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Abstract
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1 Introduction-preliminaries

In this paper, we are concerned with the problem of finding a common element in the
intersection F(T) N (A + B)71(0), where F(T) denotes the fixed point set of the mapping T
and (A + B)™1(0) denotes the zero point set of the sum of the operator A and the operator B.

The motivation for the common element problem is mainly due to its possible appli-
cations to mathematical modeling of concrete complex problems. The common element
problems include mini-max problems, complementarity problems, equilibrium problems,
common fixed point problems and variational inequalities as special cases; see, for exam-
ple, [1-35] and the references therein.

Throughout the article, we always assume that H is a real Hilbert space with the inner
product {-,-) and the norm || - ||, respectively. Let C be a nonempty closed convex subset
of H, and let Proj. be the metric projection from H onto C.

Let A: C — H be a mapping. A~1(0) stands for the zero point set of 4; that is, A71(0) :=
{x € C: Ax = 0}. Recall that A is said to be monotone iff

(Ax-Ay,x—y) >0, Vx,yeC.

A is said to be a-strongly monotone iff there exists a constant « > 0 such that

(Ax — Ay, x —y) > ot||x—y||2, Vx,y € C.

A is said to be a-inverse-strongly monotone iff there exists a constant « > 0 such that

(Ax — Ay,x —y) > a|Ax — Ay||*>, Vx,yeC.
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It is not hard to see that «-inverse-strongly monotone mappings are Lipschitz continuous.
Indeed, we have

allAx - Ay|* < (Ax - Ay,x - ) < | Ax - Aylll|x - yll.

This shows that [ Ax — Ay|| < Lx - y].
Recall that the classical variational inequality, denoted by VI(C, A), is to find u € C such
that

(Au,v—u) >0, VveC. (1.1)

One can see that the variational inequality (1.1) is equivalent to a fixed point problem of
the mapping Proj-(I — rA), where I is the identity and r is some positive real number. The
element u € C is a solution of the variational inequality (1.1) iff u € C satisfies the equation
u = Pc(u — rAu). This alternative equivalent formulation has played a significant role in
the studies of variational inequalities and related optimization problems.

A multivalued operator B : H — 2/ with the domain D(B) = {x € H : Bx # ¢} and the
range R(B) = {Bx : x € D(B)} is said to be monotone if for x; € D(B), x, € D(B), y1 € Bx; and
9y € Bxy, we have (x; — x5,y —¥2) > 0. A monotone operator B is said to be maximal if its
graph G(B) = {(x,) : y € Bx} is not properly contained in the graph of any other monotone
operator. Let I denote the identity operator on H and B: H — 2/ be a maximal monotone
operator. Then we can define, for each r > 0, a nonexpansive single-valued mapping J, :
H — HbyJ, = (I +rB)™. It is called the resolvent of B. We know that B10 = F(J,) for all
r > 0 and J;, is firmly nonexpansive.

Let T: C — C be a mapping. In this paper, we use F(T) to denote the fixed point set
of T; thatis, F(T) := {x € C:x = Tx}. Recall that T is said to be nonexpansive iff

ITx- Ty < lx—yl, VayeC.

T is said to be asymptotically nonexpansive iff there exists a sequence {k,} C [1,00) such
that

|T7% - T"y|| < kullx=yll, Vax,yeC,n>1.
T is said to be a k -strict pseudocontraction iff there exists a constant « € [0,1) such that

2
1T = TylI* < llx = y11 + & || (x = Tx) = (v = TV,

Vx,y € C.

Note that the class of k -strict pseudocontractions strictly includes the class of nonexpan-
sive mappings as a special case. That is, T is nonexpansive iff the coefficient « = 0. T is
said to be an asymptotically « -strict pseudocontraction iff there exist a constant x € [0,1)
and a sequence {k,} in [1, 00) such that

| 77% - T”y”2 <kallx =y +« | (x = T"%) - (y = T"y) > VxyeCn>1

Note that the class of asymptotically « -strict pseudocontractions strictly includes the class
of asymptotically nonexpansive mappings as a special case. That is, T is asymptotically
nonexpansive iff the coefficient x = 0.


http://www.fixedpointtheoryandapplications.com/content/2014/1/52

Zhang Fixed Point Theory and Applications 2014, 2014:52 Page 3 of 14
http://www.fixedpointtheoryandapplications.com/content/2014/1/52

In [24], Kamimura and Takahashi investigated the problem of finding zero points of a
maximal monotone operator based on the following iterative algorithm:

xeH, xp=ox+(1-a)x, Yn>1, (1.2)

where {a,} is a sequence in (0,1), {r,} is a positive real number sequence, B: H — 2" is
maximal monotone and J,, = (I + r,B)7L. It is proved that the sequence {x,} generated in
(1.2) converges strongly to some z € B™}(0) provided that the control sequence satisfies
some restrictions. Further, using this result, they also investigated the case that B = df,
where f': H — (—00,00] is a proper lower semicontinuous convex function. Convergence
theorems are established in the framework of real Hilbert spaces; for more details, see [24].

Recently, Takahashi ez al. studied zero point problems of the sum of two monotone map-
pings and fixed point problems of a nonexpansive mapping based on the following iterative
algorithm:

X1 € C,
Yn =0pX + (1- Oln)]rn (xn — ruAxy), (1.3)
Xn+l = ﬁnxn + (1 - ,Bn)Tym Yn>1,

where {@,} and {B,} are real number sequences in (0,1), {r,} is a positive sequence,
T : C — C is a nonexpansive mapping and A : C — H is an inverse-strongly monotone
mapping. It is proved that the sequence {x,} generated in (1.3) converges strongly to some
z € (A + B)™1(0) N F(S) provided that the control sequence satisfies some restrictions; for
more details, see [2].

Motivated by the above results, we investigate fixed point problems of asymptotically
strict pseudocontractions and zero point problems of the sum of two monotone mappings.

In order to state our main results, we need the following tools.

Recall that a space is said to satisfy Opial’s condition [36] if, for any sequence {x,} C H
with x,, — x, where — denotes the weak convergence, the inequality

liminf ||x, — x| < liminf|x, — ||
holds for everyy € H with y # x. Indeed, the above inequality is equivalent to the following:

limsup ||x, — x| < limsup ||x, — y||.
n— 00 n—>00
Lemma 1.1 [2] Let {x,} and {y,} be bounded sequences in a Banach space X, and let B,
be a sequence in [0,1] with 0 < liminf,_, B, < limsup,_, . B, < 1. Suppose that x,,1 =
(1= Bu)yu + Buxy for all integers n > 0 and

1im Sup([[yne1 = Yull = [%e1 = %all) < 0.
n—00

Then lim,_, o ||y, — %4l = 0.

Lemma 1.2 [37] Let C be a nonempty, closed and convex subset of H, let A: C — H be a
mapping, and let B: H = H be a maximal monotone operator. Then F(J.(I — rA)) = (A +
B)™(0).
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Lemma 1.3 [38] Assume that {«,} is a sequence of nonnegative real numbers such that
1 < (L= yu)atn + 8y,

where {y,} is a sequence in (0,1) and {3,} is a sequence such that
(i) Zzil Vn = O0;
(ii) imsup,_, o 8,/yn <0 0r Y .21 |84 < 00.

Then lim,_, oo a, = 0.

Lemma 1.4 [39] Let C be a nonempty, closed and convex subset of H. Let T : C — C be
an asymptotically strict pseudocontraction. Then T is Lipschitz continuous and I — T is

demiclosed at zero.

2 Main results

Theorem 2.1 Let C be a nonempty closed convex subset of H. Let T : C — C be an asymp-
totically «-strict pseudocontraction. Let A : C — H be an a-inverse-strongly monotone
mapping, and let B be a maximal monotone operator on H. Assume that F(T) N (A +
B)10) # 0. Let {a,}, {Bu} and {y,} be real number sequences in (0,1). Let J,, = (I + r,B)™,
where {r,} is a positive real number sequence. Let {x,} be a sequence in C generated by:

x1 € C is chosen arbitrarily and

Zy = PI'OjC(OlnM +(1- Oln)]rn (n — 1,A%,)),

Xp+l = ﬁnxn + (1 - ﬂn)(ynzn + (1 - Vn)Tnzn)’ Vn=>1.

Assume that the sequences {o,}, {Bn}, {vn} and {r,} satisfy the following restrictions:
@) O<a<r,<b<2a,lim,_  |rma—r.=0;
(b) lim, 0o, =0, Y 02 aty = 00;
(¢) 0<c=<B,<d<1;
(d) kK <yn<e<llimy o0 |Vus1—¥ul =0,
where a, b, ¢, d and e are some real numbers. If T is asymptotically regular, then the se-

quence {x,} converges strongly to some point X, where X = Pp(yrya+5)-1(0)4-

Proof First, we show that the mapping I — r,A is nonexpansive. Indeed, we have

2
1T = ruA)x — (I - r,A)y||
= |l = ylI> = 2ry(x — 3, Ax — Ay) + > [|Ax — Ay|)?

< e =yI* = raQa - r,) | Ax - Ay||*.

It follows from Restriction (a) that I — r,A is nonexpansive. Put y, = y,z, + (1 — v,) T"z,
and fix p € F(T) N (A + B)™1(0). It follows from Lemma 1.2 that

Iz = pll = |Proje(cture + (1 = )]y, (% — ruAn)) = p||

<aullu-pl + (l_an)|]rn(xn — 1,AX,) —P”

<aullu-pl+ 1 -a)llx. —pll. 2.1
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In view of Restriction (d), we find that

Iy = pI? < |¥u@n = p) + 1= y)(T"20 - T"D) |*

= Vullza = pII* + (L= )| "2, T"p|
~ 1= )| Gn - )~ (T"2, - T"P) |

< Vullzu = I + U= y) (20— PI* + & | 2~ p) = (T"24 ~ T"p)|*)
=YL= )| @ = p) = (T2, — T"p)

= llzn =PI = = y) (v = )| @ = ) = (T"20 = T"p) |

<llzx - plI*. (2.2)

I

Substituting (2.1) into (2.2), we obtain that

%51 =PIl < Bullxn — pll + (L= B)llya - pl
< Bullxu —pll + (1~ ﬁn)(an”u_p” + (1 —ay)llx, —P||)

< (1-au0 = B)lIxn = pll + @u1 = B)lu = pl.

Putting M = max{||x; — p||, ||[u — p||}, we find that ||x, — p|| < M for all n > 1. Indeed, it is
clear that ||x; — p|| < M. Suppose that ||x,, — p|| < M for some positive integer m. It follows
that

(L = Bn)) 1% =PIl + &t (1 = B) | = p|
(

”xm+1 —19” = (1 -
= (1 —a,(l- ,Bm))M +a,(1- )M

M
This finds that {x,} is bounded. Putting p, = J,, (x, — r,Ax,), we find that

”pn+l — Pn || = ”]r,,,,l (xn+1 - rn+1Axn+1) _]rn+1 (xn - rnAxn) H

]r,H.l (xn - rnAxn) _]rn (xn - rnAxn) ”

+|

= ” (ns1 = run1Axpi1) = (%0 — rnAxy,) ”

+ |]rn+1 (xn - rnAxn) _]rn (xn - rnAxn) ”

< %1 = Xull + 17041 = Pl | Ay ||

+ ’]7n+1 (xn - VnAxn) _]rn (xn - rnAxn)”- (23)

On the other hand, we have

1Zns1 — zull < ” (anﬂu +(1- an+1)pn+1) - (Olnu +(1- Oln)pn) ”

< (A =)l Pns1 = ull + lotur — |l pn — ull. (2.4)
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Substituting (2.3) into (2.4), we find that

1Zu1 = zull < H (am—lu +(1- Oln+1),0n+1) - (anu +(1- an)pn) H

< (A = o) %1 = Xull + 17001 — Pl A% + |01 — il ll 05 — 1]

+ (1 - an+1) | ]Vn+1 (xn - rnAxn) _]rn (xn - rnAxn) || . (25)

Put &, = x,, — r,Ax,. Since B is monotone, we find that

<]rn+1€:n _]rném gn _]Vn+1%-n — 5” _]Vngn> > 0.

Tn+l 'n

It follows that {/;,,,, &, =y, & (1- %)(gﬂ T €n)) = 16 =Tribn ||2 This yields that [r;,1 -
Tulllén = Jriénll = 1ull)y,, En = JryEnll. This combines with (2.5) to yield that

|Zzpe1 — zull < (1- an+1)||xn+1 —Xull + |Fne1 = Tul | A%, ||

[Pns1 — T
+ |1 — aylllon —ull + %”&1 _]rné:n”' (2.6)

n

On the other hand, we have

Y1 = Yull < Vurrllzusr = zull + 1 Vie1 = ¥l ”Zn -T"z, ”

+ (1= Y1) ” Tn+lzn+1 -T"z, ” . (2.7)
Substituting (2.6) into (2.7), we find that

yns1 = Yull = %01 — Xl
< et = Pul A%, + |0ten — @yl 00 — u|

ATl et et = il = T2

n

+ (1 - yn+1) || TVHIZVHI - Tnzn H .
It follows from Restrictions (a), (c) and (d) that

limSUP(llj/n+1 _yn” - ”xml _xn”) = 0.
n—00

It follows from Lemma 1.1 that lim,, .« ||y, — %, || = 0. Since x,4,1 — %, = (1 - B,) (¥, — x5,), we
find that lim,,_, o ||%,+1 — % || = 0. Notice that

”]r,,, I =ryA)x, = Jr, (I - rnA)P||2
= | @ = p) = ru(Ax, - Ap) |
= 1%, — plI* = 27 (% — p, Ax,, — Ap) + 1,2 | Ax,, — Ap||*

< %, = pI* = a2 = 1) || Ax, = Ap||*. (2.8)
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Since the norm is convex, we see from (2.2) and (2.8) that

%01 = II* < Bulln = pII* + (1= By — pII?
< Bullxn —plI” + (A= Bu)llz, - pII®
< Bull = pI% + (L= B) (st = p) + (1 = ) (1, (s = rwA) = ) ||°
< Bullxw = plI* + a1 = Bo)llu - p|I?
+(1-a)(1-B)|
< ot = pI* + ol = plI* = raer = 1) A — n)(1 = Bl A%y — Ap|*. (2.9)

]rn(xn - VnAxn) _pH2

This yields that

(20 = 1)1 = o) (1 = B) A, — Apl|*
<% = pII* + aull = plI* = %001 — pII?

< (Iltn = 21+ e =PI 61 — 2l + et lle = p>.
In view of Restrictions (a), (b) and (c), we obtain that
lim ||Ax, — Ap| = 0. (2.10)
n— 00
Notice that

]rn(xn _rnAxn) —]rn(P—rnAP)HZ

= ((xn — 10A%xy) = (0 = 14AD), Pu _p>

llon = plI* = |

1
= 5 ([6on = ra) = (0 = rudp) [+ llpw = pI?

- ” (xn = rnAxy) — (0 = 14Ap) = (Pu —P)||2)

< 5 (b= + 19w =PI = [ =~ ral A~ 4))
< %(nxn =pI? + 1pn=pI? = %0 — pull® = 2| Ax,, — Apl|®
+ 276 — pull | A%, — Apll)
< %(nxn =pI? + 100 = pI* = 1% = pull® + 2760 — Pl | A% — Apll).
It follows that
100 = pI* < 1% = PII* = %0 = pull® + 274120 — pull | A% — Apl|. (2.11)
This yields that

Iz = plI* < aulle = plI* + A=)l oy — pII?

<aullu—pl? + 1% = plI* = @ = @)%y — pull* + 274115 — pull A%, — Apl|.

Page 7 of 14
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It follows from (2.2) that

%41 = PII* < Bullxn = pI* + (L= B)llyn — PII*
S ﬂn”xn —P||2 + (1 - ﬂn)”zn —P||2
< ||%n _P”Z +oy,llu _17”2 —l-a,)1- ﬂn)”xn - pn”2

+2rn(1 = Bu) 1% — pullll Az, — Apll.

We therefore obtain that

(1 - )@= B)llxn — pall?
< o — pI* + atullee = plI* = %1 — pII>
+27,(L = Bo)l|%n — pull | Ay — Ap|
< (Ilen = 21+ e =PI 160 = Xt || + el = p)?

+2r,(1 = By — pullllAxy, - Apll.

In view of Restrictions (a), (b) and (c), we find from (2.10) that
lim [|%, — pull = 0. (2.12)
n—00

Next, we show that limsup, _, .. (# — %, 0, — %) < 0, where X = Pr(1)n4.p)-1(0)%- To show it,
we can choose a subsequence {p,,;} of {p,} such that

limsup(u — X, p, — %) = lim (1 — X, p,, — X).
n—00 =00

Since p,, is bounded, we can choose a subsequence { p,,ij} of {0} which converges weakly

to some point x. We may assume, without loss of generality, that p,, converges weakly to x.

Since p, = J,, (%, — r,Ax,), we find that ""r;np” —Ax, € Bp,. Since B is monotone, we get, for

any (u,v) € B, that (o, — i1, ""r_n”" —Ax, —v) > 0. Replacing # by »; and letting i — oo, we

obtain from (2.12) that (x — u,—Ax — v) > 0. This means —Ax € Bx, that is, 0 € (A + B)(x).
Hence we get x € (A4 + B)™1(0). Next, we show that x € F(T). Notice that

”Zn _xn” = ”PI‘OjC(OlnM + (1 - an)]rn (xn - rnAxn)) —Xn ||

S%Hu—xn” + (l_an)‘]rn(xn _rnAxn) _xn”'

In view of Restriction (a), we find from (2.12) that lim,,_, » ||z, — %, || = 0. Note that

| (vt + U= y) T %) = %, |
< N an + U= v T"%0) = (Yuzn + A= yu) T"24) |
[ (a2 + A= y) T"2,) — 2 |
< Vulln = zall + @ = V) | "% = T"2u]| + || (vu2n + A = i) T"20) = %]

< L%y = zull + |y — xull-

Page 8 of 14
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It follows from (2.8) that
nlggo” (y,,xn +(1- y,,)T”x,,) — X, || =0. (2.13)
Note that

” T"x, — %y ” = ” T"%, — (ynxn +(1- Vn)Tnxn) ”
+ ” (ynxn + (1 - yn)Tnxn) —Xn H
S Vn || Tnxn —%n ” + ” (ann + (1 - Vn)Tnxn) —Xn || .
It follows that (1 — y,) | T"x, =%, || < |(Vuxn + 1= y,) T"x,,) — %, |- This implies from Restric-
tion (d) and (2.13) that lim,,, » || 7", — x,|| = 0. Since T is uniformly L-Lipschitz continu-

ous, we can obtain thatlim,,_, o, || 7%, —x,|| = 0. In view of Lemma 1.4, we find thatx € F(T).

This implies that

limsup(u — x, p, — %) = (u—x,x—x) <O0.
n—oQ

On the other hand, we have

%1 = &1 < Bullxn — %> + (1= Bu)llyn — %I
< Bullxw — 201> + (1 = B,) |2, — XI|>
< Bullt — 1% + (L= B) | @it — 2) + (1 = 00) (0~ B[
< Bulln =2l + (1= ) * (1= Bo)ll pn — ]
+ 20, (1= B) (1t = X, py — )

= (1 —a,(l- /371)) B _9_6”2 +20,(1 = Bu)(u — X, pp — X).
From Lemma 1.3, we find that lim,,_, « ||x,, — %|| = 0. This completes the proof. a
If T is asymptotically nonexpansive, then we find the following result.

Corollary 2.2 Let C be a nonempty closed convex subset of H. Let T : C — C be an asymp-
totically nonexpansive mapping. Let A : C — H be an a-inverse-strongly monotone map-
ping, and let B be a maximal monotone operator on H. Assume that F(T) N (A +B)™(0) # 4.
Let {a,} and {B,} be real number sequences in (0,1). Let J,, = (I + r,B), where {r,} is a
positive real number sequence. Let {x,} be a sequence in C generated by: x, € C is chosen

arbitrarily and

zy = Pcla,u+ (1 - an)]rn (n — 1,A%,)),
Xp+l = ,ann + (1 - ﬂn)Tan Vn > 1.

Assume that the sequences {o,}, {v,} and {r,} satisfy the following restrictions:
(@) O<a<r,<b<22a,lim, |t -1 =0;
(b) limy ooty =0, Y o)ty = 00;
() 0<c=<B,<d<]1,
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where a, b, ¢ and d are some real numbers. If T is asymptotically regular, then the sequence

{xn} converges strongly to some point X, where X = Pr(ryna+5)-1(0)4-

3 Applications
In this section, we shall consider equilibrium problems and variational inequalities.
Let F be a bifunction of C x C into R, where R denotes the set of real numbers. Recall

the following equilibrium problem:
Find x € C such that F(x,y) >0, VyeC.

In this work, we use EP(F) to denote the solution set of the equilibrium problem.

To study the equilibrium problems, we may assume that F satisfies the following condi-
tions:

(A1) F(x,x)=0forallx e C;

(A2) F is monotone, i.e., F(x,y) + F(y,x) <0 forallx,y € C;

(A3) foreachx,y,zeC,

limsup F(¢z + (1 - t)x,y) < F(x,);
£40

(A4) for eachx € C, y > F(x,y) is convex and weakly lower semi-continuous.
Putting F(x,y) = (Ax,y — x) for every x,y € C, we see that the equilibrium problem is
reduced to the variational inequality (1.1).

The following lemma can be found in [40].

Lemma 3.1 Let C be a nonempty closed convex subset of H, and let F : C x C — R be a
bifunction satisfying (A1)-(A4). Then, for any r > 0 and x € H, there exists z € C such that

1
F(z,y) + ;(y—z,z—x) >0, VyeC.

Further, define
1
T,x:{zeC:F(z,y)+—(y—z,z—x)zO,VyeC} (3.1)
r

forallr >0 and x € H. Then the following hold:
(a) T, is single-valued;
(b) T is firmly nonexpansive, i.e., for any x,y € H,

I T = Toyl|* < (Tox = Tpy, % — y);

(c) F(T))=EP(F);
(d) EP(F) is closed and convex.

Lemma 3.2 [2] Let C be a nonempty closed convex subset of a real Hilbert space H, let
F be a bifunction from C x C to R which satisfies (A1)-(A4), and let Ar be a multivalued
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mapping of H into itself defined by

H:F ) 2 - )V C: C’
Ap = {ze (y) = (y-x2),¥VyeC}, x¢€ (3.2)
i, x ¢ C.

Then Ar is a maximal monotone operator with the domain D(Ar) C C, EP(F) = A7*(0) and
Tx=(I+rAp) %, VxeH,r>0,
where T, is defined as in (3.1).

The following result is not derived based on Theorem 2.1 and Lemma 3.2.

Theorem 3.3 Let C be a nonempty closed convex subset of H. Let T : C — C be an asymp-
totically k-strict pseudocontraction. Let F be a bifunction from C x C to R which satisfies
(A1)-(A4). Assume that F(T) NEP(F) # (. Let {«,,}, { B} and {y,} be real number sequences
in (0,1). Let {x,,} be a sequence in C generated by: x, € C is chosen arbitrarily and

wy, € C such that Fg(wy, u) + %(u - Wy, Wy —%,) >0, VYueC,
zy = Pc(ayu + (1 - an)wy),

In = Yuzn + (L= V) T"2p,

Xni1 = Pudn + (L= Bu)yn, Vn =1

Assume that the sequences {a,,}, {Bn}, {vn} and {r,} satisfy the following restrictions:

(@) O<a<r,<b<2alim,_ |y — 1yl =0;

(b) limy ooty =0, Y o)ty = 00;

() 0<c=<B,<d<1;

(d) kK <yn<e<llimy o |Vus1—¥ul =0,
where a, b, ¢, d and e are some real numbers. If T is asymptotically regular, then the se-
quence {x,} converges strongly to some point x, where x = Pr(1)ngp(£)U.

If T is asymptotically nonexpansive, then Theorem 3.3 is reduced to the following.

Corollary 3.4 Let C be a nonempty closed convex subset of H. Let T : C — C be an asymp-
totically nonexpansive mapping. Let F be a bifunction from C x C to R which satisfies (A1)-
(A4). Assume that F(T) N EP(F) # (. Let {«,,} and {B,} be real number sequences in (0,1).
Let {x,} be a sequence in C generated by: x, € C is chosen arbitrarily and

wy, € C such that Fg(w,,, u) + %(u - W, W, —%,) >0, VueC,
zy = Pclanu + (1= o) wy),

X+l = ,ann + (1 - IBrl)Tan Vn > 1.

Assume that the sequences {o,,}, {Bn}, {vu} and {r,} satisfy the following restrictions:
(@) O<a<r,<b<2a,lim,_ o |rm1—1.=0;
(b) lim, 0o, =0, Y 02 aty = 00;
() 0<c=<B,<d<]1,

Page 11 of 14


http://www.fixedpointtheoryandapplications.com/content/2014/1/52

Zhang Fixed Point Theory and Applications 2014, 2014:52 Page 12 of 14
http://www.fixedpointtheoryandapplications.com/content/2014/1/52

where a, b, ¢ and d are some real numbers. If T is asymptotically regular, then the sequence
{x,,} converges strongly to some point x, where x = Pr(rngp(r)U.

Let H be a Hilbert space and f : H — (—00, +00] be a proper convex lower semicontin-
uous function. Then the subdifferential df of f is defined as follows:

af (x) = {yeH:f(z) > f(x) + (z—x,y),zeH}, Vx € H.

From Rockafellar [41], we find that df is maximal monotone. It is easy to verify that 0 €
df (x) if and only if f(x) = minycy f(y). Let Ic be the indicator function of C, i.e.,

0, xe(C,
Ic(x) =
+00, x¢C.

Since I¢ is a proper lower semicontinuous convex function on H, we see that the subdif-
ferential d/¢ of I¢ is a maximal monotone operator.

Lemma 3.5 [2] Let C be a nonempty closed convex subset of a real Hilbert space H, Proj
the metric projection from H onto C, d1¢ the subdifferential of Ic, where I¢ is defined above
and J, = (I + MdIc)™L. Then

y=hx <<= y=Projox, xe€H,yeC.
Now, we consider a variation inequality problem.

Theorem 3.6 Let C be a nonempty closed convex subset of H. Let T : C — C be an asymp-
totically «-strict pseudocontraction. Let A : C — H be an a-inverse-strongly monotone
mapping. Assume that F(T) N VI(C,A) # (. Let {,}, {Bn} and {y,} be real number se-
quences in (0,1). Let {x,,} be a sequence in C generated by: x; € C is chosen arbitrarily and

zp = Pclo,u + (1 - a,)Pc(x, — ruAxy)),
Yn=Vnzn + L= yu)T"z,,
X+l = ,ann + (1 - ,Bn)ym Vn = 1.

Assume that the sequences {a,}, {Bn}, {vn} and {r,} satisfy the following restrictions:

(@) O<a<r,<b<22alim, |t -1 =0;

(b) lim, 00y =0, Y 02 aty = 00;

() 0<c<B,<d<l;

(d) kK <yn<e<llimy o0 |Vus1—¥ul =0,
where a, b, ¢, d and e are some real numbers. If T is asymptotically regular, then the se-
quence {x,} converges strongly to some point x, where X = Pr(r)nvi(c,a) Y-

Proof Put Bx = dlc. Next, we show that VI(C,A) = (A + 31c)™1(0). Notice that

x€(A+03lc)(0) < O0ecAx+dlcx

<~ —-Ax € 8ICx
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— (Ax,y—x)>0

— «xe€VICA).

From Lemma 3.5, we can conclude the desired conclusion immediately. O
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