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Abstract

In this article we obtain, in the setting of metric spaces or ordered metric spaces,
coincidence point, and common fixed point theorems for self-mappings in a general
class of contractions defined by an implicit relation. Our results unify, extend,
generalize many related common fixed point theorems from the literature.
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Introduction and preliminaries
It is well known that the contraction mapping principle, formulated and proved in the

Ph.D. dissertation of Banach in 1920, which was published in 1922 [1], is one of the

most important theorems in classical functional analysis. The study of fixed and com-

mon fixed points of mappings satisfying a certain metrical contractive condition

attracted many researchers, see for example [2,3] and for existence results for fixed

points of contractive non-self-mappings, see [4-6]. Among these (common) fixed point

theorems, only a few give a constructive method for finding the fixed points or the

common fixed points of the mappings involved. Berinde in [7-15] obtained (common)

fixed point theorems, which were called constructive (common) fixed point theorems,

see [12]. These results have been obtained by considering self-mappings that satisfy an

explicit contractive-type condition. On the other hand, several classical fixed point the-

orems and common fixed point theorems have been recently unified by considering

general contractive conditions expressed by an implicit relation, see Popa [16,17] and

Ali and Imdad [18]. Following Popa’s approach, many results on fixed point, common

fixed point and coincidence point has been obtained, in various ambient spaces, see

[16-25] and references therein.

In [21], Berinde obtained some constructive fixed point theorems for almost contrac-

tions satisfying an implicit relation. These results unify, extend, generalize related

results (see [2,3,7-16,21,25-38]).

In this article we obtain, in the setting of metric spaces or ordered metric spaces,

coincidence point, and common fixed point results for self-mappings in a general class

of contractions defined by an implicit relation. Our results unify, extend, generalize

many of related common fixed point theorems from literature.
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Let X be a non-empty set and f, T: X ® X. A point x Î X is called a coincidence

point of f and T if Tx = fx. The mappings f and T are said to be weakly compatible if

they commute at their coincidence point (i.e., Tfx = fTx whenever Tx = fx). Suppose

TX ⊂ fX. For every x0 Î X we consider the sequence {xn} ⊂ X defined by fxn = Txn-1
for all n Î N, we say that {Txn} is a T -f -sequence with initial point x0.

Let X be a non-empty set. If (X, d) is a metric space and (X, ≼) is partially ordered,

then (X, d, ≼) is called an ordered metric space. Then, x, y Î X are called comparable

if x ≼ y or y ≼ x holds. Let f, T: X ® X be two mappings, T is said to be f -non-

decreasing if fx ≼ fy implies Tx ≼ Ty for all x, y Î X. If f is the identity mapping on X,

then T is non-decreasing.

Throughout this article the letters ℝ+ and N will denote the set of all non-negative

real numbers and the set of all positive integer numbers.

Fixed point theorems for mappings satisfying an implicit relation
A simple and natural way to unify and prove in a simple manner several metrical fixed

point theorems is to consider an implicit contraction type condition instead of the

usual explicit contractive conditions. Popa [16,17] initiated this direction of research

which produced so far a consistent literature (that cannot be completely cited here) on

fixed point, common fixed point, and coincidence point theorems, for both single-

valued and multi-valued mappings, in various ambient spaces; see the recent nice

paper [21] of Berinde, for a partial list of references.

In [21], Berinde considered the family F of all continuous real functions

F : R6
+ → R+ and the following conditions:

(F1a) F is non-increasing in the fifth variable and F (u, v, v, u, u + v, 0) ≤ 0 for u, v ≥ 0

implies that there exists h Î [0, 1) such that u ≤ hv;

(F1b) F is non-increasing in the fourth variable and F (u, v, 0, u + v, u, v) ≤ 0 for u,

v ≥ 0 implies that there exists h Î [0, 1) such that u ≤ hv;

(F1c) F is non-increasing in the third variable and F (u, v, u+v, 0, v, u) ≤ 0 for u, v ≥ 0

implies that there exists h Î [0, 1) such that u ≤ hv;

(F2) F (u, u, 0, 0, u, u) >0, for all u >0.

He gave many examples of functions corresponding to well-known fixed point theo-

rems and satisfying most of the conditions (F1a)-(F2) above, see Examples 1-11 of [21].

Example 1. The following functions F ∈ F satisfy properties F2 and F1a-F1c (see

Examples 1-6, 9, and 11 of [21]).

(i) F (t1, t2, t3, t4, t5, t6) = t1 − at2, where a Î [0, 1);

(ii) F (t1, t2, t3, t4, t5, t6) = t1 − b(t3 + t4), where b Î [0, 1/2);

(iii) F (t1, t2, t3, t4, t5, t6) = t1 − c(t5 + t6), where c Î [0, 1/2);

(iv) F(t1, t2, t3, t4, t5, t6) = t1 − amax{t2, t3+t42 , t5+t62 }, where a Î [0, 1);

(v) F (t1, t2, t3, t4, t5, t6) = t1 − at2 − b(t3 + t4) − c(t5 + t6), where a, b, c Î [0, 1) and

a + 2b + 2c <1;

(vi) F(t1, t2, t3, t4, t5, t6) = t1 − amax{t2, t3+t42 , t5, t6}, where a Î [0, 1);

(vii) F (t1, t2, t3, t4, t5, t6) = t1 − at2 − L min{t3, t4, t5, t6}, where a Î [0, 1);

(viii) F(t1, t2, t3, t4, t5, t6) = t1 − amax{t2, t3, t4, t5+t62 } − Lmin{t3, t4, t5, t6},
where a Î [0, 1) and L ≥ 0.
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Example 2. The function F ∈ F , given by

F(t1, t2, t3, t4, t5, t6) = t1 − amax{t2, t3, t4, t5, t6},

where a Î [0, 1/2) satisfies properties F2 and F1a-F1c with h =
a

1 − a
< 1.

Motivated by [21], the following theorem is one of the main results in this article.

Theorem 1. Let (X, d) be a metric space and T, f: X ® X be self-mappings such that

TX ⊆ fX. Assume that there exists F ∈ F , satisfying (F1a), such that for all x, y Î X

F(d(Tx, Ty), d(fx, fy), d(fx, Tx), d(fy, Ty), d(fx, Ty), d(fy, Tx)) ≤ 0. (1)

If fX is a complete subspace of X, then T and f have a coincidence point. Moreover, if

T and f are weakly compatible and F satisfies also F2, then T and f have a unique com-

mon fixed point. Further, for any x0 Î X, the T-f-sequence {Txn} with initial point x0
converges to the common fixed point.

Proof. Let x0 Î X be an arbitrary point. As TX ⊆ fX, one can choose a T-f-sequence

{Txn} with initial point x0. If we take x = xn and y = xn+1 in (1) and denote with u = d

(Txn, Txn+1) and v = d(Txn-1, Txn) we get that

F(u, v, v, u, d(Txn−1, Txn+1), 0) ≤ 0.

By triangle inequality, d(Txn-1, Txn+1) ≤ d(Txn-1, Txn) + d(Txn, Txn+1) = u + v and,

since F is non-increasing in the fifth variable, we have

F(u, v, v, u, u + v, 0) ≤ 0

and hence, in view of assumption (F1a), there exists h Î [0, 1) such that u ≤ hv, i.e.,

d(Txn, Txn+1) ≤ hd(Txn−1, Txn) for all n ∈ N. (2)

By (2), in a straightforward way, we deduce that {Txn} is a Cauchy sequence. Since fX

is complete, there exist z, w Î X such that z = fw and

lim
n→+∞ Txn = lim

n→+∞ f xn = fw = z. (3)

By taking x = xn and y = w in (1), we obtain that

F(d(Txn, Tw), d(f xn, fw), d(f xn, Txn), d(fw, Tw), d(f xn, Tw), d(fw, Txn)) ≤ 0. (4)

As F is continuous, using (3) and letting n ® +∞ in (4), we get

F(d(fw, Tw), d(fw, fw), d(fw, fw), d(fw, Tw), d(fw, Tw), d(fw, fw)) ≤ 0

which, by assumption (F1a), yields d(fw, Tw) ≤ 0, i.e., fw = Tw = z. Thus, we have

proved that T and f have a coincidence point.

Now, we assume that T and f are weakly compatible, then fz = fTw = Tfw = Tz.

We show that Tz = z = Tw.

Suppose d(Tz, Tw) >0, by taking x = z and y = w in (1), we get

F(d(Tz, Tw), d(fz, fw), d(fz, Tz), d(fw, Tw), d(fz, Tw), d(fw, Tz)) ≤ 0,

i.e.,

F(d(Tz, Tw), d(Tz, Tw), 0, 0, d(Tz, Tw), d(Tz, Tw)) ≤ 0,
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which is a contradiction by assumption (F2). This implies that d(Tz, Tw) = 0 and

hence fz = Tz = Tw = z. So T and f have a common fixed point.

The uniqueness of the common fixed point is a consequence of assumption (F2).

Clearly, for any x0 Î X, the T-f-sequence {Txn} with initial point x0 converges to the

unique common fixed point. □
Remark 1. From (2) we deduce the unifying error estimate

d(Txn+i−1, z) ≤ hi

1 − h
d(Txn−1, Txn).

From this we get both the a priori estimate

d(Txn, z) ≤ hn

1 − h
d(Tx0,Tx1), n = 1, 2, . . .

and the a posteriori estimate

d(Txn, z) ≤ h
1 − h

d(Txn−1,Txn), n = 1, 2, . . .

which are extremely important in applications, especially when approximating the

solutions of nonlinear equations.

If f = IX from Theorem 1, we deduce the following result of fixed point for one self-

mapping, see [21].

Corollary 1. Let (X, d) be a complete metric space and T: X ® X. Assume that there

exists, F ∈ F satisfying (F1a), such that for all x, y Î X

F(d(Tx, Ty), d(x, y), d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx)) ≤ 0.

Then T has a fixed point. Moreover, if F satisfies also F2, then T has a unique fixed

point. Further, for any x0 Î X, the Picard sequence {Tnx0} with initial point x0 converges

to the fixed point.

Common fixed point in ordered metric spaces
The existence of fixed points in ordered metric spaces was investigated by Turinici

[39], Ran and Reurings [40], Nieto and Rodríguez-López [41]. See, also [42-45], and

references therein. A common fixed point result in ordered metric spaces for mappings

satisfying implicit contractive conditions is given by the next theorem.

Theorem 2. Let (X, d, ≼) be a complete ordered metric space and T, f: X ® X be self-

mappings such that TX ⊆ fX. Assume that there exists F ∈ F , satisfying (F1a), such that

for all x, y Î X with fx ≼ fy

F(d(Tx, Ty), d(fx, fy), d(fx, Tx), d(fy, Ty), d(fx, Ty), d(fy, Tx)) ≤ 0. (5)

If the following conditions hold:

(i) there exists x0 Î X such that fx0 ≼ Tx0;

(ii) T is f-non-decreasing;

(iii) for a non-decreasing sequence {fxn} ⊆ X converging to fw Î X, we have fxn ≼ fw

for all n Î N and fw ≼ f fw;

then T and f have a coincidence point in X. Moreover, if

(iv) T and f are weakly compatible;

(v) F satisfies also F2,
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then T and f have a common fixed point. Further, for any x0 Î X, the T-f-sequence

{Txn} with initial point x0 converges to a common fixed point.

Proof. Let x0 Î X such that fx0 ≼ Tx0 and let {Txn} be a T-f-sequence with initial

point x0. Since fx0 ≼ Tx0 and Tx0 = fx1, we have fx0 ≼ fx1. As T is f-non-decreasing we

get that Tx0 ≼ Tx1. Continuing this process we obtain

f x0 � Tx0 = f x1 � Tx1 = f x2 � · · · � Txn = f xn+1 � · · · .

In what follows we will suppose that d(Txn, Txn+1) >0 for all n Î N, since if Txn =

Txn+1 for some n, then fxn+1 = Txn = Txn+1. This implies that xn+1 is a coincidence

point for T and f and the result is proved. As fxn ≼ fxn+1 for all n Î N, if we take x =

xn and y = xn+1 in (5) and denote u = d(Txn, Txn+1) and v = d(Txn-1, Txn) we get that

F(u, v, v, u, d(Txn−1, Txn+1), 0) ≤ 0.

By triangle inequality, d(Txn-1, Txn+1) ≤ d(Txn-1, Txn) + d(Txn, Txn+1) = u + v and,

since F is non-increasing in the fifth variable, we have

F(u, v, v, u, u + v, 0) ≤ 0

and hence, in view of assumption (F1a), there exists h Î [0, 1) such that u ≤ hv, i.e.,

d(Txn, Txn+1) ≤ hd(Txn−1, Txn). (6)

By (6), we deduce that {Txn} is a Cauchy sequence. Since (X, d) is complete, there

exist z, w Î X such that z = fw and

lim
n→+∞ Txn = lim

n→+∞ f xn = fw = z. (7)

By condition (iii), fxn ≼ fw for all n Î N, if we take x = xn and y = w in (5) we get

F(d(Txn, Tw), d(f xn, fw), d(f xn, Txn), d(fw, Tw), d(f xn, Tw), d(fw, Txn) ≤ 0.

As F is continuous, using (7) and letting n ® +∞ we obtain

F(d(fw, Tw), d(fw, fw), d(fw, fw), d(fw, Tw), d(fw, Tw), d(fw, fw)) ≤ 0

which, by assumption (F1a), yields d(fw, Tw) ≤ 0, i.e., fw = Tw. Thus we have proved

that T and f have a coincidence point.

If T and f are weakly compatible we show that z is a common fixed point for T and f

. As fz = fTw = Tfw = Tz, by condition (iii), we have that fw ≼ f fw = fz.

Now, by taking x = w and y = z in (5) we get

F(d(Tw, Tz), d(fw, fz), d(fw, Tw), d(fz, Tz), d(fw, Tz), d(fz, Tw)) ≤ 0.

Assumption (F2) implies d(Tz, Tw) = 0 and hence fz = Tz = Tw = z. So T and f have

a common fixed point. From the proof it follows that, for any x0 Î X, the T -f

-sequence {Txn} with initial point x0 converges to a common fixed point. □
We shall give a sufficient condition for the uniqueness of the common fixed point in

Theorem 2.

Theorem 3. Let all the conditions of Theorem 2 be satisfied. If the following condi-

tions hold

(vi) for all x, y Î fX there exists v0 Î X such that fv0 ≼ x, fv0 ≼ y;

(vii) F satisfies F1c,
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then T and f have a unique common fixed point.

Proof. Let z, w be two common fixed points of T and f with z ≠ w. If z and w are

comparable, say z ≼ y. Then taking x = z and y = w in (5), we obtain

F(d(Tz,Tw), d(fz, fw), d(fz,Tz), d(fw,Tw), d(fz,Tw), d(fw,Tz)) ≤ 0,

which is a contradiction by assumption (F2) and so z = w.

If z and w are not comparable, then there exists v0 Î X such that fv0 ≼ fz = z and fv0
≼ fw = w.

As T is f -non-decreasing from fv0 ≼ fz we get that

f v1 = Tv0 � Tz = fz.

Continuing we obtain

f vn+1 = Tvn � Tz = fz for all n ∈ N.

Then, taking x = vn and y = z in (5) we obtain

F(d(Tvn, Tz), d(f vn, fz), d(f vn, Tvn), d(fz, Tz), d(f vn, Tz), d(fz, Tvn)) ≤ 0,

i.e.,

F(d(Tvn, Tz), d(Tvn−1, Tz), d(Tvn−1, Tvn), d(fz, Tz), d(Tvn−1, Tz), d(Tz, Tvn)) ≤ 0.

Denote u = d(Tvn, Tz) and v = d(Tvn-1, Tz). As F is non-increasing in the third vari-

able, we get

F(u, v, u + v, 0, v, u) ≤ 0.

By assumption F1c, there exists h Î [0, 1) such that u ≤ hv, i.e.,

d(Tvn, Tz) ≤ hd(Tvn−1, Tz), for all n ∈ N.

This implies that d(Tvn, Tz) = d(Tvn, z) ® 0 as n ® +∞.

With similar arguments, we deduce that d(Tvn, w) ® 0 as n ® +∞. Hence

0 < d(w, z) ≤ d(w, Tvn) + d(Tvn, z) → 0

as n ® +∞, which is a contradiction. Thus T and f have a unique common fixed

point. □
If f = IX from Theorems 2 and 3, we deduce the following results of fixed point for

one self-mapping.

Corollary 2. Let (X, d, ≼) be a complete ordered metric space and T: X ® X. Assume

that there exists F ∈ F , satisfying (F1a), such that for all x, y Î X with x ≼ y

F(d(Tx, Ty), d(x, y), d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx)) ≤ 0. (8)

If the following conditions hold:

(i) there exists x0 Î X such that x0 ≼ Tx0;

(ii) T is non-decreasing;

(iii) for a non-decreasing sequence {xn} ⊆ X converging to w Î X, we have xn ≼ w for

all n Î N,

then T has a fixed point in X. Further, for any x0 Î X, the Picard sequence {Tnx0}

with initial point x0 converges to a fixed point.
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Corollary 3. Let all the conditions of Corollary 2 be satisfied. If the following condi-

tions hold

(v) F satisfies F2;

(vi) for all x, y Î X there exists v0 Î X such that v0 ≼ x, v0 ≼ y;

(vii) F satisfies F1c,

then T has a unique fixed point.

If F is the function in Example 2, then by Theorem 3 we obtain a fixed point theo-

rem that extends the result of Theorem 3 of [44].
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