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Antimicrobial peptide elicitors: New hope
for the post-antibiotic era

Ernesto Prado Montes de Oca1,2

Abstract

Antimicrobial peptides or host defense peptides are fundamental components of human innate immunity. Recent and

growing evidence suggests they have a role in a broad range of diseases, including cancer, allergies and susceptibility to

infection, including HIV/AIDS. Antimicrobial peptide elicitors (APEs) are physical, biological or chemical agents that boost

human antimicrobial peptide expression. The current knowledge of APEs and their potential use in the treatment of

human infectious diseases are reviewed, and a classification system for APEs is proposed. The efficient use of APEs in

clinical practice could mark the beginning of the urgently needed post-antibiotic era, but further trials assessing their

efficacy and safety are required.
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Introduction

Antimicrobial peptides (APs; also called host defense
peptides or innate defense peptides) are a group of fun-
damental components of innate immunity. Recent and
growing evidence supports their role in a broad range
of diseases, including cancer, allergies and susceptibility
to infection, including HIV/AIDS.1 The most studied
APs are a- and b-defensins, both families are comprised
of cationic peptides of 2–6 ku, with three pairs of disul-
fide bridges and the linear antimicrobial peptide LL-37,
the only member of cathelicidin family in humans.2

Other reported APs in human are histatins, dermcidin
and psoriasin.2,3

APs can limit microorganism virulence directly or
indirectly by enhancing the host immune system.4

Direct administration of APs has been proposed; how-
ever, the high costs of APs and the acquired resistance
observed in vitro makes antimicrobial peptide elicitors
(APEs) a logical and potential alternative.1,5 Enhancing
innate immunity as a way to combat infection in
humans was first suggested in 2004.6 For example, in
a bioterrorist scenario where it would not be possible to
identify the infectious agent(s), up-regulation of the
hosts innate armament might provide effective treat-
ment.6 However, this systemic strategy could be ener-
getically unfavorable for the host.

An APE is defined as a chemical, biological or phys-
ical agent which rapidly (in some cases minutes)
promotes innate immunity responses, specifically the
up-regulation of specific endogenous APs.1,5 Thus,
factors that induce maturation or any kind of post-
transcriptional modification of APs should not be con-
sidered an APE. A classification and nomenclature
system of APEs is proposed in Table 1.

Why do we need alternatives to current
antibiotics?

Antibiotics have been the treatment of choice for infec-
tious diseases for more than 65 years. However, the
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drawbacks of antibiotic-based treatment include viru-
lent multidrug-resistant bacterial strains and adverse
reactions.The initial cases of antimicrobial resistance
occurred in late 1930s and 1940s, soon after the
introduction of the first antibiotic classes, sulfona-
mides and penicillin.7 As Rene Dubos wrote in
1942, ‘susceptible bacterial species often give rise by
training to variants endowed with great resistance to
these agents’, leading, in some instances, to ineffective
compounds. Mathematical models and clinical experi-
ence suggest that it takes much longer for reductions
in antibiotic resistance than for antibiotic overuse to
induce resistance in the first place.8 Adverse drug
reactions include fevers induced by b-lactam anti-
biotics and sulfonamides, and ototoxicity induced
by aminoglucosids, Stevens–Johnson Syndrome
(toxic epidermal necrolysis), secondary toxicity to
nitrofurantoine, trovafloxacin-induced secondary hep-
atic necrosis, multiple antibiotics allergy syndrome
and fatal outcome of anaphylaxis.9,10 Thus, there is
a lack of a confident treatment of many human infec-
tious diseases, and the microbial resistance to drugs is
increasing.7,11 This resistance dramatically reduces the
possibility of treating infections effectively and
increases the risk of complications and even fatal out-
comes.12 Data from several countries reveal that 2–
7% of total hospital admissions were due to adverse
drug reactions (ADRs), and 16–23.3% of these
admissions were due to antibiotics. Also, ADRs
cause longer stays and increased healthcare expend-
itures.13,14 An increased understanding of innate
immune activation pathways and adaptive immune
cross-talk could lead to more effective, faster and
safer treatments to combat infections.1

Why is direct administration
of APs not the best approach?

Antimicrobial peptides are ribosome-synthesized innate
immunity effectors that appear to be an ancestral
defense mechanism against environmental microorgan-
isms.15 APs have remained effective against bacterial
infections for at least 100 million years, despite the con-
tinual presence of these peptides in bacterial environ-
ments, and it has been suggested that resistance is very
unlikely to evolve in the short term.15 More than 1500
APs have been reported and their expression has been
demonstrated in all tested organisms.2 Most APs are
synthesized as propeptides and after postranslational
maturation contain from �29 to 42 amino acid
residues.16

In humans, a- and b-defensins, and cathelicidin anti-
microbial peptide (LL-37) are the most studied. These
peptides are expressed mainly in peripheral lympho-
cytes and epithelia. Human b-defensin 2 (hBD-2) and
LL-37 are induced in inflammation and upon immune

challenge.5 hBD-1 is mainly constitutively expressed
but is also up-regulated by microbial or inflammatory
stimuli.1 Although many AP-based therapeutic agents
are now in clinical trials as antimicrobial and immune
regulators,17 the cost to produce and purify even short
APs remains high.1

In vitro resistance to increasing concentrations of
pexiganan, a magainin analog, appears in less than
700 bacterial generations (100 serial transfers) in a
model of both mutator and non-mutator strains of
the Gram-negative Pseudomonas fluorescens and
Escherichia coli, suggesting that naturally occurring
mutation rates are sufficient to create selectable vari-
ation in the populations.18

In addition to resistance to APs, administration
of cationic APs can promote pathogenicity by a
PhoP-PhoQ-mediated system.19 Salmonella enterica
sv. Typhimurium PhoP-PhoQ system regulates hun-
dreds of genes encoding the majority of virulence
properties, including intracellular survival, invasion,
lipid A structure, phagosome alteration and resistance
to APs. Acidic pH and APs activate PhoP/PhoQ
regulon and these signals, present within phago-
somes and intestinal tissues, may serve as specific
signatures of the host environment for Gram-nega-
tive pathogens, leading to modification of bacterial
phospholipids and LPS, and thus mitigating actions
of APs.19,20 The PhoQ homologue in S. enterica sv.
Typhimurium exhibits an additional capacity for
recognizing cationic APs via structural alter-
ations—novel helices and acidic residues—that still
allow for divalent cation binding and may allow
for increased activation by acidification. Finally,
these differences in ligand recognition and binding
mechanism appear to have important functional
implications to Salmonella virulence, suggesting that
PhoQ sensing in Salmonella facilitates a pathogenic
lifestyle.20 Also, protease synthesis likely degrades
certain APs. In parallel, a distinct two-component
regulatory system, PmrA/PmrB, ultimately leads to
synthesis and addition of 4-amino-4-deoxy-L-arabi-
nose onto lipid A in the Gram-negative outer mem-
brane increasing its cationic charge.21 In E. coli, it
has been demonstrated that LPS, a well known
pathogen associated molecular pattern (PAMP),
and a relevant APE in different cells (Table 1),
is regulated by non-coding small RNAs and
that this modification alters its sensitivity to poly-
myxin B.22

Also, it is very unlikely for pathogens to develop a
response against a signaling molecule that does not
interact or interfere directly with their pathogenic
mechanism. Compared with APs, APEs have been
revealed as an affordable and safe alternative to anti-
biotics in the treatment of pulmonary tuberculosis with
vitamin D23 and in the treatment of acute diarrhea in
children with L-Ile.24
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Chemical, physical and biological APEs

In this section, APEs are classified as physical, chemical
or biological according to Table 1.

Class I: Physical APEs

Subclass A: UV light, a physical elicitor of skin APs. UVB radi-
ation (mid-wave range 290–320 nm) promotes expres-
sion of hBD-1, hBD-225 hBD-326, psoriasin26,27 and
LL-37.26 UVB-dependent up-regulation of LL-37 is
vitamin D-mediated.28,29 An alternative pathway of
LL-37 inducibility is mediated through TLRs and
NF-kB (Figure 1). In localized scleroderma, hBD-1
and hBD-3 are down-regulated in affected skin after
UVA1 light treatment, while hBD-1 is unchanged and
hBD-3 was up-regulated in unaffected skin (Table 1).30

Furthermore, evidence supports the historical know-
ledge that lepromatous and tuberculous patients
improve their clinical status with ‘sun baths’. It
is now understood that UV light treatment leads to
up-regulation of anti-mycobacterial genes, such as
CAMP,26,28,31 DEFB125,32 and DEFB433 (Tables 1
and 2; Figure 1).

It has also been suggested that higher exposition to
UVB reduces susceptibility to dental caries through
production of vitamin D, followed by induction of
cathelicidin and defensins.34 In particular, hBD-3 is
highly active against Streptococcus mutans, a pathogen
involved in cariogenesis.35

Class II: Chemical elicitors

Vitamin D (subclass A) and nucleic acids (subclass B) as

elicitors. Vitamin D deficiency is associated with poor
immune function and with an increase in susceptibility
to infectious diseases.36 Topically applied vitamin D
active form (vitamin D3 or cholecalciferol) can decrease
the prevalence of thymine dimers (a hallmark of UV-
induced DNA damage in skin), but does not reverse
UV-induced immunosuppression in humans37 or
mice.36,38,39 Epidermal Langerhans cells harboring
UV-induced DNA damage induce regulatory T cells
(Treg). IL-12 and IL-23 inhibit the suppressive activity
of these Treg.

40 In models of local immunosuppresion, it
is proposed that skin-derived dendritic cells (DCs) with
damaged DNA move to draining lymph nodes, subop-
timally present antigens, induce tolerance and produce
antigen-specific Treg cells. UV-induced Treg cells then
switch APCs from a stimulatory to a regulatory pheno-
type and thus the immune phenotype is maintained.41

For systemic immunosuppression, the mechanisms that
alter immune responses are not clear.36 In psoriatic
lesions, vitamin D and its analogs down-regulate
hBD-2 and hBD-3. Contrarily, vitamin D up-regulates
CAMP mRNA, but not the LL-37 processed pep-
tide, probably explaining why vitamin D does not

exacerbate psoriasis.42 Vitamin D3 produces LL-37
expression in keratinocytes, monocytes, neutro-
phils,43,44 PBMC,45 colon cancer cells, bone marrow,
B cell lymphomas, prostatic, endometrial cancer
cells46 and also in numerous epithelial cells47 and tis-
sues.48 In addition, calcipotriol, a vitamin D analog,
induces LL-37 expression in human skin in vivo.49

Vitamin D3 produces a LL-37-dependent anti-
Mycobacterium tuberculosis response31 and this expres-
sion could offer new treatments for this infectious dis-
ease, for example one single vitamin D dose improves
in vitro activity against Mycobacterium bovis BCG.50

Three doses of 2.5mg of vitamin D3 hasten sputum
culture conversion in patients with TaqI vitamin D
receptor (VDR) tt genotype.23 Furthermore, 1,25-D
induces secretion of IL-10 and PGE2 in M. tubercu-
losis-infected PBMC, and both proteins are transcrip-
tional regulators of matrix metalloproteinases (MMP)
expression. In addition, 1,25-D3 controls M. tubercu-
losis infection by attenuating expression of MMP-7 and
MMP-10, and suppresses secretion of MMP-7 by
infected PBMC.51

Irrespective of infection, 1,25-D3 inhibits MMP-9
gene expression, secretion and activity.51 During M.
tuberculosis infection, ESAT-6 induces MMP-9 in epi-
thelial cells. MMP-9 enhances recruitment of macro-
phages presumably contributing to nascent granuloma
and bacterial growth.52 In this way ESAT-6 and vita-
min D3 have antagonic roles in MMP-9 expression,
and it has been suggested that this vitamin has a role
in granuloma formation.53,54 Also, 1,25-D3 has been
suggested to play a role both at the onset of infection
and in the development of the granuloma in infected
cattle.55 Vitamin D and some analogs block IL-
17A-induced hBD-2 expression by increasing IkB-a
protein and through inhibition of NF-kB signaling.56

Furthermore, topically applied 1,25-D3 enhances the
suppressive capacity of CD4+CD25+ cells from the
draining lymph nodes in mice.39

Vitamin D also impacts the phenotype and function
of DCs by down-regulating expression of co-stimula-
tory molecules, such as CD40, CD80 and CD86, as
well as IL-12 and IL-10.57 IL-10 is capable of down-
regulating hBD-2 and LL-37 expression.58 LL-37 pro-
motes DCs differentiation by up-regulating endocytic
capacity, up-regulating co-stimulatory molecule expres-
sion, enhancing secretion of TH1-inducing cytokines
and promoting TH1 responses in vitro.59 Surprisingly,
LL-37 also inhibits DC activation by TLR ligands (well
known APEs, such as LPS, lipoteichoic acid and flagel-
lin). In addition, LL-37 provokes naive T cells to pro-
duce less IL-2 and IFN-g, and to decrease their
proliferation. LL-37 also delays the response of
memory T cells to a recall antigen.60 Vitamin D and
VDR deficiency exacerbate experimental autoimmune
diseases, such as inflammatory bowel disease, owing to
increased numbers of IL-17 and IFN-g secreting T-cells
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Figure 1. Pathways of APEs in human keratinocytes. From provitamin D3 (7-dehydrocholesterol), UVB produces the synthesis of

calcidiol (25-hydroxy vitamin D3 or 25,D3) and then by 25-hydroxyvitamin D3 1-a-hydroxylase 1 (CYP27B1) action, produces 1,25

D3, the active form of vitamin D. 1,25 D3 binds and activates the vitamin D receptor (VDR) which recruits co-activator proteins.

Activated VDR forms a complex with steroid receptor co-activator 3 (SRC3), leading to recruitment of histone acetyltransferases.

Histone acetylation activates chromatin, presumably facilitating access to transcription machinery in CAMP gene producing LL-37

peptide;132 however, histone acetylation in CAMP promoter is still controversial and an indirect activation through up-regulation of

transcription factors that bind CAMP promoter has been suggested.84 A second UVB-mediated AP expression pathway is through the

inflammasome nucleotide oligomerization domain-like family, pyrin domain-containing 3 (INLRP3). The activated caspase 1 of INLRP3

processes pro-IL-1b into biologically active IL-1b,133 which is an elicitor of hBD-2.69,134 Psoriasin, hBD-1, hBD-2 and hBD-3 are also up-

regulated by UVB, but whether this expression is VDR-dependent is unknown.25–27 Flagellin through TLR5, LPS through TLR4,

diacyllipopeptide (DL) through heterodimers composed of TLR2 and TLR6, triacyllipopeptide (TL) through heterodimers composed

of TLR1 and TLR2 activates NF-kB. In endosomes, dsRNA through TLR3, ssRNA through TLR7/8 and unmethylated CpG DNA

through TLR9 also activates NF-kB.100 NF-kB activation leads to LL-37 and hBD-2 expression. Psoriasin is up-regulated through

TLR5,130 probably via the NF-kB pathway (not shown). LPS induces hBD-1 by an unknown pathway and hBD-2 through NF-kB.135 In

endosomes, TLR3, TLR7/8 and TLR9 also activate NF-kB.100 TNF-a induces up-regulation of hBD-1 and hBD-2.25 IFN-g through JAK-

signal transducer and activator of transcription (STAT1) induces hBD-1 and hBD-3.69 Prostaglandin D2 (PD2) up-regulates hBD-3.136

Histamine induces hBD-2 and hBD-3, the latter through STAT3.137,138 Detailed expression pathways for most APEs are unknown.

Table 2. Antimicrobial peptide selectivity against common human pathogens.

Pathogen Species/strain LL-37 hBD-1 hBD-2 Psoriasin hBD-3 References

Mycobacteria Mycobacterium tuberculosis + + + NR NR [32,33,45]

Gram negative bacteria Escherichia coli + + + + + [79, 203–208]

Pseudomonas aeruginosa + + + + +

Gram positive bacteria Klebsiella pneumoniae + + + NR +

Staphylococcus aureus + + + + + [204,209–212]

Streptococcus pneumoniae + NR + NR +

Enterococcus faecalis � NR + NR +

Fungi Candida albicans + + + NR + [206,213]

Virus HIV-1 + + + NR + [1,206,214]

(+), active in vitro and/or in vivo against the pathogen; (�), not active; NR, not reported.
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with a consequent reduction in Treg.
61 IFN-g enhances

TLR2/1L induction of the 1-a CYP27B1, potentiating
the conversion of 25-D3 to 1,25-D3, leading to
VDR activation and expression of CAMP (coding for
LL-37)62 (Figure 1).

Oligodeoxynucleotides (ODNs) that contain the
nucleotide pair CpG (CpG ODNs) are strong immuno-
modulators that have shown promising results both
in vitro and in vivo, including mice and primate
models for treating infections. The unmethylated cyto-
sines of CpG ODNs are recognized by TLR9 as a bac-
terial signal triggering several innate immune responses.
These responses include NK cells, DCs and macro-
phage activation; adaptive responses, such as TH1
polarizing ability, release of chemokines and cytokines
(IL-6, IL-12, IL-18) and activation of CD8+ T cells;6,63

and inhibition of IFN type I (a/b).64 When CpG ODNs
are conjugated with antigen as adjuvants, the immune
response is �100-fold stronger.65 In addition, liposome-
encapsulated CpG-DNA that contains immunomodu-
latory motifs up-regulates hBD-2 expression, as well as
that of MHC class II molecules (HLA-DRA) in human
B cells,66 but not in keratinocytes nor in colon epithelial
cells.67 In keratinocytes, CpG ODNs induce LL-37 with
no effect in hBD-2 (Table 1).

Amino acids, proteins (subclass C) and carbohydrates (subclass

D) as elicitors. Arginine, isoleucine and BSA induce
hBD-1 transcription and secretion in human colon
cells HCT-116. Up-regulation of hBD-1 is concomitant
with c-myc overexpression.68 Interleukins of proteinic
nature, such as IFN-g, up-regulate human DEFB1
(coding for hBD-1),69 DEFB103 (coding for hBD-3)
and DEFB104 (coding for hBD-4) (Table 1 and
Figure 1 for its effect in human keratinocytes). IFN-g
is relevant in immune response modulation, antagoniz-
ing IL-10 effects and inhibiting some TLR-induced
genes.70 For additional interleukins see Table 1.

In obesity, a low grade inflammatory state, inflam-
mation also occurs in the central nervous system and
alters hypothalamus function, resulting in a leptin-
resistant state that is mediated by IKKb/NF-kB and
endoplasmic reticulum stress.71 The leptin-dependent
hBD-2 up-regulation72 could explain why b-defensins
are down-regulated in diabetic and obese rats when
compared with slim control rats.73 In human HEK-
293 and HCT-116 cells, glucose and insulin levels
up-regulate DEFB1 expression.74 Contrarily, hBD-2
and hBD-3 are down-regulated in keratinocytes in a
high glucose medium.75,76 These two genes could
explain, at least partially, why infections are very
common in diabetic patients; however, further research
is needed in this area.

Subclass E: Fatty acids and prebiotics as gastrointestinal

elicitors. Sodium butyrate (NaB) is a short chain fatty
acid salt normally produced by the colon and provides

�70% of the energy required by healthy colon entero-
cytes.77 NaB does not possess direct antimicrobial
activity. Shigellosis, also called bacillary dysentery, is
an infectious disease and which is the main cause of
morbidity, mortality and stunted growth in children
in developing countries. It has been proposed that shi-
gellosis pathogenesis is explained by the transfer of the
Shigella spp. plasmid to the host, which blocks LL-37
and hBD-1 expression.78 In a shigellosis rabbit model,
stimulation of the epithelial lining of colon with NaB
led to the production of CAP-18 (homolog to LL-37 in
humans), which is bactericidal for Shigella spp.79

In treated rabbits, colon inflammation was reduced,
CAP-18 was significantly over-expressed and Shigella
spp. counts in feces diminished �102-fold at 48 h and
�104-fold at 72 h when compared with control animals
receiving only saline solution.79 Furthermore, intraven-
ous administration of NaB up-regulates CAP-18 in the
epithelia of lung, rectum and colon of rabbits, which
suggests a systemic effect. Both 4-phenylbutyrate
(PB) and NaB counteract the Shigella-induced down-
regulation of CAP-18 in lung.80,81 In humans, NaB
inhibits bacteria translocation in metabolic stressed
colonocytes.82

Efficacy of PB in bovine mastitis has also been eval-
uated. PB induces expression of APs and inhibits
Staphylococcus aureus internalization in bovine mam-
mary glands.83 In humans, PB and its analog, a-methyl-
hydrocinnamate (ST7), induce CAMP expression in a
MAP kinase-dependent pathway.84 PBA also induces
DEFB1 expression in human bronchial epithelial cells
(VA10), but not in leukemia cells (U937).84 The tissue-
specific response to APEs67,84 deserves further consid-
eration in clinical trials (Table 1).

Other commonly used prebiotics (alimentary supple-
ments) promote beneficial bacterial growth or activity
in the colon. The molecular mechanisms for these
effects have not been defined, as is the case of formulas
that act as ‘immune system enhancers’, sometimes caus-
ing defensin up-regulation. This results in recruitment
of adaptive immune response cells,68 such as Treg,
which inhibit differentiation of effector T cells that
otherwise would lead to inflammation.5,85

Retinoic acid is not an elicitor by itself in humans. Retinoic
acid-inducible gene-I-like receptors (RLR) are other
members of the pattern recognition receptors (PRRs),
which are known to be crucial molecules in innate
immune responses.86 In humans, pre-incubation of
keratinocytes with retinoic acid (RA) inhibits up to
90% of the up-regulation of hBD-2, -3 and -4 mediated
by phorbol-myristate-acetate (PMA), pro-inflamma-
tory cytokines and bacteria.87 Otherwise, 9-cis RA
and 13-cis RA, as well as Ca+ independently, induce
serine proteases Kallikrein 5 (KLK5) and 7 (KLK7),
which control enzymatic processing of cathelicidin pre-
cursors in the skin and regulate the eventual function of
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the final forms of these peptides.88 KLK5 and KLK7
are enzymes that control the physical barrier of the
stratum corneum.89

In pigs (Sus scrofa domestica), all-trans retinoic acid
markedly induces both cathelicidins protegrin and PR-
39 in bone marrow.90 However, RA does not restore
LL-37 expression in NB4 or HL-60 cell lines,91 but it is
a molecule that induces LL-37 maturation.88 Thus, RA
can antagonize the function of APEs or induce matur-
ation of APs, but is not an elicitor by itself in humans
because it does not increase CAMP transcription.

Class III: Biological elicitors

Subclasses A–E: Biological elicitors are also potential vaccine

adjuvants and immunomodulators. Biological or microbial
elicitors are microorganisms that can be beneficial pro-
biotics5 or attenuated pathogens,92 causing efficient up-
regulation of APs. Probiotics are microorganisms that,
when administered in sufficient quantities, confer a
health benefit to the host. Pediococcus spp.93 and
Lactobacillus spp.94 elicit hBD-2. In particular,
E. coli81 and E. coli Nissle 191795 elicit hBD-2 through
flagellin.96 Flagellin is a structural component of bac-
terial flagella, whose elicitory effect is, in part, TLR5-
dependent on CD11+ DCs through TH17 differenti-
ation in the CD11chigh/CD11bhigh subset. Flagellin
fused with M. tuberculosis protein p27 (gene Rv2108)
shows the strongest cellular response and highest IFN-g
secretion when compared with CpG DNA plus
Freund’s adjuvant. Flagellin is a promising candidate
in vaccine development and it is currently in phase II
clinical trials as an adjuvant included in the influenza
vaccine.97 It has been suggested that E. coli Nissle 1917
or its flagellin in gut epithelia may improve response to
inflammatory bowel disease.5 Furthermore, administra-
tion of these probiotics or flagellin itself in gut epithelia
may improve response to human infectious diseases, as
shown in both mice models of Pseudomonas keratitis98

and pneumonia.99

The potential approach of biological elicitors could
be similar to vaccination, but the main goal of this class
of APEs is to elicit and modulate innate and adaptive
immunity, and not simply activate adaptive responses
with the consequent Ab production. APs are up-regu-
lated through TLRs100 and nucleotide oligomerization
binding domain (NOD)-like receptors (NLRs) signal-
ing101,102 by exposure to chemical, physical and bio-
logical elicitors (see Figure 1 for selected APE
signaling in human keratinocytes).

Potential application of APEs and theoretical
limitations of their clinical use

In the near future APEs could be useful in treating
diseases caused or modified by APs deficiencies, such

as shigellosis, Crohn’s disease (CD), HIV/AIDS, atopic
dermatitis (AD), lepromatous leprosy and cancer
among others.1 CD is a chronic inflammatory bowel
disease, caused, at least in part, by a defect in a microbe
sensor system of the intestinal cells, i.e. NOD2, which
recognizes bacterial muramyl dipeptide. This sensory
system defect is associated with deficient production
of hBD-2, hBD-3, a-defensin 5 (HD-5) and 6
(HD-6).5,103 Furthermore, CD is more common in
patients with �3 copy number variants (CNVs) of
DEFB4 (hBD-2) and allele DEFB1 668C has been
found to be associated with CD.104 These data may
be useful in a personalized treatment approach to CD
taking into account the above mentioned genetic vari-
ants of CD patients. Efficacy of APEs may depend on
host genome capacity to respond with certain func-
tional allele(s).105,106

A diminished affinity of a putative binding site in the
50UTR regulatory region of DEFB1 to transcription
factor NF-kB1 (p50/p105) when the C allele is present
in single nucleotide polymorphism (SNP) rs1800972 (G
in non-coding strand) is suggested as one reason of
poor innate immunity response to infectious micro-
organisms and lower pathogen clearance.1,105 The C
allele in this locus induces up-regulation in constitutive
expression (compared with the G allele). Otherwise, the
G allele up-regulates DEFB1 expression in an IFN-g-
dependent expression in a co-dominant manner.106

The hBD-1 peptide chemoattracts immature DC and
memory T cells,107 and it has been proposed that
hBD-1 may be involved in DC maturation and/or
.activation.4,108,109 In addition, plasmacytoid DCs and
monocytes increase hBD-1 production when infected
with PR8, HSV and Sendai virus.110 It is probable
that hBD-1 has a primary effect on the skin inflamma-
tion and/or skin responsiveness in many allergic
reactions and immune responses in general, acting
not only as AP, but also as an immunoregula-
tor.1,4,107,109 DEFB1 gene expression levels, as well as
several SNPs mostly in 50UTR, have been associated
with several infectious, inflammatory and allergic
diseases.105,108,111–123

Owing to the tissue-specific usefulness of APEs
(Table 1), the side effects of up-regulated APs in certain
diseases must be considered. LL-37 can be induced in
inflammatory biliary disease by endogenous bile salt
chenodeoxycholic acid and therapeutic bile salt urso-
deoxycholic acid (UDCA), and further up-regulated
by 1,25-D3.124

In AD, LL-37 expression is down-regulated leading
to increased rates of infection in affected skin. The
expression of LL-37 in skin has been suggested to be
a double-edged sword. In AD, a 1,25-D signaling of
LL-37 would not be beneficial because it would skew
the T helper response towards a TH2 phenotype, due, in
part, to the induction of thymic stromal lymphopoietin,
which is a 1,25-D target gene in humans.
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Otherwise, in rosacea, hCAP-18, the precursor of
LL-37, is processed abnormally by stratum corneum
tryptic enzyme (SCTE)125 and CAMP up-regulation
could worsen the disease. In psoriasis, LL-37 is up-
regulated, and vitamin D analogs have proven thera-
peutically effective; however, there is a paradox as these
analogs up-regulate LL-37 and it binds to DNA, thus
activating TLR signaling in plasmacitoid DCs (pDCs)
of the psoriatic skin, leading to an autoimmune
response. The mechanisms of LL-37 regulation and
psoriasis etiology are poorly understood,126 and
CAMP up-regulation in psoriasis should be also
contraindicated.

In patients with acute watery diarrhea caused by
Vibrio cholera O1 or enterotoxigenic E. coli (ETEC),
hBD-2 and HD-5 are down-regulated in duodenal epi-
thelium and Paneth cells, respectively. Interestingly,
LL-37 levels are also decreased in acute phase, but
CAMP mRNA remain unchanged, suggesting a V. cho-
lerae-dependent post-translational regulation of LL-
37.127APEs capable of up-regulating hBD-2, LL-37
(Table 1) and HD-5 could be useful as an alternative
therapy to Vibrio cholera-caused diarrhea and ETEC.

A recent clinical trial of NaB administered as an
enema in adults with shigellosis from Bangladesh
shows diminished hemorrhaging, faster epithelial heal-
ing and better counteracting action against infection-
dependent down-regulation of LL-37 in stools and sur-
face epithelia.128 According to previous preclinical
trials, NaB has the potential to be administered orally
and/or systemically.79,80

The modest improvements provoked by APEs in
humans when compared with animal models could be
because (i) in human populations variants in AP genes
are presumably higher (www.ensembl.org), as opposed
to animal laboratory strains, which are highly endoga-
mic, thus diminishing the genetic diversity and increas-
ing predictability to APEs responses; (ii) when
antibiotics are used in humans, the death of both com-
mensal and potentially pathogenic bacteria could
diminish their function as class III APEs, at least in
digestive tract epithelia; (iii) other variables, such as
levels and diversity of APEs in normal diet, can be
harder to control in humans compared with laboratory
animals. However, these probable explanations deserve
further investigation.

Concluding remarks

The purpose of the review is to convince the reader that
APEs are indirect, cheap and, theoretically, safe and
effective weapons, even with their apparently modest
success in clinical practice.24 The use of APEs could
overcome Stuart Levy’s shortcoming ‘antibiotic para-
dox’—miracle drugs destroy the miracle129—because it
is more difficult for a pathogen to develop a way to
respond to an APE, which can be a simple molecule

as part of a normal diet and/or metabolism. The
response to elicitors might depend on the tissue/cells
analyzed because the same elicitor causes up-regulation
or down-regulation,67,84 or has no impact at all in dif-
ferent cells/tissues (Table 1). Tissue specificity of APEs
probably means that one or more of the following
explanations exists: (i) tissue-specific regulation of
APE receptors; (ii) specific APE transporters not
expressed in all cells; (iii) tissue-specific epigenetic sig-
nals of accessibility to transcription machinery; (iv)
tissue-specific alternative regulatory elements in AP
genes; (v) polymorphisms that affect response to elici-
tors106 depending on a higher/lower affinity of pro-
moters or enhancers to transcription factors105

because cell lines and primary cultures are derived
from genetically different people.

In summary, a more complete knowledge about sig-
naling pathways and tissue specificity of AP expression/
suppression could be useful to design tailored methods
to combat infections and other human diseases with the
regulation of antimicrobial peptides, natural weapons
of host innate immunity. The use of APEs is a promis-
ing, but incipient, field because an ideal elicitor must
also restore host–microbe balance and not just suppress
inflammation and adaptive immunity.5 The main chal-
lenge in developing APEs as treatment for specific dis-
eases is to optimize tailored elicitors with the following
characteristics when compared with common anti-
biotics: (i) lower costs of production; (ii) higher efficacy;
(iii) induce fewer and milder side effects; (iv) no gener-
ation or lower counts of drug-resistant microorganisms.

In regard to common infection models, caution must
be taken in data extrapolation to human diseases, espe-
cially those obtained from rodent models. Human and
murine innate immune systems differs mainly in
(i) intestinal a-defensins (called cryptidins in mice) are
expressed and processed differently;16 (ii) murine neu-
trophils lack a-defensins, but they comprise 20–40% of
the total proteins of azurophilic granules in humans;16

(iii) mice lack the gene for psoriasin, but S100A7c is
present at high concentrations in human stratum cor-
neum;130 (iv) induction of murine Cramp (CAMP
homolog) does not depend on vitamin D response elem-
ents (VDREs) and hence its expression is not regulated
by vitamin D;57,131 (v) infection of human macrophages
with M. tuberculosis and other cell types with different
pathogens leads to the repression of the CAMP gene,
whereas the murine Cramp gene is induced.57 Hence,
more relevant alternative models to human biology
must be sought because expression deficiencies of APs
are responsible for several infectious and inflammatory
diseases.1,3

The aforementioned ideas open new avenues for
innovative treatment methods for many infectious dis-
eases that are still common public health problems
worldwide, with the hope of minimizing the potential
risk for adverse drug reactions and pathogen
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multiresistance, which are common drawbacks of
the currently used—and, unfortunately, abused—
antibiotics.
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