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1 Introduction and preliminaries
Let E be a real Banach space, and let E* be the dual space of E. We denote by J the nor-
malized duality mapping from E to 2" defined by

Je={f* € E:{nf*) = Ixl” = |[*] ),

where (-, ) denotes the generalized duality pairing. A Banach space E is said to be strictly
convex if ||%|| <1 for all x,y € E with |lx|| = |ly|| =1 and x # y. It is said to be uniformly
convex if lim,_, o |[%, — .|| = O for any two sequences {x,} and {y,} in E such that ||x,| =
lyx]l =1 and lim,,_, « ||’%|| =1. Let Ug = {x € E : ||x|| = 1} be the unit sphere of E. Then
the Banach space E is said to be smooth provided

x+ty|| —||x
i 1+ 021 = D

t—0 t

exists for each x, y € Ug. It is also said to be uniformly smooth if the above limit is attained
uniformly for x,y € U. It is well known that if E is uniformly smooth, then / is uniformly
norm-to-norm continuous on each bounded subset of E. It is also well known that E is
uniformly smooth if and only if E* is uniformly convex.

Recall that a Banach space E enjoys the Kadec-Klee property if for any sequence {x,} C E,
and x € E with x,, — x, and ||x,|| — |||, then |x, — x| — 0 as # — o0. For more details
on the Kadec-Klee property, the readers can refer to [1] and the references therein. It is
well known that if E is a uniformly convex Banach space, then E enjoys the Kadec-Klee
property.

Let C be a nonempty subset of E. Let f be a bifunction from C x C to R, where R denotes
the set of real numbers. In this paper, we investigate the following equilibrium problem.
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Find p € C such that

fp,y) =0, VyeC. 1.1)

We use EP(f) to denote the solution set of the equilibrium problem (1.1). That is,

EP(f)={peC:f(p,y) > 0,¥y e C}.

Given a mapping Q: C — E*, let

fx,y) = (Qx,y—x), Vx,yeC.

Then p € EP(f) iff p is a solution of the following variational inequality. Find p such that

(Qp,y-p) =0, VyeC. (1.2)

In order to study the solution problem of the equilibrium problem (1.1), we assume that
f satisfies the following conditions:

(A1) f(x,x)=0,Vx € C;

(A2) fis monotone, ie., f(x,y) +f(y,x) <0, Vx,y € C;

(A3)

limsupf(tz + (1 -t)x,y) <f(x,9), Vx,y,z€C;
£10

(A4) for eachx € C,y+> f(x,y) is convex and weakly lower semi-continuous.

As we all know, if C is a nonempty closed convex subset of a Hilbert space H and Pc :
H — C is the metric projection of H onto C, then P is nonexpansive. This fact actually
characterizes Hilbert spaces and, consequently, it is not available in more general Banach
spaces. In this connection, Alber [2] recently introduced a generalized projection operator
I1¢ in a Banach space E, which is an analogue of the metric projection P¢ in Hilbert spaces.

Next, we assume that E is a smooth Banach space. Consider the functional defined by

P, y) = llxl> = 2(x, Jy) + Iyl>,  Va,y € E.

Observe that in a Hilbert space H, the equality is reduced to ¢(x,) = ||lx — ||, x,y € H.
The generalized projection Il¢ : E — C is a map that assigns to an arbitrary point x € E
the minimum point of the functional ¢(x,y), that is, [Tcx = X, where X is the solution to
the minimization problem

¢ (%, x) = min ¢ (y,x).
yeC
Existence and uniqueness of the operator I1¢ follows from the properties of the functional

¢(x,y) and strict monotonicity of the mapping J; see, for example, [1] and [2]. In Hilbert
spaces, I1¢ = Pc. It is obvious from the definition of function ¢ that

(Il = y)* < d(e9) < (Iyll + Ixl)’, Vxy € E 1.3)
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and
d(x,9) = d(x,2) + P(z,9) +2(x —z,Jz- Jy), Vx,y,z€E. (1.4)

Remark 1.1 If E is a reflexive, strictly convex and smooth Banach space, then ¢(x,y) =0
if and only if x = y; for more details, see [1] and [3].

Let T : C — C be a mapping. In this paper, we use F(T) to denote the fixed point
set of T. T is said to be asymptotically regular on C if, for any bounded subset K of C,
lim,,, o0 SUP,ci | T — T"x|| = 0. T is said to be closed if, for any sequence {x,} C C such
that lim,, . %, = %o and lim,_. Tx, = Yo, Txo = ¥o. In this paper, we use — and — to
denote the strong convergence and weak convergence, respectively.

A point p in C is said to be an asymptotic fixed point of T' [3] iff C contains a sequence
{x,,} which converges weakly to p such that lim,_, » ||x, — Tx,|| = 0. The set of asymptotic
fixed points of T will be denoted by F (T). T is said to be relatively nonexpansive [4, 5] iff
E(T) = F(T) # @ and ¢(p, Tx) < ¢(p,x) for all x € C and p € F(T). T is said to be relatively
asymptotically nonexpansive [6, 7] iff F (T) = F(T) # @ and there exists a sequence {j,} C
[1,00) with u, — 1 as n — oo such that ¢(p, Tx) < w,¢(p,x) forallx € C, p € F(T) and
n > 1. T is said to be quasi-¢-nonexpansive [8, 9] iff F(T) # @ and ¢(p, Tx) < ¢(p,x) for all
x € Cand p € F(T). T is said to be asymptotically quasi-@-nonexpansive [10-12] iff F(T) #
@ and there exists a sequence {u,} C [1,00) with u,, — 1 as n — oo such that ¢(p, Tx) <
wnd(p,x) forallx e C,p € F(T) and n > 1.

Remark 1.2 The class of asymptotically quasi-¢-nonexpansive mappings is more general
than the class of relatively asymptotically nonexpansive mappings which requires the re-
striction F(T) = F(T).

Remark 1.3 The classes of asymptotically quasi-¢-nonexpansive mappings and quasi-
¢-nonexpansive mappings are the generalizations of asymptotically quasi-nonexpansive
mappings and quasi-nonexpansive mappings in Hilbert spaces.

Recently, Qin et al. [13] introduced a class of generalized asymptotically quasi-¢-
nonexpansive mappings. Recall that a mapping T is said to be generalized asymptoti-
cally quasi-¢-nonexpansive iff F(T) # ¥ and there exist a sequence {u,} C [1,00) with
uy — 1 as n — oo and a sequence {v,} C [0,00) with v, — 0 as n — oo such that
o, Tx) < uud(p,x) + v, forallx e C,p € F(T) and n > 1.

Remark 1.4 The class of generalized asymptotically quasi-¢-nonexpansive mappings is
a generalization of the class of generalized asymptotically quasi-nonexpansive mappings
which was studied in [14].

Recently, fixed point and equilibrium problems (1.1) have been intensively investigated
based on iterative methods; see [15-28]. The projection method which grants strong con-
vergence of the iterative sequences is one of efficient methods for the problems. In this
paper, we investigate the equilibrium problem (1.1) and a fixed point problem of the gen-

eralized quasi-¢-nonexpansive mapping based on a projection method. A strong conver-
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gence theorem for solutions of the equilibrium and the fixed point problem is established
in a Banach space.

In order to state our main results, we need the following lemmas.

Lemma 1.5 [2] Let E be a reflexive, strictly convex, and smooth Banach space, let C be a

nonempty, closed, and convex subset of E, and x € E. Then

¢, Mex) + ¢(Mex, x) < p(9,%), VyeC.

Lemma 1.6 [2] Let C be a nonempty, closed, and convex subset of a smooth Banach space
E,and x € E. Then xo = T cx if and only if

(x0 =y, Jx = Jxo) =0, VyeC.

Lemma 1.7 [11] Let E be a reflexive, strictly convex, and smooth Banach space such that
both E and E* have the Kadec-Klee property. Let C be a nonempty closed and convex subset
ofE.Let T : C — C be a closed asymptotically quasi-¢p-nonexpansive mapping. Then F(T)

is a closed convex subset of C.

Lemma 1.8 [29, 30] Let C be a closed convex subset of a smooth, strictly convex, and re-
flexive Banach space E. Let [ be a bifunction from C x C to R satisfying (Al)-(A4). Let
r>0 and x € E. Then there exists z € C such that f(z,y) + %(y -z,Jz—Jx) > 0,Vy e C. De-
fine a mapping S, :E — Cby Ssx={z€ C:f(z,y) + %(y—z,]z—]x) > 0,Vy € C}. Then the
following conclusions hold:

(1) S, is a single-valued and firmly nonexpansive-type mapping, i.e., for all x,y € E,

(er - Sr 7]er _]Sry> < (er - Sryjjx —])/);

(2) F(S,) = EP(f) is closed and convex;
(3) S, is quasi-¢-nonexpansive;
(4) ¢(q,Srx) + d(Sx,x) < (g, %), Vg € F(S,).

Lemma 1.9 [31] Let E be a smooth and uniformly convex Banach space, and let r > 0. Then
there exists a strictly increasing, continuous and convex function g : [0,2r] — R such that
2(0)=0and

e+ A=)y < tlxll> + A = Olyll® - £(1 - g (llx - y1)
forallx,ye B, ={x€E:|x|| <r}andtel0,1].

2 Main results

Theorem 2.1 Let E be a uniformly smooth and strictly convex Banach space which also
enjoys the Kadec-Klee property. Let C be a nonempty closed and convex subset of E. Let f be
a bifunction from C x C to R satisfying (A1)-(A4),andlet T : C — C be a closed generalized
asymptotically quasi-p-nonexpansive mapping. Assume that T is asymptotically regular
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on C and that F = F(T)NEP(f) is nonempty and bounded. Let {x,} be a sequence generated

in the following manner:

xo € E  chosen arbitrarily,

G =C,

x1 = ¢ %o,

Y =T ety + (1= )] T"x,),

u, € C suchthat f(u,y)+ i(y— Up, Juty — Jyn) >0, VyeC,
Cun={z € Cy: (2, un) < P(2, %) + (1tn = 1M,y + v},

xni1 = I, %1,

where M, = sup{¢(z,x,) : z € F}, {a,} is a real sequence in [0,1] such that liminf,_, o o, (1 -
ay) > 0, and {r,} is a real sequence in [a,c0), where a is some positive real number. Then
the sequence {x,} converges strongly to I1 rx;.

Proof In view of Lemma 1.7 and Lemma 1.8, we find that F is closed and convex, so that
I1 £x is well defined for any x € C. Next, we show that C,, is closed and convex. It is obvious
that C; = C is closed and convex. Suppose that C,, is closed and convex for some m € N.

We now show that C,,.,; is also closed and convex. For z1,z5 € C,,,1, we see that z;,z, € C,y,.
It follows that z = tz; + (1 — )z, € C,,,, where t € (0,1). Notice that

Pz, ) < (21, %m) + (o = DMy + Vi
and

Pz, un) < P(21%m) + (lm = V)M + V.
The above inequalities are equivalent to

2(z1, Pt = Jttn) < 1% 1 = i 1* + (bm = D)Moy + Ve 21
and

2(z2, Jm = Jitm) < 16m* = llttm || + (tm = D)Mo + vy (2.2)
Multiplying ¢ and (1 — £) on both sides of (2.1) and (2.2), respectively, yields that

202 Jtm = Jttm) =< 16 l* = 1yml® + (o = DM + V.
That is,

D2 um) < (2 %m) + (om = V)M + Vs (2.3)

where z € C,,. This gives that C,,.; is closed and convex. Then C, is closed and convex.
This shows that I1c,,, x; is well defined.
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Next, we show that 7 C C,. F C C; = C is obvious. Suppose that F C C,, for some
m € N. Fixwe F C Cy,. It follows that

dW, tm) = ¢W, Sy, ym)
< ¢W,ym)
= (W] (mtm + (1= ot )] T %))
= W% = 2w, i + (1= T %) + ||t + (1 = €, ) T %, |
< WP = 200 (W, o) = 21 = )W, J T 1) + |62 + (1 = )| T |
= W, %) + (1= ) (W, T %)
< (W, %) + (1 = o) kin (W, %) + (1 = ) Vi
= ¢W, %) — (1= o)W, %) + (L = i) in@ (W, %) + (L = i) Vi
< oW, xm) + (1 = o) (e — D)W, %) + Vs
< W, %) + (o — )M,y + Vs (2.4)
which shows that w € C,,,,;. This implies that F C C,, for each 2 > 1. In view of %, = [1¢, %1,

from Lemma 1.6 we find that (x,, — z, Jx; — Jx,,) > 0 for any z € C,. It follows from F C C,
that

(%, —w, Jx1 = Jx,) >0, VYwe F. (2.5)
It follows from Lemma 1.5 that

d)(xn:xl) = ¢(HC,,x1;xl)
< ¢(MFx1,x1) — P Fx1, %)
= ¢(H]—'?C1,X1).
This implies that the sequence {¢(x,,x;)} is bounded. It follows from (1.3) that the se-
quence {x,} is also bounded. Since the space is reflexive, we may assume that x, — x.

Since C,, is closed and convex, we find that x € C,,. On the other hand, we see from the

weak lower semicontinuity of the norm that
¢, 1) = 1]1” - 2(%,Jon) + Il |
= liVlII_l)%>rolf(||xn||2 = 2, J1) + [l21 1)
= liminf ¢ (x,, x1)
n—00

E hm Sup ¢(xn:x1)
n—00

= d)(?_c)xl)y

which implies that lim,,_, o, ¢ (x,,, %1) = ¢ (¥, x1). Hence, we have lim,,_,  ||x,,]| = ||X]. In view
of the Kadec-Klee property of E, we find that x,, — x as n — oo.
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Now, we are in a position to prove that x € F(T). Since x,, = I, x; and x,,,1 = T, %1 €
Cun C Cy, we find that ¢(x,,, 1) < ¢(x441,%1). This shows that {¢(x,,, 1)} is nondecreasing.
It follows from the boundedness that lim,,_, o, ¢(x,,,x1) exists. In view of the construction
of x41 = T¢,,,%1 € Cpi1 C Cy, we arrive at

¢(xn+1:xn) = ¢(xn+1: 1_[Cnxl)
< Pxpi1,%1) — (I, %1, %1)

= P(Xs1,%1) — P, X1).
This implies that
Jim & (Xs1,%4) = 0. (2.6)
In light of x,,,1 = I1¢,,; %1 € Cy41, we find that
i1, Un) < PFni1:%0) + (n =DMy + v,

Thanks to (2.6), we find that

lim (1, 4,) = 0. (2.7)
n—00
In view of (1.3), we see that lim,,_, o (|[%,41]| = ||l2£.]]) = 0. It follows that lim,,_, » || 22, || = || %]].

This is equivalent to
lim ||Ju, |l = |J%]. (2.8)
n—00

This implies that {Ju,} is bounded. Note that both E and E* are reflexive. We may assume
that Ju, — u* € E*. In view of the reflexivity of E, we see that J(E) = E*. This shows that
there exists an element u# € E such that Ju = u*. It follows that

2 2
n+lo Up) = n+lll — n+lrJUn n
S@ne1, ) = 12641 17 = 2041, Jth) + [t

= et [I” = 2 (K1, J) + [Tt ]|
Taking liminf,_, o on both sides of the equality above yields that

0> [IF]% - 2(%, u*) + [u*]?
= 11> = 2(x, Jut) + |Jual|?
= [1%)1% = 2, Ju) + [lu])?
= ¢(x, u).

That is, ¥ = u, which in turn implies that u* = Jx. It follows that Ju,, — Jx € E*. Since E*
enjoys the Kadec-Klee property, we obtain from (2.8) that

lim Ju, = Jx.

n—00
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Since E enjoys the Kadec-Klee property, we obtain that «,, — X as n — oco. Note that ||x, —
Uyl < ||y — %] + [|% — ]| It follows that

lim ||x, —u,| =0. (2.9)
n—0o0

This gives that
lim ||/x, — Ju,|| = 0. (2.10)
n—00

Notice that

¢(W¢ xn) - ¢(W, urz) = ”xn”2 - ”un”2 - 2(Wr]xr1 _]un)

< Nt = wa | (el + Mot ll) + 201wl 1w = it .

It follows from (2.9) and (2.10) that

Tim (§0v,%,) — B, ) = 0. (2.11)

Since E is uniformly smooth, we know that E* is uniformly convex. In view of Lemma 1.9,
we see that

(w, u,)

= oW, Sy, 7n)

< oW, yn)

= p(w,J My + (1= I T %, ])

= w)? = 2{w, @y + (1= a0, JT"%,) + ||l + (1 = 0, )J T %, |

< W% = 200w, J) = 2(1 = )W, JT"%,) + il 1 + (1= )| T
= a1 = otn)g ([ =T (T"5) )

= u (W, %) + (1 — ) (w, T"%,) — ot (1 — ct)g (| Joon = T (T",) ||)

< W, %) + (1= ) (W, %) + Vs — (1 = o) (|6 = T (T"%,) )

< ¢w,2,) + (1= )1ty = Dpw,%,) + v = (L = @)@ ([ =T (T74) | ).
This implies that
an(1 = n)g([[Joen =T (T"%4) ) < (W, %) — (W, 14) + (1 = ) (i — Dp (W, %) + vy,
In view of the restrictions on the sequence {«,}, we find from (2.11) that
Jim [|[7(T" %) = Jou | = 0. (212)
Notice that

I(T7%) =T < |7(T"%0) = Jou | + 1w — I
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It follows from (2.12) that

lim |[7(T"x,) - Jx| = 0. (2.13)
The demicontinuity of /! : E* — E implies that T"x,, — X. Note that

77| = Wl | = |7 (T"0) | = W3] < 7(T"%0) = T

This implies from (2.13) that lim,,—, o [| 7%, = ||X]|. Since E has the Kadec-Klee property,

we obtain that lim,_, » || 7"x, — X|| = 0. Since
|77 = ]| < |77 0 = T | + || 7700 - %],

we find from the asymptotic regularity of T that lim,,_, », || 7""'x, —x|| = 0, that is, TT"x, —
x — 0 as n — oo. It follows from the closedness of T that Tx = x.
Next, we show that x € EP(f). In view of Lemma 1.8, we find from (2.4) that

¢(un7yn) < ¢(W;_)’n) - ¢(Wr un)
< dW, %) + (b — DM, + v, — ¢(w, 1)
=pw,x,) — dw,u,) + (k, —1)M,,. (2.14)
It follows from (2.11) that lim,,_, o ¢(14,,, ¥,) = 0. This implies that lim,,_, oo (||2£,,]| = ||y ) = 0.
In view of (2.9), we see that u, — X as n — oco. This implies that |y,| — [|X|| = 0 as
n — oo. It follows that lim,_, ||/yx|l = |IJX]|. Since E* is reflexive, we may assume that

Jyn — r* € E*. In view of J(E) = E*, we see that there exists r € E such that Jr = r*. It fol-
lows that

G Whs V) = N1t |* = 20t Jyn) + 1yl

= Nl = 2, Jyn) + Wyl
Taking liminf,_, o, on both sides of the equality above yields that

0> [I%]% - 2(% ) + ||
= |1XI1* = 2(%,Jr) + Jrl?
= %1% = 2@ Jr) + Irl®
=¢(x,7).
That is, ¥ = r, which in turn implies that r* = Jx. It follows that Jy,, — Jx € E*. Since E*
enjoys the Kadec-Klee property, we obtain that Jy, — Jx — 0 as n — co. Note that J -1,

E* — E is demicontinuous. It follows that y, — x. Since E enjoys the Kadec-Klee property,

we obtain that y, — x as n — oo. Note that

20 = yull < llttw = X1 + 11X = yull.
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This implies that
lim ||u, —y,|l = 0. (2.15)
n—00

Since J is uniformly norm-to-norm continuous on any bounded sets, we have
lim ||Jun = Jynll = 0.
n—00

From the assumption r,, > a, we see that

o Wi =l

n—00 ry

0. (2.16)

In view of u, = S,,y,, we see that

1
f(unvy)"' r_(y_um]un _]yn) ZO, Vye C.

It follows from (A2) that

n — n 1
Iy el P Ly ) = ) 2 f ), Wy e C

n

By taking the limit as 7 — oo in the above inequality, from (A4) and (2.16) we obtain that

fh%) <0, VyeC.

For 0 <t <1and y € C, define y, = ty + (1 — t)x. It follows that y, € C, which yields that
f(1,%) < 0.1t follows from (A1) and (A4) that

0=Ffey) <tf 5oy + A= O)f e, X) < tf (¥e, ).

That is,

f(ytry) Z 0'
Letting ¢ | 0, we obtain from (A3) that f(x,y) > 0, Vy € C. This implies that x € EP(f). This

shows that x € F = EP(f) N F(T).
Finally, we prove that x = ITzux;. Letting n — o0 in (2.5), we see that

(x—w,Jx; - Jx) >0, VweF.
In view of Lemma 1.6, we find that x = I1zx;. This completes the proof. d

If T is asymptotically quasi-¢-nonexpansive, then Theorem 2.1 is reduced to the follow-

ing.
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Corollary 2.2 Let E be a uniformly smooth and strictly convex Banach space which also
enjoys the Kadec-Klee property. Let C be a nonempty closed and convex subset of E. Let
f be a bifunction from C x C to R satisfying (A1)-(A4), and let T : C — C be a closed
asymptotically quasi-¢-nonexpansive mapping. Assume that T is asymptotically regular
on C and that F = F(T)NEP(f) is nonempty and bounded. Let {x,} be a sequence generated

in the following manner:

xo € E  chosen arbitrarily,

G =C,

x1 = I, %o,

Y =T ey + (1= )] T"x,),

u, € C suchthat f(u,y)+ i(y— Up, Jtby — Jyn) >0, VyeC,
Cu1 = {2 € Cy: Pz, 1) < P2, %) + (1 — DM},

Xne1 = I, %1,

where M,, = sup{¢p(z,x,) : z € F}, {a,} is a real sequence in [0,1] such that liminf,_, o, o, (1 -
ay) > 0, and {r,} is a real sequence in [a,c0), where a is some positive real number. Then

the sequence {x,} converges strongly to Il rx;.
If T is quasi-¢-nonexpansive, then Theorem 2.1 is reduced to the following.

Corollary 2.3 Let E be a uniformly smooth and strictly convex Banach space which also
enjoys the Kadec-Klee property. Let C be a nonempty closed and convex subset of E. Let f be
a bifunction from C x C to R satisfying (A1)-(A4), and let T : C — C be a closed quasi-p-
nonexpansive mapping. Assume that F = F(T) NEP(f) is nonempty. Let {x,} be a sequence

generated in the following manner:

xo € E  chosen arbitrarily,

G =¢C,

x1 = I xo,

Y =T ey + (1= 0,) Tt),

u, € C  suchthat f(u,,y)+ %(y— Up, Juy — Jyn) >0, VyeC,
Cur={z € Cy: (2, un) < Pz, %)},

Xn+l = HCn+1x1:

where {a,} is a real sequence in [0,1] such that liminf,_,  o,(1 — ,) > 0, and {r,} is a real
sequence in [a, 00), where a is some positive real number. Then the sequence {x,} converges

strongly to I1 rx;.
If T is the identity, then Theorem 2.1 is reduced to the following.

Corollary 2.4 Let E be a uniformly smooth and strictly convex Banach space which also
enjoys the Kadec-Klee property. Let C be a nonempty closed and convex subset of E. Let f
be a bifunction from C x C to R satisfying (Al)-(A4). Assume that EP(f) is nonempty. Let
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{x,.} be a sequence generated in the following manner:

xo € E  chosen arbitrarily,

G =C,

x1 = I %o,

u, € C suchthat f(u,y)+ i(y— Uy, Juy —Jxy) >0, VyeC,
Cun ={z € Cy: ¢(z, 1) < P2, %) + (bn — DM + v},

Xne1 = ¢, %1,

where M, = sup{¢(z,x,) : z € F}, {a,} is a real sequence in [0,1] such that liminf,_, o o, (1 -

ay) > 0, and {r,} is a real sequence in [a,c0), where a is some positive real number. Then

the sequence {x,} converges strongly to [Tgp(f)x1 -
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