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Abstract

In this paper, we are concerned with the local existence of strong solutions to the k-&
model equations for turbulent flows in a bounded domain € c R3. We prove the
existence of unique local strong solutions under the assumption that the turbulent
kinetic energy and the initial density both have lower bounds away from zero.
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1 Introduction

Turbulence is a natural phenomenon, which occurs inevitably when the Reynolds number
of flows becomes high enough (10° or more). In this paper, we consider the k- model
equations [1, 2] for turbulent flows in a bounded domain 2 C R? with smooth boundary,

p:+V - (pu) =0, (L1)
2
(pu)t+V~(pu@u)—Au—V(V~u)+Vp=—§V(pk), (12)
(ph) +V - (puh)— Ah=p;+u-Vp+S5;, (1.3)
(pk)s + V - (puk) — Ak = G — pe, (1.4)
C G Cope?
(pe)e +V - (pue) - Ae = == - 2202 (1.5)
k k
(0, u, 1, k, £)(%,0) = (po(x), o (x), o (x), ko (x), £0(x)), (1.6)
(u -1, h, 8_/5’ 8—?) =(0,0,0,0), 1.7)
on on) g
with
dut 9w 2 aukou’ dp 0
Sk:|:u< “ +—”>——ayi}—”+&—p—p, (18)
ox; O 3 7 0xx | 0x;  p? Ox; Ox;
G_Bui (8ui+8u/) 28 < - 8uk> 19)
“ o |\ "o ) T30\ T e ) | '
p=p", (1.10)
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where 8; =0 if i #j, 8; =1if i = j, and u, py, e, Ci, and C, are five positive constants
satisfying i + i4; = (e, and 7 is the unit outward normal to 9%2.

Equations (1.1)-(1.10) are derived from combining the effect of turbulence on the time-
averaged Navier-Stokes equations with the k-¢ model equations. The unknown functions
P, U, h, k, and ¢ denote the density, velocity, total enthalpy, turbulent kinetic energy, and the
rate of viscous dissipation of turbulent flows, respectively. The expression of the pressure
p has been simplified here, which indeed has no bad effect on our study.

In partial differential equations, the k-¢ equations belong to the compressible ones. In
this regard, we will refer to the classical compressible Navier-Stokes equations and com-
pressible MHD equations, which are also research mainstreams, to carry out our study.

For compressible isentropic Navier-Stokes equations, the first question provoking our
interest is the existence of the weak solutions. Lions [3, 4] proved the global existence of
weak solutions under the condition that y > n%, where y is the same as in (1.10) and #
is the dimension of space. Later, Feireisl [5, 6] improved his result to y > 7. The condi-
tion satisfied by y is to prove the existence of renormalized solutions, which were intro-
duced by DiPerna and Lions [7]. When the initial data are general small perturbations of
non-vacuum resting state, Hoff [8] proved the global existence of weak solutions provided
y > 1. The existence of strong solutions is another problem provoking our interest in the
research of Navier-Stokes equations. It has been proved that the density will be away from
vacuum at least in a small time interval provided the initial density is positive. If the initial
data have better regularity, the compressible isentropic Navier-Stokes equations will admit
a unique local strong solution under various boundary conditions [9-12]. However, when
the initial vacuum is allowed, it was shown recently in [9] that the isentropic one will have
alocal strong solution in the case that some compatibility conditions are satisfied initially.
Choe and Kim [13] obtained the unique local strong solutions for full compressible poly-
tropic Navier-Stokes equations under a similar condition in [9]. In [13], the technique the
authors used is mainly the standard iteration argument and the key point of their success
is the estimate for the L2 norm of the gradient of the pressure. In the process of studying
the condition of a local solution becoming a global one, Xin [14] proved that the smooth
solutions will blow up in finite time when an initial vacuum is allowed.

As for compressible MHD equations, the research directions, which mainly contain first
the existence of weak and strong solutions and second the condition of weak solutions be-
coming a strong or even classical one and the local becoming a global one, are similar
to that of Navier-Stokes equations. For example, Hu and Wang [15-17] obtained the lo-
cal existence of weak solutions to the compressible isentropic MHD equations. Rozanova
[18] proved the local existence of classical solutions to the compressible barotropic MHD
equations provided both the mass and energy are finite. Fan and Yu in [19] proved the ex-
istence and uniqueness of strong solutions to the full compressible MHD equations. The
method Fan and Yu [19] used is similar to that in [13], for example, they are both depen-
dent on the standard iteration argument and the estimate for the L? norm of the gradient
of the pressure.

In this paper, we consider the existence of strong solutions to the k-¢ model equa-
tions (1.1)-(1.10) in a bounded domain € C R3. Our method is similar to that in [19]
and [13]. However, in the process of applying the method to the k-¢ model equations, we
find that the regularity of the solutions should be higher, which is induced by the higher
nonlinearity in the compressible Navier-Stokes equations and compressible MHD equa-



Yuan and Qin Boundary Value Problems (2016) 2016:27 Page 3 of 26

tions than that in [19] and [13]. In fact, when we make the difference of the nth and the
(n +1)th cases of equation (2.4) and integrating the result, we inevitably arrive at the term
[ o™ 9;p" L 78 Therefore, we have to use integration by parts, which leads to two
terms as fﬁ"“aja,,o"“ 7" and fﬁ”*lajp”*l . 8,71“. Then, by the Holder and Young in-
equalities, it turns out that || V2p"*!||;s and ||V p"*!| .~ should be bounded. Thus, we need
o]l g3 to be bounded for an a priori estimate. Therefore, from the mass equation enough
regularity of the velocity field should be imposed. Moreover, due to the strong-coupling
property of the k-¢ equations, we need a corresponding high regularity of the unknown
functions k and ¢.

Stated simply, the high nonlinearity of the k-&¢ equations leads to the necessity of high
regularity of some unknown functions and thus leads to much difficulties for the a priori
estimates. Besides, physically, when the turbulent kinetic energy k vanish, the turbulence
will disappear and the k-& model equations will degenerate into the Navier-Stokes equa-
tion. Therefore, without loss of generality, we assume throughout this paper that the tur-
bulent kinetic energy k has a positive lower bound away from zero, namely, 0 < m < k with
m a constant.

To conclude this introduction, we give the outline of the rest of this paper: In Section 2,
we consider a linearized problem of the k-¢ equations and derive some local-in-time es-
timates for the solutions of the linearized problem. In Section 3, we prove the existence
theorem of the local strong solution of the original nonlinear problem.

2 Apriori estimates for a linearized problem
Using the density equation (1.1), we could change (1.1)-(1.10) into the following equivalent
form:

pt+v'(pu):0’
put+,0u-Vu—Au—Vdivu+Vp:—%V(pk),
phy+pu-Vh—Ah=p,+u-Vp+ S5,

oks + pu-Vk - Ak = G- pe, (2.1)
paw,owVe—Aa:%—cszgz,

(:07 u, h) k¢ 8)(36, O) = (p()(X), M()(?C), hO (x)¢ kO (JC), €0 (x))x
(-7, 2K, )56 = (0,0,0,0).

’ 9n’ an

Then we consider the following linearized problem of (2.1):

pe+V-(pv)=0, (2.2)
. 2
,out+pv-Vu—Au—levu+Vp:—§V(,0n), (2.3)
phi+pv-Vh—Ah=p,+u-Vp+S5,, (2.4)
pki + pv-Vk - Ak =G - pb, (2.5)
CiG'9 Cyp6?
pst+pv~Vs—As:1——L, (2.6)
T T
(p: v, hx T, 9)(%, 0) = (pO (x)¢ Up (x)7 hO(x)) k()(?C), 80(96)), (27)

=(0,0,0,0), (2.8)

. . om 00
v-mh —,—=
( on 3”) a0
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with

, v v\ 2. aFlav g dp dp
Si=lul—+—)-z8—|— +S——
dx; 0% 3 7 0xk [0x;  p? Ox; Ox;

= v v v 28 ( . vk
= — —+_ —_ — ) jT ,
o |1\ oy "y ) T 3O\ T T

where v, 77, and 6 are known quantities on (0, 7T7) x € with 77 > 0.

Here we also impose the following regularity conditions on the initial data:

0<m<py, poe<H(Q),

Up EHB(Q),

(h07 k0’80) EHZ(Q), (29)
(MO : ;[1 hO: %) %”dﬂ = (0) 0) 0, 0))

0 < m<ko.

For the known quantities v, 7, 6, we assume that v(0) = ug, 7(0) = ko, 8(0) = &9, and

supg <<, IVl + 17 11 + 1011 1)
LU+ vel2n + el + 16120 de < e,
SUPo<¢t<T, Ivlig2 <co
SUpg<<, VI3 <cs, (2.10)
S WVI2 dt < ca,

SUPg<s<T, 17T 12 < ¢5,

SUPo<t<T, 1012 < ce»

for some fixed constants ¢; satisfying1 < co <¢; (i =1,2,...,6) and some time 75 > 0. Here

co=2+ ”('00’”0)”1{3 + ||(ho,ko,80)||H2'
For simplicity, we set another small time T as T = min{c,” "°c;¢;3cs8c; 22, T, Ts)
and all of the T in Section 2 are defined as this.

Remark 2.1 Here it should be emphasized that throughout this paper, C denotes a generic
positive constant which is only dependent on m, y, and |2|, but independent of ¢; (i =
0,1,2,...,6).

Remark 2.2 From the physical viewpoint, we assume that the turbulent kinetic energy k
has a positive lower bound away from zero, namely, 0 < m < k with m a constant. We do

not know whether 0 < m < k holds afterwards if the initial turbulent kinetic energy ko > m.

In this section we aim to prove the following local existence theorem of the linearized
system (2.2)-(2.6).
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Theorem 2.1 There exists a unique strong solution (p, u, h, k, €) to the linearized problem
(2.2)-(2.8) and (2.9) in [0, T satisfying the estimates (2.99) and (2.100) as well as the reg-
ularity
peC(0,T;H?),  p,eC(0,T;H"), wueC(0,T;H*)NL*(0,T;H*),
uw €L’(0,T;H'),  keC(0,T;H?)NL*(0,T;H),  k €L*(0,T;H'),
e€C(0,T;H?),  &el*(0,T;HY), heC(0,T;H?),  h eL*(0,T;H'),
(Vpus, /0Kty /PEL /Ph:) € L (0; T;Lz)'

In the following part, we decompose the proof of Theorem 2.1 into some lemmas.

Lemma 2.1 There exists a unique strong solution p to the linear transport problem (2.2)

and (2.9) such that
m
Pz loll g3y < Ceo, |l oell 1 () < Ceoca (2.11)
for0<t<T.

Proof First, applying the particle trajectory method to the equation (2.3), we easily deduce
r pPo _ m
P = po eXp(—/ IVVizeo dt) > poexp(—c3T) > ~ > -
0
and thus

=

<C.

D=
S|

Second, by simple calculation, we have

d
el = Clvilzsliols + C[ V] o,

applying the Gronwall and Hoélder’s inequalities, one gets

t t
ol < [GXP<C/ IVl dt)] <||:00||H3 + C/ VIl dt) =Ce
0 0

forO<t<T.

Next, from the equation (2.2), one obtains

loclm = [V - (0V)| ;0 < Cllpllslvlize < Ceoc

forO<t<T.

Thus, we complete the proof of Lemma 2.1. O

Next, we estimate the velocity field u.
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Lemma 2.2 There exists a unique strong solution u to the initial boundary value problem
(2.3) and (2.9) such that

t 5
2 2 2 5+2 543y 9
IVoudlly> + llullza +/ [ Vuell72 ds < Cey™™, lullz2 < Cey ey, (2.12)
0
P43y 4 ! 2 9+6y 5 2
letllys < Ceg " cleacs, ; lullyads < Cey™ " cicy (2.13)
foro<t<T.

Proof We only need to prove the estimates. Differentiating the equation (2.3) with respect
to ¢, then multiplying both sides of the result by u; and integrating over €2, we derive that

1d .
= / pu dx + Vi + 1| div g |2

:—/ptwVu-ut—/pvt~Vu-ut—2/pv-Vut~ut
2
- | Vpoow—3 [V(om)], - ue

=11 +12 +13 +14 +I5, (214')

where we have used the equation (2.2) and integration by parts. We will estimate I; (i =
1,2,...,5) item by item.

First, because p has a lower bound away from zero, we easily deduce |lu;l|;> <

Cll\/pusll 2. Therefore, using the Holder, Sobolev, and Young inequalities and (2.10), we
have

L < Clvliee llpell I Vatll 2 el 6 < ClvIzee Nl oell s | Vatll 2 (II/Puell 2 + [ Vatgl12)
< Ceycy | Vullz, + Cll/pul}> + %nwtniz, (2.15)
Is < Cllpl o IVl 1 Vatgl 2 | /el 2 < Ceocs || /puell72 + énwtniz, (2.16)
L < CII,OIIL%oo Vel s IV all s /ouell 2 < Cn~leol Vel s + nllvellza lV/oudl 72, (217)
where 7 > 0 is a small number to be determined later.
Next, to evaluate ||Vu||i3 in (2.17), we can first the Sobolev interpolation inequality to
get

IVulys < ClIVull 2 Vulls < CIVull2 Vil (2.18)

Then applying the standard elliptic regularity result to the equation (2.3) and using (2.18),
we have

1 1
IVullm < Ceg (Il 2 + VIl IVull 1Vl gy + 11V pll 2
L H

+IVolalimlizs + 1V ll2),
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thus the Young inequality and (2.10) yield
IVulln < Ceg? (I/Puell 2 + I Vul 2 + cocy). (2.19)
Combining (2.17), (2.18), and (2.19), and using the Young inequality, we get
L = Cn7'ey”  (Iv/pudllya + G IVullfa + &oct) + nllvell 3l /ouel 3. (2.20)
By integration by parts, we have

. - 1
Iy = /pt diva, < Ce) Mol 2l Vil 2 < Cey 63 + gIIVMtllizy (2.21)

2 2 2
15:§ Ptﬂv'ut—g ﬂtvlo'ut_g PV - Uy

1 1
= Cllpellsllllzs I Vaell 2 + Ceg IV pllsllmells I/ ouell 2 + Ceq IVl 211/ puell 2

_ 1
< Cegerey + Cn~eg + Cnllmelzp /w2 + glqutlliz. (2.22)

On the other hand, we easily have

d 2 1 2 2

I |Vul|*=2 | Vu-Vu, < §||Vut||L2+C||Vu||L2 (2.23)
and

d 3 ) 2 2

I lul” < Ceq I/ puell 2 llull 2 < Ceoll/pucllys + Cliullys- (2.24)

Combining (2.14)-(2.16) and (2.20)-(2.24), we get

d
2 2 2
a(llﬁutllp +ullzp) + 1 Vel
2 4 -1 2y+1 2 2 2 2 2
< C(cgey + ey e +llmellz + nllvell ) (IW/ouell 2 + lull2p)

+C(cf A2+ 7ty e, (2.25)
setting 1 = é and using the Gronwall inequality, we derive
! 5+2
+
Il + il + [ 1Vl ds < o™ (226)
0

for 0 <t < T, where we have used the fact that limHo(H\/,T)utlliz + IIMIIf{I) < ch+2y.
Next, by (2.19) and (2.26), we deduce

5
IVl pn < Ce2* 2, (2.27)

which implies (2.12) by (2.26).
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Next, we will estimate fot I Lt||]2_14 dt. By the standard elliptic regularity result of the equa-

tion (2.3), we have

%V(pn)

3 (2.28)

4
V%] 2 < llouellpe + lov - Vullge + 1Vpl 2 +
HZ

By simple calculation, the first term of the right-hand side of (2.28) can be controlled as

louellrz < C(lpueli2 + ol llell2) < Ceolltte g2 (2.29)
In order to estimate || V2u,|| 2, differentiating the equation (2.3) with respect to ¢ yields

Auy+ Vdivu, = peuy + py + pev-Vu + pvy - Vu+ pv- Vi, + Vp,

2
+ g(V,otn + oV + Vom, + pVmy), (2.30)
applying the standard elliptic regularity result to (2.30) and using (2.26), one obtains

|V2uc]| 2 < Clloellgallaeli o + Iouel 2 + loel o IVlloe [ Vel o
+llollze vl IV all s + Vil ol + o052 el + 17z 1 oc
+ el 4Vl e + 1V plla el + llpllzoe I Vel ,2)
+3y 2 9

3 3437 o
< C(”putt”L2 + ¢ C1CyC5 + € (4] Vel
+coCallug |l + CO||7Tt||H1)7 (2.31)
therefore, the key point is to estimate | puy| ;2. Because we have the fact ||puy|;2 <

Cll/puyll 2, we could first estimate || /pus || 2 as follows.
Multiplying both sides of (2.30) by u, and integrating the result over 2 yield

2 2 . 2
pu dx + ——||Vu +——| divu
/ tt 2 ]t” t||L2 2 ]t” t”LZ

:—/Ptut‘utt—/PtV'Vu'utt—/PVt'VM'Mtt—/pV'Vut'utt—/VPt'utt

2
3 /(T[V:Ot + 0V + 1,V p + pVy) -ty

=h+h+B+Ja+]s+]s. (2.32)
Using the Holder, Sobolev, and Young inequalities and (2.10) and (2.26), we get
I < Ccé el 3 lleaell o I/ Pee Nl 2 < Ccé loel 3 (IIv/ouell 12 + 1 Vel 2) |/ Ottee | 2
< CAAIVu 2, + Cy'¥ & + %nﬁuﬁn;, (2.33)
J2 = Ced I/l 2 loull V1< | Vall o < Celr®” il + %nﬁuﬁniz, (2.34)

3 6+6 1
J3 < Ceg |/ putzell 2 1vell 3| Vel 16 < Cey” yCi}”Vt”]z.p T ”«//_)utt”ib (2.35)
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Ja < Ceg IVl I/punll 21| Vil 2 < Ceoca | Viell7o + 18 Vot 72, (2.36)
1 1
Js = Ceg IpuallzIVpel 2 < Ceg ™6 + Il /puall s (2.37)
1 1
Jo < Ceg I Nl I/ouacl 21V pell 2 + Ceg /Pl 211V || pa | ol 4
1 1
+ Ceq I/punll 2 1V pllzee 7l 2 + Ceg lI/prbaell 2 1 Vel 2
2
= Cegess + Ceglmllin + 5 Iv/ouull 2, (2.38)
inserting (2.33)-(2.38) to (2.32), then integrating the result over (0, £), we derive
t
/ / puy, dxdt + || Vi |7, < Ce§H e, (2.39)
0o Ja
where we have used the equation (2.3) to get lim; o | Vi, (8)[|?, < cer .
So, combining (2.29), (2.31), and (2.39), we obtain
! 9+6
+
f louillZp < Cey™™ 3. (2.40)
0
In the following, we shall estimate the rest terms of the inequality (2.28).
For the second term of the inequality (2.28), direct calculation yields
lov- Vullg < Cllpllg2 IVIg lullgs < Ceocallullys, (2.41)

therefore, we have to evaluate ||u|| ;3. In fact, applying the standard elliptic regularity result

to the equation (2.3), we obtain

| V2ull o < Cllouclim +llpv- Vil + 19plla + [ V(o) 1), (2.42)

we could estimate the right-hand side of (2.42) item by item.

5
First, from (2.26), we have ||u|;2 < Ccg " thus

lpucllm < Ceollugllz2 + IV pllzoe lluell 2 + Ceoll Vel 2

Tay
< Ccj "+ Ceol Vgl 12. (2.43)
Second, using the Sobolev interpolation inequality and the Young inequality, we get
lpv - Vullgn
< C(llov-Vulz2 + | V(ov- Vu)| »)

1 3
Lo
< Cleollvlioe Vull 2 + IV plloe lvlioo [ Vall g2 + coll VYl 21 Vel 5 | V2 u]|

+colVllze | Vul )

13 3
< Ccf +37/0%02 + EHMHHS' (2.44)

Page 9 of 26
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Third, due to (2.11), we easily derive

IVpllm < Cep. (2.45)
Last, by simple calculation, one gets

IV (o) |, < Cllplls Izl < Ceocs. (2.46)

Combining (2.39) and (2.42)-(2.46), we deduce

%+3y 4
llullgs < Ceg* cicacs. (2.47)

Next, by simple calculation, the third and fourth terms on the right-hand side of (2.28) can
be estimated as

Vol <Ccy | Vo) 42 < Ceollmlls- (2.48)

Combining (2.26), (2.28), (2.40), (2.41), and (2.47)-(2.48), one deduces

t
[ e = e, (249)
0
forO<t<T.
Thus, we complete the proof of Lemma 2.2. d

In the following part, we estimate the turbulent kinetic energy k.

Lemma 2.3 There exists a unique strong solution k to the initial boundary value problem

(2.5) and (2.9) such that
t
WA / IV 2 ds < C, (2.50)
0
7 t
Ikl < Cetardl, / 1K1, ds < C, (2.51)
0
foro<t<T.

Proof We only need to prove the estimates. Differentiating the equation (2.5) with respect
to t, then multiplying both sides of the resulting equation by k; and integrating over €2, we
get

1d
3 3 WPk IVl == [ oKk~ [ pve k=2 [ oy ki ke

+/G;'kt_/pt9'kt_/p9t'kt
6

=) K (2.52)

we could evaluate K; (i =1,...,6) as follows.
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First, using a similar method to deriving (2.15), (2.20), (2.16), respectively, one has

1
Ky < Ceges | VK2, + Cll/okel1 72 + m V&2, (2.53)
Ky < C7' e " (I1/pkel?s + VKN + cactes) + nllvel2a okl (2.54)
2 2 1 2
Ks = Caoc | /pkillz + 7511 VAl (2.55)

Next, differentiating G’ with respect to ¢ and inserting the result thus obtained into Ky
yield

Ky = C/IVvtIIVVIIkzI+C/I/OIIJTIIVV:II/QI+C/Ipz||7TIIVV||/<:|

+C/ oIl Vvl

1 1
< Ceq IVPkell 2 IVl 2V Vi + Ceg 17t lloe 1V vell 2 1/ okel 2
1
+ Clillzoe | pell 3 IV VI kel s + Ceg I/ Pkell 2 17l 6 1V VI3
-1 2.2 2222 2 2 2 2
< Cnteoezes + Cepereses + Clly/pkellfs + C(IIvellzn + el ) Iv/okell 72

1 2
o VAN (2.56)
Last, direct calculation leads to
/ 222 k 2 i k 2
Ks < [l pell 31012 llkellze < Cegeyes + Cllv/pkellza + 10 Vel 2 (2.57)
1
Ko < Ceg lIn/okell 210l 2 < Cn7teo + 1012 1|/ Pkell?. (2.58)

On the other hand, we easily get

d 1
Enwuiz < —0||th||§2 + C|| VK|, (2.59)

k7> < Ceoll/pkell > + CllkI o (2.60)

d |
de
Combining (2.52)-(2.60), we obtain

d
a(llx/ﬁktlliz + [IklI70) + IV A7

2 4 -1 27+1 2 2 2 2 2 2
< Clcoey +n7ted" et + nlvellzn + nllmellz + nll6ell ) (I/okell72 + IKI31)

+ C(n7'cjeicyc3ei + cyeicact), (2.61)

setting 1 = ¢;! and using the Gronwall inequality, we deduce

t
I/PkellZ2 + K12 + f IVk]|?, ds < Ccy (2.62)
0

for 0 <t < T, where we have used the fact that limHO(H\//_)ktlli2 + ||k||?_[1) <Cc.
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Then, by the standard elliptic regularity result of the equation (2.5) and using (2.62), we
have
3 2
VKl < Ceq ll/okell 2 + Ceollvlir= IVl 2 + ClI VY74
+ Ceollm |4l VVle + CeollO]l 2

< Ccé ac (2.63)
and
| VK] 10 = Clokell +1lov - VKl + |G || + 11060111).- (2.64)

To evaluate fot ||k||]213 dt, we will estimate the right-hand side of (2.64) item by item.
In fact, we derive by using (2.62) and (2.63) that

l okellp < C(”pkt”L2 + ”V(,Okt)HLz)
< Ccé + Ceo|| Ve || 12, (2.65)
llov- Vil < C(llpv- VK2 + ||V (ov- VK| )
< Cleollvli= VKl 2 + IV ol IVl VK 2

+coll VVIIza | VKl a + collviizes | VK] ,2)

< Cc§ clcg, (2.66)
”G’”H1 < C(||VV||§4 +|\Vv-p 7|2+ HVV~ VZVHL2 + ||V(Vv~p . n)HLZ)
< C(IVVIZs + collm o I VVl2 + VW || V2V 4 + collm il | V2V
+ 7 IVl VI 2 + coll VY |V [ 12)
< Ccoclc%CSC5, (2.67)
and
o6l < Cllpllps Ol < Ceocr. (2.68)

Therefore, inserting (2.65)-(2.68) to (2.64) and integrating the result thus obtained over
(0,%), one gets

t
| e = (2.69)
0
forO<t<T.
Combining (2.62), (2.63), and (2.69), we complete the proof of Lemma 2.3. O

In the next part, we estimate the viscous dissipation rates of the turbulent flows ¢.
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Lemma 2.4 There exists a unique strong solution ¢ to the initial boundary value problem

(2.6) and (2.9) such that
t
I/erl + el + / Vel ds < C, (2.70)
0
9
lellye < Celcics (2.71)
foro<t<T.

Proof We only need to prove the estimates. Differentiating the equation (2.6) with respect

to ¢, then multiplying both sides of the result by ¢, and integrating over €2, one obtains

1d
S IV/Peellz2 + 11Ved 72

:—/ptwVs-et—/pvt'V£~st—2/pv~Vst-st
J(557), = [ (%57)
+ & — <&
T ¢ 4 ¢

5
-3 k. (2.72)
i=1

We could evaluate E4 and Es in the first place. Because 7 has an upper and a lower bound

away from zero, direct calculation yields
E, < cf(|c;;e| + |66, + |Gom|)led
< C/(IVvt -V + |pee VY| + |pr: V| + |,071Vvt|)|9||8t|
+ C/(Wvl2 + o VV|) |6 lee| + C/(IVVI2 + o7 VV|) 10 ||| e

1 1
< Ceg 1011202 IV VILoo Vel 2 i/ pecll 2 + Ceg I eI/ pecll 2 | pell s 1V VI 6 1016
1
+Ceq /el 2 Il s VI 1016 + Ceoll oo l1€1lzoe Vel 2 [l /peell 2
2
+ Cllv/pecl 2110l 2 1 VVIIzeo + Ceoll Ml I/ 0Ee | 2 10l 2 [V Vil

1 1
1 ) 1
+Ceq Iv/peel 2 17l s VI 101l + Ceg I e llv/pecll 2 el 6 1 VVILs 161l s

-1 2 4.2 4 2 4 2 4 2 2 2 2 2
<Cn C0C1CyCC3Cs + CCOC1C265 + CTI(”VW”Lz + ||7Tt||L6 + ||9t”L2)”\//_35t||L2
2
+ Cll/oeell;2 (2.73)

and

Es < C/|pt628,| +C/|99t,08t| +C/|p927rtst|

1 1
2 2 2 2
= Clloels10117alleclzs + Ceg ll/pecll2 1002110110 + Ceg 1/peell 2 el 2101170
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1, 4 2 42 2 2 2 2
< Cnleocg + Cegeies + Cllv/peclfa + Cn(l160: 072 + el f2) /el 2

1
+ gllVatlliz. (2.74)

Next, using an argument similar to that used in deriving (2.53), (2.54), (2.55), (2.60), and
(2.59), respectively, one gets

1
Ey < Ceges [ Vell?, + Clly/pecll?s + Enwtuiz, (2.75)
Ey < Cleg"  (I/pedl? + Vel + ctes) + nlvel2allv/pecdl, (2.76)
2 2 1 2
Es = Ceocsll/pecla + 15 IV el o, (2.77)
d 2 2 2
3 1€llZ2 = Cllel7> + Ceoll /e, (2.78)
and finally
d 2 1 2 2
3Vl = gIIVed + ClIVell. (2.79)

Combining (2.72)-(2.79), one obtains

2 2 2
(Ivoeelz2 + lellzn) + 1 Vel 72

2 4 -1 2y+1 2 2 2 2 2 2
C(cges +n7'cy ™ +nllvell i+l 20 + nllmellFa) (I/Peell2 + llel7a)

1d
2dt
=

+ Cnteoctcycacsct + Cepercyes, (2.80)

setting 1 = ¢;! and using the Gronwall inequality, one obtains

t
I/erl + el + / IVerl2 ds < C (2.81)
0

for 0 < t < T, where we have used the fact that limteo(llﬁstlliz + ||8||i[1) <Cc.
Next, applying the standard elliptic regularity result to the equation (2.6) and using
(2.81), we have
1
IVellm < Cleg llv/pecll2 + collvlizs I Vell s + 1 VVIZ6 1616

2
+ ol VVlls 1016l Il 6 + collON17a)
1 1
322 2 7
< C(qae +coatlVel L1 Vell %), (2.82)

therefore, by the Young inequality and (2.81), one deduces

9
322
llellz2 < Ceg cyes.

Thus, we complete the proof of Lemma 2.4. d

Finally, we estimate the total enthalpy 4.
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Lemma 2.5 There exists a unique strong solution h to the initial boundary value problem

(2.4) and (2.9) such that
t
1Pk + ThI% + f IVl ds < C&, (2.83)
0
7,
il 2 < Ce2™ c3c? (2.84)
foro<t<T.

Proof We only need to prove the estimates. Differentiating equation (2.4) with respectto ¢,

multiplying both sides of the result equation by /, and integrating over 2, one obtains

d
E(ll«/ﬁhtllfz +ilgn) + IVA S

=—/ptv~Vh~ht—/pvt~Vh~ht—2/,0v-Vht-ht+fptt-ht
+/ut'Vp'ht+/u~th'ht+/S,’“'ht

7
- H,. (2.85)
i=1

First of all, using similar methods of deriving the estimates (2.15), (2.20), and (2.16), re-

spectively, one has

1
H; < Ceges | VRN2, + Clly/ph|?, + o VA2, (2.86)
Hy < Cp7ed’ (ches + I/Dhel?s + IV + nllvel?all/phell %, (2.87)
1
H < CeocyI/phellgz + 551 Vel 2 (2.88)

Second, differentiating the equation (2.2) with respect to ¢ yields
o =—p:V-Vv+pV-v+v,-Vop+v-Vp;. (2.89)

Therefore, by direct calculation and using (2.89), we derive

Hy = /[V(J/ D" p = yp" NV v+ pV v+ v - Vp+v- V)| by

3 1
< Cey *llpellfall/Phellz + Ceg * llpells IV VIl s /el 2
1 1
Y—3 Y—3
+Ceo *lIV/Phell2Vvell2 + Cey * I/ phell2lvell sV ol
1
y-1
+Ceo *IIVpell2 VIl ll/ohel 2

1
2y+1 -1 2
< C(c " +n7'ey” + IPhellfs + nlvellzplV/phell72) + %”v}lt”ir (2.90)
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Third, simple calculation and (2.26) lead to

y—1 y—1
Hs < Cey *llv/ohell2 IV pllsllucl s < Ceg * Ilv/0hell2 1V olls (el 2 + 1V atell2)

< CcMI/PhellZs + Ceg ™ + ClIVug ). (2.91)

Next, by direct calculation, we know that Vp, = y(y —=1)p? 20,V p + yp? 1V p,. There-
fore,

He = CCE_Z/IP:IIMIIV,OIIhtI+CC€_1/|MIIVPtIIth

-2
< Ccg IVl ll ol s lwl 2 (1/ohe 2 + VAl 12)
-1
+Ccy ||u||L3”th“Lz(”\/ﬁht"Lz + VA 12)

< Cey™ 3+ Cly/phells + — 20 ||Vht||§2. (2.92)

Last, simple calculation yields |S},| < C|VV||Vv,| + Cp?pl|Vp[* + Cp? V||V pl,
thus

H; < C/|VVt||VV||ht|+CC10/71/|pt||vl)|2|ht| +CC071f|th||Vp||ht|

1 1
Y-
< Ce Vvl IVvell 2 ll/ohell2 + Ceg > pellzs 1V o176 /ol 2

_1
+Cey 2Vl IV el 2 Il /el 2
< C(ncock + )™ & + 0l Vvl ll/Phel % + /PR 2). (2.93)

Furthermore, we easily have

d . o 2 2

&Ilhlle < Ceollv/phellp2 + Cliall2 (2.94)
and

IIVhIILz < C|IVhIZ o ”Vht”Lz (2.95)

Consequently, combining (2.85)-(2.95), one deduces

d
a(n\/ﬁhtniz + 11012,) + IV A2

2y +1 —1 2y+1
<C(ey "5+ 7ty et + nllvelZa) (II/ohell s + Al 20)

+C(c g n‘lcgﬂycgc%) (2.96)
setting 7 = ¢;! and using the Gronwall inequality, we get
t
IV/Phl7> + IR, +/ V172 ds < Ccg (2.97)
0

for 0 <t < T, where we have used the fact that lim, .o (|l /o |?, + 14]17,) < Ccj.
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Next, using (2.97) and the standard elliptic regularity result of the equation (2.4), one
obtains
1 -1 -1
VAl < Clcg lI/Phell2 + collvllgs I VAl + ¢ ol + ¢ llulls Vol
-1
IVoll7s)

2
+ V2, +ch

5+v 2 3 3
< Cc; ¢+ Ceoct|| VA LI VA

Z, (2.98)

then the Young inequality and (2.97) yield
%ﬂ’ 2.2
17l 2 < Cey * cics
Thus, we have finished the proof of Lemma 2.5. O

Next, let us define ¢; (i = 1,...,6) as follows:
a=Ce™, €= Cc§+3ycf, s = Ccé ack,
C6 = Cc(% ces, c3 = Cc(?+3ycfczc5, Cy = chwycfc%,
then we conclude from Lemma 2.1 to Lemma 2.5 that

supg<y<r (1l + Kl + ll€ ] 1)

T 2 2 2 2
Sy kN2 + ol 2y + kel 2+ llecl?,) dE < e, .99

T2
Sup0§t§T ”I’t”H2 =<, SupostsT ||u||H3 =c3, fo “M”H4 de = C4)

SUPo<;<T ||k||H2 <5, SUPg<¢<T llell 2 < co,

and

o1l 3y < Ceo, | oell () < Ceoca,

/PRl + 120 + [y IVR|%, ds < Cc, (2.100)
7+)/

A2 < Ceg " cies,

forO<t<T.
Using a standard proof as that in [13], we complete the proof of Theorem 2.1. d

3 Existence of strong solutions to the k-¢ equations
Theorem 3.1 There exist a small time T* > 0 and a unique strong solution (p,u, h, k, €) to
the initial boundary value problem (1.1)-(1.10) such that
peC(0,TH?),  p,eC(0,TH'),  ueC(0,TH’)NL*(0,T*H"),
uy € L*(0,T%H'), ke C(0,T5H*)NL*(0, % H?),
ke L*(0,T5H"), eeC(0,T5H?), & eL*(0,T%H"), 3.1)
heC(0,TH?*),  h eL*(0,T*H"),
(Vous, /okss /PEL /Phy) € L™ (0, T*;LZ).
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Proof Our proof will be based on the iteration argument and on the results in the last
section (especially Theorem 2.1).

First, using the regularity effect of the classical heat equation, we can construct functions
(u® = u(x, t), kO = kO(x, £), €% = £(x, 1)) satisfying (u°(x, 0), k°(x, 0), £%(x, 0)) = (uo(x), ko (x),

&o0(x)) and

supo< <7 (14 [l + 1K |1 + 11€°]1112)
T 2 2 2 2
+ fo UKO1Zs + N 170 + IR NZ 0 + el l2) de < e,
T
SUPogST ”MO ”H2 < C, SUPOStsT ”Mo ||H3 <3, fo ”uO ”12_[4 dt < ¢y,

supo<e<r K%z <¢s,  Supg,r €% 12 < ce.

Therefore it follows from Theorem 2.1 that there exists a unique strong solution (o', ul,
K, kY, €') to the linearized problem (2.2)-(2.6) with v, 7, 8 replaced by u°, k°, %, respec-
tively, which satisfies the regularity estimates (2.99) and (2.100). Similarly, we construct
approximate solutions (p”, 4", h", k", €"), inductively, as follows: assuming that W L
£"1 have been defined for n > 1, let (0", u", k", k", &") be the unique solution to the lin-
earized problem (2.2)-(2.6) with v, , 0 replaced by Wl ferl entl respectively. Then it

follows from Theorem 2.1 that there exists a constant C > 1 such that

sup ([[0" s + [ 07 ;0) + sup ("] + K" 12 + €2 + 17" 2)
<t<T 0<t<T

+ sup (Vo + [WVor o + [Vork 2 + Vel 2)
T
+f0 (e 7+ W U+ 08 D+ e + D + 1) < € (32)

for all n > 1. Throughout the proof, we denote by Ca generic constant depending only
on m, M, y, |2], and ¢y, but independent of n. Next, we will show that the full sequence
(0" u", H", k", e") converges to a solution to the original nonlinear problem (1.1)-(1.10) in
a strong sense.

Define 5" = pl — p7, ™1 = i+l _ gy, AR | e
prt=ptt-pt= (0" - (07

Then, by equations (2.2)-(2.6), we deduce that (5!, 7!, Z’Hl, FM, gL, p") satisfy

the following equations:

n+1 _
— kn+1 _kn’ 8n+1 — £n+1 _gh

’

ﬁ;’+1 +V. (ﬁ”“u” + pnﬁn) — 0, (33)

pn+1ﬁ;l+l + ﬁn+1u:1 + pn+lun A Vﬁwrl + ﬁn+lun Vu + p”ﬁn Vu"

~ AT - V(V - u"™) + VT = _;V(ﬁ””k” +p"K"), (3.4)

n+1 —n+l

pn+1ﬁ:’+1 + ﬁnﬂh? + pn+lun Vi + + ﬁnﬂun VK 4+ pnﬂn VI — Al

=g+ w VPt w0 = Show (3.5)

n+l
—n+l

pVH-l%:H'l + ﬁrﬁlktn ¥ pn+lun . V%’”'l + ﬁmlun VK + p"u" - VK — Ak

-G G - (pn+18n _ pngn—l), (36)

n+tl — Yn
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pn+1 —=n+l +pn+18n +pn+1 n V8n+1 +pn+1 ", yel +p"ﬂn .Ve” _A§”+1

G;z+ ot G;En_l pn+1(8n)2 pn(gn—l)Z

=G L — -G -— (3.7)

k" k" k" <

where
4 n n 2 n n Ht n+1 n+l

Sins1 = ,u(ajui + Biuj) - §8ij,uakuk U + ——— ()2 p" 9", (3.8)

4 n n n 2 n+lpn n
G = 0u; ue(ajui + Biuj) - §5i/(,0 k" + uealul) . (3.9)

To evaluate ||p"|| 2, multiplying both sides of the equation (3.3) by "*! and integratin
plying q Y g g

the result over 2, we get

1d|
2 de

=—/V-(,On+llzin+,0 I/l) pn+1

—n+l
L2

:_f( n+1) V- u" +pn+1 n~Vﬁ"+1 +p anV 7" +pn+1 n-V,OW. (3'10)

Applying integration by parts to the second term of the second equality of (3.10) and
using the Holder, Sobolev, and Young inequalities yield

d,_
vl Ll el (A7 P o TR el VY o PP i P R PP ol )

< C(L+nY)|7"3 + Cn| VA" |2, (3.11)

where (3.2) has been used and 0 < 1 <1 is a small constant to be determined later.
Next, multiplying both sides of (3.4) by z"*' and integrating the result thus derived
over 2, one obtains

S Nl P L PR LA

:_/ﬁn+1u;1 ﬁ +1 /‘ﬁnﬂ n VI/l 1_/pnﬁn.vun.ﬁn+l_‘/vﬁn+l.ﬁn+l

) -
+/?V(5n+lkn +pnk”+1) el
5
=> L. (3.12)

i=1

Using the Holder, Sobolev, and Young inequalities and (3.2), we estimate L, Ly, and L3,
respectively, as follows:

L= Clp" o st s |2 s = L2 2 ||u? | (Vo ta | + [ v )

< Cla a2 2 + CIV i o + || Vi, (3.13)
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Ly = Cl" | ol o [ Vor" | o | IILe

=8l [+ TV s 5|92 614
Ly = Cl | o [ Vi s | Vo | o = Co Vo ta el [ (315)
Then one deduces by integration by parts that
Ly= / prv.utt<cC / 7V w < Cl |, + S H v}, (3.16)
and
L = %/ﬁmknv.ﬁm_ﬁvpn_ VR
= CIp" 2 IV o+ CIK o[ V0" [ [V o1
+C|VE | o Vo
=S ) (|7} + Vo @ )+ Ve G+ El® e Ga)

Inserting (3.13)-(3.17) to (3.12) and using inequality [|Z"*!||;2 < C||v/p"* %"} ||;2, one has

d _ _
GIVerm s @ty < Caen™ + g ) (I e + IV a 1)

+ Cnl[K” [ + Cnla [ (318)

Then, multiplying both sides of (3.5) by 7" and integrating the result thus got over €,
one obtains

2 dt H / n+1th+1 ”L2 ” th—l ”L2
_ _/ﬁrwlh:, 'Enﬂ _ /5n+1 RV EVHI —/p"ﬁn VI 'E}Hl
+ /(ﬁzwl L. mel +u. Vﬁ!’Hl) -Eml /(S;(n+1 S;(,,,) .Zml

5
= Z M, (3.19)
i=1

First, using similar methods of deriving (3.13), (3.14), and (3.15), respectively, one easily

obtains

o, < g |7 [ + € HLZ - LV, 20
oy < 2+ E T [+ o [ B2

M = S |V i 1+l (3.22)



Yuan and Qin Boundary Value Problems (2016) 2016:27 Page 21 of 26

Second, simple calculation leads to
Ma= [T () ot =y (o) o] B o
+ / Y ity (3.23)
By the differential mean value theorem, the first integral of (3.23) can be controlled as
/ [y () ot =y (") i - B
<c [l [ vy me A 52

By the equation (3.3), the second integral on the right-hand side of (3.24) can be estimated
as

/ v (") ot W
=- / y (o) 7V (o) B
< [ |7 [ e+ € [ 15|97
/(|Vp @] + |o"||va'|) [F". (3.25)

Then the second integral on the right-hand side of (3.23) can be controlled as
/En+l ) Vp””ﬁnﬂ < C/|ﬁ”*1||Vp”+lHﬁn+1| (3.26)

Next, applying integration by parts to the third integral on the right-hand side of (3.23),

we easily get
/ W R < C / V|| |[F| + € / || || V™). (3.27)

Consequently, combining (3.23)-(3.27) and using the Holder, Sobolev, and Young inequal-

ities and (3.2), one obtains

n+ P —n+1
(1+n )P 1||Lz+||v )

—n+l

t2 A [+ 55 || VE" 2+ Sl (3.28)

Finally, we evaluate Ms. Direct calculation yields

M = € [ (90 + [ ) v [+ ¢ [ om0 vpm

/( n)2 —n+la n+l h /( n)z na—n+1 h
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< [((va |+ (vt Va5 + € [ 5 |vpm PR
e D e Ry I [
v [l |VE" v c [ |9l |5
v 192l 5+ € [ 19077 |9, (3:29)
Then, applying a similar method to deriving (3.28), one deduces
< S )7 e+ IV ) sl s g I9E e @30)
Consequently, inserting (3.20)-(3.22), (3.28), and (3.30) into (3.19), one gets
VTR P B < T+ ) (7 o+ IV )
e gl [+ Enl 631

For the turbulent kinetic energy &, using a similar method of deriving (3.19), one easily
deduces from equation (3.6) that

—n+1 —n+l
S N A L

:_/lﬁmlkf ,E"H _/ﬁn+l VIV E z"*

_ / pnﬁn VK. E“*l " /(Glnﬂ G/) . E”“ _ /(pn+18n _ p”g”_l) _%”*1
=Y N (3.32)

We first evaluate Ny. Using the inserting items technique, one easily gets

n+l |

No = [ (vl + jvurt)) v [k

v [(vml [t 7« v R DR 639)
Using the Holder, Sobolev, and Young inequalities and (3.2), we have
Ny = C(+n ™) (|7 5o + [V K™ [52) + Tn[K" [ + T @ 1 (3.34)

Second, we estimate Ns. Using a similar method to deriving (3.33) and (3.34), we have

N / (7" + p"e") K < C(12 e e + 1" sl ) IV TR

<Cen ) (Vo ®™ 2+ [0 32) + Cnle (3.35)
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Next, using a similar method to deriving the estimates of (3.13), (3.14), and (3.15), re-

spectively, one easily gets

~ ~ _ 1 —
el 1 Y Lol Al N/t P Ll (3.36)
Ny =Tl 2 + TV 2+ £ VR |2 (3.37)
Ns = Tt [Vor k™ | 4 @ | (3.38)

Consequently, inserting (3.34)-(3.38) to (3.32), one deduces
d _ _ N _
IV TR [R [ < S ™ R 5) (Vo & ™ 2+ 1772
+ C([&" 15+ 1" 3 + 127 [50). (3.39)

Next, multiplying both sides of (3.7) by #**! and integrating the result over £, one gets

1d
N e P
— _/ﬁn+18:l . §n+1 _/ﬁnﬂun .Ve”. §n+l

G .g" G’ Sn—l
—/pnﬂn-Vg”-§”+1 +C1/( n/:i _ ]:n—l ) gl

~ C2/|:pn+l(8n)2 ~ pn(gn—1)2i| _§n+l

k" k-1

5
_ Z Q.. (3.40)

i=1
Using an argument similar to that used in deriving (3.13), (3.14), and (3.15), respectively,

we obtain
< Ev n||2 ||=n+l |2 6 \/W—}’l+1 2 1 vl 2

Q = Cle a2 | + ClVorte o + S VE 2 (3:41)
Q =< Clp" 2 + CIVorie™! | s + %IIV?’“”I e (342)
Qs < i [V iz |2, + . 6.43)

Next, direct calculation leads to
Qi =< C/(IW”HW”\ +|va| [V ) e[

+C/(IE”I # e R ) [vurt e

2C1 5 / (8ju:tpn+lkn8n/<n—l _ aju;q—lpnkn—lgn—lkn) i
—_ —0: . 8
37 ki1

Sf(IWIIW| +|[va|[vur ) e e
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o [ (] + e R vt e

C [[(w |+ v |+ 9t [E e f57|
o€ [ (L4 e R v e

Tl )V e 7

En(1@ [+ 17 [+ ") + 5 198"

Finally, using a similar method of deriving the estimate of Q4, one deduces

~ 1
Qs < CU+ ) (Ve 1o + [ ) + Cul Ve[ + [ VE" 2

Consequently, inserting (3.41)-(3.45) to (3.40), one derives

d
o7 N PR i
<Cwn™ + e ) (Vo [ + 2 2)

Con(IR” I + N s + 12 50)-

Page 24 of 26

(3.44)

(3.45)

(3.46)

In the end, combining (3.11), (3.18), (3.31), (3.39), and (3.46), and setting ¢"*'(¢) =

112 —n+1 )2 n+l, o n+l, o i+l
™12 + I o @™ 12y + 1 e 112, + 1V 17, + (1 e 8™ 12,, we get

—n+l

&

Lo @2, + 7

dt

PR

<Cwn™ o+ a7+ 1 s + IR + et )o@

”1—11

+ Sl [ + 1K + 12" -

(3.47)

Setting I7'(t) = Cl+n'+ N 1125 + 421125 + k21125 + lle7 [175) and applying the Gronwall

inequality to (3.47) yield

w"“(z)s&n[exp(/ s)ds)]</ (|7 ||H1+||%"||;+ngn||j,l)ds),

where it should be noted that ¢"+1(0) = 0.

Since
t ~ ~ ~
/ I'(s)ds < Ct+ Cn7't + C,

0

setting T <n<1,wehave

fort < T.

(3.48)

(3.49)

(3.50)
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By (3.48)-(3.50), integrating (3.47) from [0, ¢], one derives
t
") + /0 (1 s+ 0 [ 1E G + 270 1) s
~ t 9 —ny2 3 t t
SCCn( [+ 1% ||H1+||E”||H1)ds>[( [ 1;;<s)ds)exp( | I,;’(s)ds>+1}
0 0 0
t N
< Cnexp(© [ (I} + KL+ 12" ) s @51
0

for T* := min{T, T}.
Therefore, we have

oo oo t _ _
D suwp g0+ ) / (7 o+ 07+ IR s+ [ ) s
n=1 0st=T n=1 0
oo t .
<Coexp@ X [ ([l + R+ 7] (3.52)
n=1

Thus, choosing 7 such that Cn exp(E') < =, one deduces

1
2

- n+l - bl 2 1 - ! —n+1]|2 Zh+1 )2 —n+1 |2
2 sup ¢ ey D | B pds 3 D0 (1 o+ IR i+ [ ) s
n=1 n=1

oy 0<t<T

<CC < . (3.53)

Therefore, we conclude that the full sequence (p”, u”, 1", k", ") converges to a limit (o, u, A,
k, &) in the following strong sense: p" — p in L>(0, T; L*(Q)); (u", k", k", &™) — (u, h, k, €)
in L2(0, T; HY(Q)). It is easy to prove that the limit (o, u, &, k, £) is a weak solution to the
original nonlinear problem. Furthermore, it follows from (3.2) that (p,u, h, k, €) satisfies

the following regularity estimates:

sup (ol + loellzn) + sup (lutllys + 1Kl + Nl + Whally2)

0<t<T* 0<t<T*

+ sup (Iv/oucll2 + Iv/phell2 + IV/pkell 2 + 1/Pecl 1)

0<t<T*

T*
2 2 2 2 2 2 fa
+/ (letelizp + WG + Wkl + leclza + Nl + K1) < C < 0.
0

This proves the existence of a strong solution. Then we can easily prove the time continuity
of the solution (p,u, i, k, &) by adapting the arguments in [9, 13]. Finally, we prove the
uniqueness. In fact, assume (p1, 1, 11, k1, €1) and (o2, us, hi2, ko, €2) be two strong solutions
to the problem (1.1)-(1.10) with the regularity (3.1). Let (9, %, 4, k, &) = (p1 — p2, 1 — 1, 1y —
hy, ki —ky, €1 — €2). Then following the same argument as in the derivations of (3.11), (3.18),
(3.31), (3.39), and (3.46), we can prove that

d, _ — _ _
5(||p||iz + /Pl s + 1 /Prhl 2 + 11k 22 + [|1/PiEll22)
<RO(I217: + I/prl}s + I1/orhl2s + Iv/o1kl 2 + [1/PiEll22)
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for some R(t) € L'(0, T*). Thus, by the Gronwall inequality, we conclude that (p, %, k%) =
(0,0,0,0,0) in (0, T*) x 2. This completes the proof of Theorem 3.1. O
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