostanoid receptor 1 (DP1).281,282,285

Furthermore, 15-deoxy-�12,14-PGJ2 (15 d-PGJ2), the
non-enzymatic metabolite of PGD2, promotes inflam-
matory resolution through the direct inhibition of IkB
kinase, and modification of the DNA-binding domains
of NF-kB subunits, and similar to SPMs, via PPAR-g
mediated suppression of NF-kB activation.281,286–288

The majority of research has analyzed the effects of
lipid mediators on leukocyte function, but there are
indications that lipid mediators also promote the reso-
lution of endothelial inflammation. For example,
Resolvin D2 (RvD2) stimulates the production of pros-
tacyclin and NO by endothelial cells, both of which
have vasoprotective effects.289 In fact RvD2 was
recently found to promote the resolution of acute
inflammation and organ protection through the G-pro-
tein coupled receptor GPR18, which is expressed in
human vascular endothelial cells.290,291 Additionally,
PGD2 and 15 d-PGJ2 have been shown to reduce the
inflammatory activation of endothelial cells during the
resolution phase of the inflammatory response.292–299

Finally, recent studies suggest that another group of
arachidonic acid-based lipids, the endocannabinoids,
also have immunomodulatory activity.290,300,301 The
endocannabinoids are ligands for cannabinoid recep-
tors 1 and 2 (CB1R and CB2R) and the transient recep-
tor potential channel V1 (TRPV1). Activation of
CB2R, which is robustly expressed by leukocytes, has
been reported to dampen the inflammatory response to
infection.302–305 Notably, human endothelial cells
express CB1R and TRPV1 at baseline, and CB2R
during acute inflammatory events.290 We recently dis-
covered that the endocannabinoid N-arachidonoyl
dopamine (NADA) modulates the TLR2- and TLR4-
dependent inflammatory activation of human micro-
vascular endothelial cells via CB1R, CB2R and
TRPV1.290 We speculate that, similar to the SPMs,
NADA may also downregulate endothelial inflamma-
tion via the PG pathways and reduced NF-kB activa-
tion. Together, these reports suggest that lipid
mediators may be important, overlooked immunomo-
dulators of endothelial cells that require further study.

Summary

Under optimal conditions the endothelium contributes
to beneficial host responses during infection. However,
under more pathologic conditions, the unbridled or
dysregulated activation of endothelial inflammatory

pathways causes profound endothelial dysfunction
with consequent shock and organ failure. Endothelial
cells regulate vascular homeostasis and are critically
involved in the host’s response to sepsis and to the
development of multiple organ failure. Endothelial
cells express innate immune receptors and signaling
pathways, and are directly activated by TLR agonists.
Although endothelial cells have long been known to
produce cytokines and chemokines, and to facilitate
leukocyte trafficking to tissues, they are underappre-
ciated as significant contributors to the host’s immune
response to infection. Interestingly, cultured primary
human endothelial cells and monocytes produce com-
parable levels of IL-6 and IL-8 per cell when exposed to
TLR agonists such as LPS or bacterial lipopep-
tides.31,34,49,62,63 Given that the number of vascular
endothelial cells vastly exceeds the number of circulat-
ing monocytes by an order of magnitude (1 billion cir-
culating monocytes vs. >1 trillion endothelial cells),
endothelial cells may represent a major source of IL-
6, IL-8 and other inflammatory mediators in sepsis.
This concept is supported by a report that TLR-depen-
dent activation of endothelial cells is a major source of
IL-8 during bacterial infection in mice.306 Additionally,
while there is overlap between TLR signaling pathways
and outcomes in leukocytes and endothelial cells, fun-
damental differences exist. For example, endothelial
TLR activation induces negligible or no upregulation
of TNFa and IL-1b, whereas activation of monocyte or
macrophage TLRs robustly upregulates both of
these cytokines.49,60,61 Furthermore, endothelial TLR
signaling pathways also regulate endothelial permeabil-
ity, and induce PAI-1, tissue factor and E-selection
expression, outcomes that are not observed in leuko-
cytes (Table 2).

The available data implicate endothelial TLR-
dependent pathways in the inflammatory response
during sepsis and in the development of sepsis-induced
organ inflammation. We speculate that endothelial
innate immune pathways could be exploited therapeut-
ically to alleviate the detrimental aspects of endothelial
dysfunction. For instance, therapies could target endo-
thelial intracellular innate immune pathways through
endothelial-specific delivery of pathway inhibitors or
by exploiting differences in leukocyte and endothelial
innate immune pathways. Alternatively, or in addition,
lipid immunomodulators such as the SPMs or endocan-
nabinoids could be used to facilitate resolution of endo-
thelial inflammation and restoration of homeostasis.
The specific targeting of endothelial inflammatory
pathways could potentially reduce the development of
organ failure, without interfering with the role of leuko-
cytes in innate immune defenses and in generating
adaptive immune responses. However, because endo-
thelial cells play critical roles in maintaining physio-
logic homeostasis and contribute to the inflammatory
response in sepsis, it is possible that endothelial-based
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therapies would deleteriously affect the host’s immune
and physiologic responses to sepsis. Thus, a more com-
prehensive understanding of the complex roles that
endothelial cells play in both beneficial and harmful
responses to sepsis will be necessary to determine
whether or not endothelial cell pathways represent
viable targets for sepsis-directed therapies.
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