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Background

The incidence rate of lung cancer has been increas-
ing and one of the leading causes of cancer-related 
death worldwide. In the United States, there are 
526,510 men and women living a history of lung 
cancer, and an additional 224,390 cases will be 
diagnosed in 2016. Also, an overall 5-year survival 
rate of non-small lung cancer is 20% in the world-
wide.1–3 The primary types of lung cancer are 
small-cell lung cancer (SCLC) and non-small cell 
lung cancer (NSCLC). The majority of lung can-
cers (85%) are NSCLC which includes squamous 
cell carcinoma, adenocarcinoma, and large cell 
carcinoma.4 NSCLC is a malignant cancer with 
poor prognosis.5–7

Paclitaxel-based chemotherapy is a standard first-
line treatment for NSCLC patients because paclitaxel 
has been proved to have excellent antitumor proper-
ties against lung cancer.8 Paclitaxel inhibits cell  
proliferation inducing microtubule polymerization 
with mitotic cell arrest at the metaphase/anaphase. 
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Paclitaxel is an antimicrotubule agent that stabilizes 
microtubules by preventing depolymerization.9 
Nevertheless, paclitaxel is accompanied by the appear-
ance of severe side effects such as myelosuppression, 
cardiotoxicity, and neurotoxicity.10,11 Many interna-
tional guidelines recommend the use of carboplatin 
composed of a platinum backbone.12 However, carbo-
platin is associated with myelosuppression.13 Hence, 
the lower potency of low dose of carboplatin often 
requires combination with other drugs to improve its 
efficacy. Newer and more potent carboplatin-based 
combination therapies are needed for treatment. 
Recently, chemotherapy of lung cancer had advances. 
However, further investigation is required to identify 
novel therapeutic agents to treat lung cancer and 
reduce side effect. Factors that contribute to lung can-
cer insensitivity to current chemotherapeutic agents 
are drug resistance,14 cigarette smoking,15 and 
DeoxyriboNucleic Acid (DNA) topoisomerase II 
alpha expression.16 Recently, paclitaxel, erlotinib, 
bevacizumab–taxol, docetaxel, and gemcitabine, or 
photodynamic therapy is being considered for combi-
nation therapy to combat side effect.17–23 Combination 
chemotherapy is alternative attempt to combat side 
effect in cancer cells. Combining two chemotherapeu-
tic agents can result in a more effective response.24,25

Angelica gigas Nakai (AGN) is a biennial or 
herbaceous perennial plant and grows in relatively 
moist soil. AGN is known as Dang-gui in Korean. 
AGN are used in traditional medicine for the treat-
ment of cancer, inflammation, anemia, pain, infec-
tion, and articular rheumatism.26–30 AGN has 
chemical components including decursin, ferulic 
acid, and nodakenin. Its major compound exerted 
antitumor activity by apoptosis induction or angio-
genesis inhibition in various cancer cells, including 
prostate, bladder, leukemia, and colon.31–37 These 
results indicate that AGN may be good candidate 
for the control of cancer and beneficial in the treat-
ment of human inflammation.

In the present study, we investigated whether 
carboplatin combination with AGN induces cell 
cycle arrest and apoptosis in H460. Therefore, AGN 
could be useful agents for treating lung cancer.

Materials and methods

Reagents and antibodies

AGN was supplied by Han-Poong Pharm Co.,  
Ltd (Jeonju, Republic of Korea). Carboplatin, 

decursin, Dimethyl sulfoxide (DMSO), 
3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyl
tetrazolium bromide (MTT), and paclitaxel were 
purchased from Sigma-Aldrich (St. Louis, MO, 
USA). AGN powder was dissolved in distilled 
water. Carboplatin powder was dissolved in dis-
tilled water. Decursin and paclitaxel powder was 
dissolved in DMSO. The antibodies against 
Glyceraldehyde 3-phosphate dehydrogenase 
(GAPDH), phospho-Akt, phospho-Stat3 (Tyr705), 
total Akt, and total Stat3 were obtained from Cell 
Signaling (Danvers, MA, USA). The antibodies 
against Actin, Bcl-2, phospho-Erk, and total Erk 
were obtained from Santa Cruz Biotechnology 
(Dallas, Texas, USA). The tubulin antibody was 
obtained from Sigma-Aldrich.

Cell culture

H460 human lung cancer cells obtained from the 
American Type Culture Collection (ATCC) were 
maintained in RPMI 1640 supplemented with 10% 
heat-inactivated fetal bovine serum (Invitrogen, 
Carlsbad, CA, USA) and 100 U/mL antibiotics–
antimycotics (Invitrogen). Cells were maintained 
at 37°C in a humidified incubator with 5% CO2.

Cell viability assay

Cell viability was measured using the MTT assay. 
Cells were plated in 96-well flat bottom tissue cul-
ture plates at a density of 3 × 103 cells/well and 
incubated for 24 h. Cells were cultured for an addi-
tional 24 h with paclitaxel (0.5–20 μg/mL) or car-
boplatin (1–100 μg/mL) or AGN (50–500 μg/mL). 
After incubation, MTT reagents (0.5 mg/mL) were 
added to each well, and the plates were incubated 
in the dark at 37°C for another 2 h. The medium 
was removed, formazan was dissolved in 100% 
DMSO, and the optical density was measured at 
570 nm using an enzyme-linked immunosorbent 
assay (ELISA) plate reader.

Western blot analysis

Cells were harvested, incubated in one volume of 
lysis buffer (50 mM Tris–Cl, pH 7.4, 1% NP-40, 
0.25% sodium deoxycholate, 0.1% Sodium dodecyl 
sulfate (SDS), 150 mM NaCl, 1 mM ethylenediami-
netetraacetic acid (EDTA), and protease inhibitor) 
for 20 min, and centrifuged at 13,000 r/min and 4°C 
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for 20 min. Aliquots containing 20 μg of protein 
were separated by SDS-polyacrylamide gel electro-
phoresis using 8%–12% gels and transferred to 
nitrocellulose membranes (Protran nitrocellulose 
membrane, Whatman, UK). Membranes were 
blocked with 5% nonfat milk and probed with spe-
cific primary antibodies. Membranes were then 
incubated with horseradish peroxidase-conjugated 
secondary Immunoglobulin G (IgG) antibody 
(Calbiochem, San Diego, CA, USA) and visualized 
using an enhanced chemiluminescence detection 
system (Amersham ECL Kit, Amersham Pharmacia 
Biotech Inc., Piscataway, NJ, USA).

Reverse transcription polymerase chain reaction 
(RT-PCR)

RiboNucleic Acid (RNA) was isolated using an 
Easy-blue RNA Extraction Kit (iNtRON Biotech, 
Republic of Korea). In brief, we harvested H460 
cells and 1 mL of R&A-BLUE solution was added 
to each. Following this, 200 μL of chloroform was 
added to the lysate and then vigorously vortexed for 
15 s. Then, the lysate was centrifuged at 13,000 r/
min for 10 min at 4°C. We then transferred the 
appropriate volume of the aqueous phase into a 
clean tube, added 400 μL of isopropanol, and mixed 
the solution thoroughly by inverting the tube 6–7 
times. After centrifuging the tube at 13,000 r/min 
for 10 min, the supernatant was carefully removed 
without disturbing the pellet. Then, 1 mL of 75% 
ethanol was added, and the solution was thoroughly 
mixed by inverting the tube 4–5 times. The mixture 
was then centrifuged for 1 min at room temperature, 
and the supernatant was carefully discarded without 
disturbing the pellet. Finally, the remaining RNA 
pellet was dried and then dissolved in 20–50 μL of 
RNase-free water. The concentration of the isolated 
RNA was determined using a NanoDrop ND-1000 
spectrophotometer (NanoDrop Technologies Inc., 
Wilmington, USA). We treated DNase to each  
sample. Two micrograms of total cellular RNA 
from each sample was reverse-transcribed using a 
comolementary DNA (cDNA) synthesis kit 
(TaKaRa, Otsu, Shiga, Japan). Polymerase Chain 
Reaction (PCR) was conducted in a 20 μL reaction 
mixture consisting of a DNA template, 10 pM of 
each gene-specific primer, 10× Taq buffer, 2.5 mM 
Deoxynucleotide (dNTP) mixture, and 1 unit of Taq 
DNA polymerase (TaKaRa). PCR was performed 
using the specific primers listed in Table 1.

Colony formation assay

The H460 cells were plated into six-well culture 
plates at a density of 3 × 103 cells/well. After 
24 h, cells were cultured for an additional 24 h in 
the absence (control) or presence of carboplatin 
(10 μg/mL) and/or AGN (200 μg/mL) or decur-
sin (20 μM), and cultured for 10 days to allow 
colony formation. Colonies were stained with 
0.1% crystal violet (Amresco, Solon, OH, USA) 
in 50% methanol and 10% glacial acetic acid for 
counting.

Combination effect analysis and statistical 
analysis

Combinational effects were analyzed with CompuSyn 
software.38 All quantitative data derived from this 
study were analyzed statistically. The results were 
expressed as the mean ± Standard error of the mean 
(SEM). Statistical significance at P < 0.05, P < 0.01, 
and P < 0.001 has been given respective symbols in 
the figures. All statistical analyses were performed 
using PRISM software (GraphPad Software Inc., La 
Jolla, CA, USA).

Results

Effect of AGN, paclitaxel, and carboplatin on 
H460 cell viability

We investigated whether AGN, paclitaxel, and car-
boplatin affected the viability of H460 cells. For 
that purpose, H460 cells were treated with differ-
ent concentrations of AGN (50, 100, 200, and 
500 μg/mL) and paclitaxel (0.5, 1, 2, 5, 10, and 
20 μg/mL) and carboplatin (1, 2, 5, 10, 25, 50, and 
100 μg/mL) for 24, 48, and 72 h. Cell viability was 
then measured by MTT assay. We found that AGN 
(200 and 500 μg/mL) significantly suppressed 
growth of H460 cells (Figure 1(a)). Also we found 
that Decursin, a major AGN compound signifi-
cantly suppressed growth of H460 cells (Figure 
1(b)). Also we found that paclitaxel significantly 
suppressed growth of H460 cells in a low dose 
(Figure 1(c)). Likewise, we found that carboplatin 
(50 μg/mL) significantly suppressed growth of 
H460 cells (Figure 1(d)). We found that distilled 
water, DMSO, and 30% EtOH did not induce cell 
death (Figure 1(e)). Taken together, we found that 
about time-dependent decrease in cell viability 
observed in response to AGN, Decursin, paclitaxel, 
and carboplatin.
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Paclitaxel, carboplatin, and AGN suppressed 
Erk and Stat3 expression in H460 cells

We investigated whether paclitaxel, carboplatin, 
and AGN inhibit Akt, Erk, and Stat3 signaling in 
H460 cells. Activated-Akt, activated-Erk, and 
phospho-Stat3 increase migration and invasion in 
cancer cells. Thus, Akt, Erk, and Stat3 expression 
levels have a critical role in cancer therapy.39–41 
For this experiment, we treated H460 cells with 
paclitaxel (0.5, 2 μg/mL) or carboplatin (10, 
50 μg/mL) or AGN (200, 500 μg/mL) and per-
formed western blot analyses. We found that 
paclitaxel, carboplatin, and AGN decreased the 
levels of p-Erk and p-Stat3 in H460 cells (Figure 
2). High dose of carboplatin and AGN exhibited 
more effect than low dose. However, high dose of 
drug exhibits various side effects. Several lung 
cancer studies demonstrated that carboplatin regi-
men was associated with a drug resistance and 
adverse side effects.42,43

The combined effect of carboplatin and AGN 
on H460 cell viability

We investigated whether the combination of pacli-
taxel, carboplatin, and AGN affected the viability 
of H460 cells. For that purpose, we treated H460 

cells with AGN (50, 100, 200 μg/mL) in the pres-
ence of paclitaxel (0.5 μg/mL) or carboplatin 
(10 μg/mL). Cell viability data from MTT assays 
were then analyzed by CompuSyn software to test 
a synergistic effect.38 A combination of AGN with 
carboplatin showed the synergism. We found that 
AGN combined with paclitaxel suppressed cell 
growth, but it does not exhibit synergy effect 
(Figure 3(a)). We found that AGN combined with 
carboplatin significantly suppressed cell growth 
more than carboplatin alone (Figure 3(b)).

The combination of AGN with carboplatin-
inhibited angiogenesis and migration by 
suppressing Akt, Erk, p38, Stat3, HIF-1α, and 
VEGF expression in H460 cells

We investigated whether AGN combined with car-
boplatin-inhibited angiogenesis and migration by 
suppressing Akt, c-Jun, Erk, p38, Stat3, Hypoxia-
inducible factor 1-alpha (HIF-1α), and Vascular 
endothelial growth factor (VEGF) in H460 cells. 
The c-Jun and HIF-1 are associated with cell 
migration, and VEGF is a key regulator of tumor 
angiogenesis.44 We found that AGN combined with 
carboplatin significantly decreased c-Jun, HIF-1α, 
and VEGF levels by suppressing p-Akt, p-Erk, 

Table 1.  The sequence of PCR primers.

Type Primer name Sequences

Human Bax Forward 5′-TTT GCT TCA GGG TTT CAT CC-3′
Reverse 5′-CAG TTG AAG TTG CCG TCA GA-3′

Human Bcl-2 Forward 5′-CTG TTT GAT TTC TCC TGG CT-3′
Reverse 5′-CAG CTT TGT TTC ATG GTA CAT C-3′

Human Cyclin D1 Forward 5′-ACC TGG ATG CTG GAG GTC TG-3′
Reverse 5′-GAA CTT CAC ATC TGT GGC ACA-3′

Human Cyclin E Forward 5′-GGA AGG CAA ACG TGA CCG TT-3′
Reverse 5′-GGG ACT TAA ACG CCA CTT AA-3′

Human HIF-1α Forward 5′-TCA CCA CAG GAC AGT ACA GGA TGC-3′
Reverse 5′-CCA GCA AAG TTA AAG CAT CAG GTT CC-3′

Human c-Jun Forward 5′-GGA TCA AGG CGG AGA GGA AG-3′
Reverse 5′-GCG TTA GCA TGA GTT GGC AC-3′

Human p21 Forward 5′-CAG GCG CCA TGT CAG AAC-3′
Reverse 5′-CCT GTG GGC GGA TTA GGG-3′

Human p27 Forward 5′-TCA AAC GTG CGA GTG TCT AAC-3′
Reverse 5′-AAT GCG TGT CCT CAG AGT TAG-3′

Human VEGF Forward 5′-AGG AGG GCA GAA TCA TCA CG-3′
Reverse 5′-AAG GCC CAC AGG GAT TTT CT-3′

Human GAPDH Forward 5′-CGT CTT CAC CAC CAT GGA GA-3′
Reverse 5′-CGG CCA TCA CGC CAC AGT TT-3′

Glyceraldehyde 3-phosphate dehydrogenase (GAPDH), Hypoxia-inducible factor 1-alpha (HIF-1α), Polymerase Chain Reaction (PCR) and Vascular 
endothelial growth factor (VEGF).
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p-p38, and p-Stat3 levels more than AGN or carbo-
platin alone (Figure 4(a)).

The combination of AGN with carboplatin-
induced cell cycle arrest by increasing p21 and 
p27 levels and suppressing cyclin D1 and cyclin 
E levels in H460 cells

We investigated whether AGN combined with car-
boplatin-induced cell cycle arrest by increasing 
p21 and p27 levels and suppressing cyclin D1 and 
cyclin E levels in H460 cells. We found that AGN 
combined with carboplatin significantly increased 
p21 and p27 levels and suppressed cyclin D1 and 
cyclin E levels more than AGN or carboplatin 
(Figure 4(b)).

The combination of AGN with carboplatin-
induced apoptosis by increasing Bax and Parp 
levels and suppressing Bcl-2 level in H460 
cells

We investigated whether AGN combined with car-
boplatin-induced apoptosis by increasing Bax and 
cleavage of caspase and Parp level and suppressing 
Bcl-2 level in H460 cells. We found that AGN 
combined with carboplatin significantly increased 
Bax, cleavage caspase 9, cleavage caspase 8, cleav-
age caspase 3, and Parp levels and suppressed 
Bcl-2 levels more than AGN or carboplatin alone 
(Figure 5(a) and (b)). Also we investigated whether 
AGN with carboplatin exhibited cell death by 
apoptosis. We found that AGN or carboplatin or 

Figure 1.  Effect of AGN, paclitaxel, and carboplatin on H460 cell viability. H460 cells were treated with different concentrations 
of AGN (a), Decursin (b), paclitaxel (c), carboplatin (d), and DMSO, 30%EtOH, PBS (e) for 24, 48, and 72 h. Cell viability was then 
measured using the MTT assay. Data are presented as mean ± SEM. *P < 0.05, **P < 0.01, and ***P < 0.001 as compared to non-
stimulated cells.
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AGN combined with carboplatin regulated Z-Vad 
(Figure 5(c)).

Synergistic effect of carboplatin with AGN 
or carboplatin with decursin inhibits colony 
formation in H460 cells

We investigated whether synergistic effect of 
AGN or Decursin combined with carboplatin 
inhibited colony formation in H460 (Figure 6). We 
predicted that synergistic effect of carboplatin 
with AGN or carboplatin with decursin inhibits 
colony formation in H460 cells. Synergistic effect 
of carboplatin with AGN (200 μg/mL) or carbopl-
atin with decursin (20 μM) effectively inhibited 
the colony formation of H460 cells after 10 days 
(Figure 7).

Discussion

In this study, we found that AGN combined with 
low dose of carboplatin decreased cell proliferation 

by inhibiting Akt, Erk, and Stat3 signaling in the 
H460 human lung cancer cells.

Recently, lung cancer death rates declined due 
to reduced tobacco use because of increased 
awareness of the health hazards of smoking. But 
even yet, lung cancer, including SCLC and 
NSCLC, has the high incidence of malignancy 
and is primary reason of tumor-related deaths.45 
The Stat family is composed of Stats 1, 2, 3, 4, 
5a, 5b, and 6. The Stat3 signaling pathway acti-
vation is involved in the tumor occurrence, cell 
proliferation, survival invasion, angiogenesis, 
and metastasis46–49 in many malignant tumor 
types including liver cancer,50,51 pancreatic can-
cer,52,53 ovarian cancer,54 colorectal cancer,55 and 
prostate cancer.56

Major chemical component of AGN is decursin, 
constituting 3.3%–5.9% of its dry matter.57 
Decursin induces G1 cell cycle arrest and caspase-
mediated apoptosis in prostate, leukemia, and 
breast adenocarcinoma cells.31,58–61 Doxorubicin 
combination with decursin in AGN induces apop-
tosis of ovarian cancer cells via blocking the 
expression of P-glycoprotein.62

We investigated whether paclitaxel, carbopl-
atin, and AGN affected the viability of H460 
cells. We found that paclitaxel, carboplatin, and 
AGN significantly suppressed cell growth in 
H460 cells.

Effective therapy of lung cancer inhibited the 
Stat3 signaling pathway.63 The breast cancer 
exhibited an induced upregulation of activated 
Stat3 in anti-cancer drug resistance.64 Also, the 
Akt and Mapk/Erk pathway has been known to 
play a key role in proliferation and angiogenesis 
in several cancers. Akt activation is associated 
with breast cancer and poor clinical outcomes.65 
We investigated whether paclitaxel, carboplatin, 
and AGN inhibit AKT, Erk, and Stat3 signaling 
in H460 cells. We found that paclitaxel, carbo-
platin, and AGN decreased the levels of p-Erk 
and p-Stat3 in H460 cells. High dose of carbopl-
atin and AGN exhibited more effect than low 
dose. However, high dose of drug exhibited var-
ious side effects such as anti-cancer drug resist-
ance and high toxicity.42,43,64 Therefore, we 
investigated whether the combination of low 
dose of paclitaxel, low dose of carboplatin, and 
low dose of AGN affected the viability of  
H460 cells. We found that AGN combined with 
paclitaxel suppressed cell growth, but it does 
not exhibit synergy effect. We found that AGN 

Figure 2.  Carboplatin, paclitaxel, and AGN suppressed the 
expression of p-AKT, p-Stat3 in H460 cancer cells. H460 cells 
were treated with different concentrations of carboplatin, 
paclitaxel, and AGN for 24 h. Whole-cell lysates were analyzed 
by western blot. GAPDH was used as an internal control.
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Figure 4.  Combined treatment with carboplatin and AGN suppressed cyclin D1, p-Akt, p-Erk, p-p38, and p-Stat3 expression in 
H460 cells. H460 cells were treated with carboplatin (10 μg/mL) and AGN (200 μg/mL) for 72 h. Then, whole cell lysates were 
analyzed by western blot with anti-actin, anti-Akt, anti-cyclin D1, anti-Erk, anti-p38, anti-Stat3, anti-p-Akt, anti-p-Erk, anti-p-p38, and 
anti-p-Stat3 antibodies. c-Jun, cyclin D1, cyclin E, GAPDH, HIF-1α, p21, p27, and VEGF levels mRNA expression were measured by 
RT-PCR ((a), (b)). Actin or GAPDH was used as an internal control.
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combined with carboplatin significantly sup-
pressed cell growth more than AGN or carbopl-
atin alone. We investigated whether AGN 
combined with carboplatin inhibited angiogen-
esis and migration by suppressing Akt, c-Jun, 
Erk, p38, Stat3, HIF-1α, and VEGF in H460 
cells. We found that AGN combined with carbo-
platin significantly decreased c-Jun, HIF-1α, 
and VEGF levels by suppressing p-Akt, p-Erk, 
p-p38, and p-Stat3 levels more than AGN or 
carboplatin alone. Also, we found that AGN 
combined with carboplatin significantly induced 
cell cycle arrest via increasing p21 and p27 lev-
els and suppressing cyclin D1 and cyclin E lev-
els. We found that AGN combined with 
carboplatin-induced apoptosis by increasing 
Bax and cleavage of caspase and Parp level and 

suppressing Bcl-2 level in H460 cells. Also, 
these cell death was accompanied by cell inhibi-
tion of colony formation. Because these AKT, 
Erk, and Stat3 pathways are implicated in angi-
ogenesis and migration in cancer, AGN com-
bined with carboplatin appears to inhibit these 
pathways and induced apoptosis (Figure 7). 
Taken together, our results suggest that AGN 
combined with carboplatin inhibited AKT, Erk, 
and Stat3 in H460 cell, thereby suppressing the 
angiogenesis and migration. Our present study 
clearly demonstrates that AGN combined with 
carboplatin inhibited Akt, Erk, and Stat3 activ-
ity more than AGN or carboplatin alone in H460 
cells. Also AGN combined with carboplatin-
induced apoptosis in H460 cells. These results 
clearly demonstrate that AGN combined with 

Figure 5.  Combined treatment with carboplatin and AGN induce apoptosis in H460 cells. H460 cells were treated with 
carboplatin (10 μg/mL) and AGN (200 μg/mL) for 72 h. Then, whole cell lysates were analyzed by western blot with anti-Bax, 
anti-Bcl-2, anti-cleavage Caspase 3, anti-cleavage Caspase 8, anti-cleavage caspase 9, anti-Parp, and anti-tubulin antibodies (a). Bax 
and Bcl-2 mRNA expression was measured by RT-PCR (b). Cell viability was measured using MTT assay (c). Tubulin or GAPDH 
was used as an internal control. Data are presented as mean ± SEM. *P < 0.05, **P < 0.01, and ***P < 0.001 as compared to non-
stimulated cells.
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carboplatin could be used as a compound for 
treating human lung cancer.
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