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Abstract

The potential effect of prenatal LPS exposure on the postnatal acute phase response (APR) to an LPS challenge in heifers
was determined. Pregnant crossbred cows were separated into prenatal immune stimulation (PIS) and saline groups
(Control). From these treatments, heifer calves were identified at weaning to subsequently receive an exogenous LPS
challenge. Sickness behavior scores (SBS) were recorded and blood samples were collected at 30-min intervals from
—2 to 8h and again at 24 h relative to the LPS challenge. There was a treatment x time interaction for the change in
vaginal temperature (VT) such that the change in VT was greater in Control than PIS from 150 to 250 min, yet it was
greater in PIS than Control from 355 to 440 min and from 570 to | 145 min. There was also a treatment x time inter-
action for SBS such that scores were greater in Control than PIS at 0.5 h, yet were greater in PIS than Control from 2.5
to 4 h post-LPS. There was a tendency for a treatment x time interaction for serum concentrations of IL-6, which were
greater in PIS than Control heifers from 5.5 to 6 h and from 7 to 8 h post-challenge. Thus, a single exposure to LPS during

gestation can alter the postnatal APR to LPS in heifer calves.
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Introduction

Prenatal stress has been demonstrated to influence vari-
ous aspects of the postnatal stress and immune
responses.' > The effects of prenatal stress, as reported
in animal research models, are dependent upon the
timing of the stress during gestation, as well as the
sex of the offspring.* Effects on the offspring include
increased hypothalamic—pituitary—adrenal axis sensitiv-
ity and behavioral changes. Prenatal stress can also
alter leukocyte numbers and function, and the Ab
response to subsequent vaccination.' It has been
demonstrated previously that repeated transportation
of pregnant dams altered concentrations of glucose
and NEFA in the dams, potentially due to
increased epinephrine and cortisol action.” However,
there are limited prenatal stress studies that utilize
cattle as the model, none of which has directly evalu-
ated the potential effects of prenatal immune stimula-
tion. Lay et al® demonstrated reduced cortisol

clearance rates in calves from dams transported repeat-
edly during gestation. It is believed that the increased
fetal exposure to cortisol may influence the ability of
the calf to adapt to stress, and therefore affect immune
responsiveness.

Our laboratory previously reported prenatal trans-
portation can alter the postnatal acute phase response
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(APR) in Brahman bulls. Specifically, prenatally trans-
ported bull calves had greater rectal temperature,
TNF-o and IFN-y responses, and decreased cortisol
and IL-6 responses following an LPS challenge post-
weaning.” While typical production stressors, such as
the relocation process, may alter stress and immune
responsiveness in offspring, little is known about the
effects of immune challenges during gestation on the
offspring in cattle. Therefore, the objective of this
study was to determine the potential effects of prenatal
LPS exposure on the postnatal APR of heifers follow-
ing an LPS challenge.

Materials and methods
Experimental design

All experimental procedures were in compliance with
the Guide for the Care and Use of Agricultural
Animals in Research and Teaching and approved by
the Institutional Animal Care and Use Committee at
the University of Florida (IACUC Study #201307950).

Pregnant crossbred cows [n=50; 527 £46kg body
mass (BM)] were selected from a single herd managed
similarly prior to allocation to treatments in the current
study. Cows had an average parity of 5.8 + 1.8 calvings.
Cows were randomly allotted to 1 of 2 treatments: (1)
prenatal immune stimulation [PIS; n =25, administered
0.1 ug/kg BM LPS (Escherichia coli O111:B4; Sigma
Aldrich, St. Louis, MO, USA) s.c. at 233+ 19d of ges-
tation] and (2) saline group (Control; n=25). Cows
were administered LPS or saline on 25 September
2013. There are limited data on the effect of LPS
administration on pregnant cows. Therefore, the dose
of LPS administered and route of administration was
selected in order to produce a physiological response in
the dam, as measured by indwelling vaginal tempera-
ture devices, but not too high in order to prevent abor-
tion of the fetus. A preliminary study was conducted on
cows in the last third of gestation and confirmed this
dose would not cause late-term abortions. Use of the
specific LPS serotype (O111:B4 from E. coli) has been
documented multiple times by the Livestock Issues
Research Unit to produce a reliable and controlled
response to LPS.”? Vaginal temperature recording
devices'® were inserted 2d prior and removed 5d
post-LPS administration; four additional temperature-
recording devices were used to record ambient tempera-
ture. Cows grazed a common bahiagrass pasture from
the time of LPS administration to weaning. Calves were
born October—December 2013 and birth date was rec-
orded. At birth all calves were tagged and weighed, and
male calves were surgically castrated. Day of gestation
for LPS administration to dams was computed from
calf birth date assuming a constant gestation length
of 283d. On 8 April 2014 calves were dewormed
(fenbendazole 10% oral drench; Safe Guard, Merck

Animal Health, Madison, NJ, USA), and vaccinated
against Mannheimia haemolytica type Al (One Shot;
Zoetis, Florham Park, NJ, USA), infectious bovine rhi-
notracheitis virus, bovine viral diarrhea virus types 1
and 2, parainfluenza3 virus, bovine respiratory syncyt-
ial virus (Bovi-Shield Gold 5; Zoetis), Clostridium chau-
voei, Clostridium speticum, Clostridium haemolyticum,
Clostridium novyi, Clostridium sordelli and Clostridium
perfringens types B, C and D (Ultrabac 8; Zoetis). On
4 June 2014 calves were administered a booster vaccin-
ation of Bovi-Shield Gold 5 and Ultrabac 8. Heifer
calves were weaned and weaning mass recorded on 7
July 2014, to allow sufficient time to halter break the
heifers prior to the LPS challenge on 13 August 2014.
Steer calves were weaned and weaning mass recorded
on 16 July 2014.

From these treatments, heifer calves (12 PIS and 11
Control) were identified at weaning (238 & 15d of age)
to subsequently receive an LPS challenge. Heifer calves
from the Control group averaged 217+ 5kg BM and
PIS heifers averaged 211+ 5kg BM. On d 0, heifers
were fitted with indwelling vaginal temperature-
recording devices that measured vaginal temperature
continuously at 5-min intervals,'” and jugular vein
catheters. Heifers were then moved into individual
pens (2.5m x 6m) in a covered barn. Heifers were
allowed ad libitum access to feed and water throughout
the study. On d 1, heifers were challenged i.v. with LPS
(0.5pg/kg BM) at 0h (1000 h). The 0.5-ug/kg BM dose
of LPS was chosen for the heifers based on previous
work in weaned calves demonstrating a predictable and
controlled response without producing mortality.” ®
Sickness behavior scores (SBS) were recorded and
whole blood samples were collected at 30-min intervals
from —2 to 8h and again at 24h relative to the LPS
challenge at 0h.

Whole blood for serum was collected into Sarstedt
tubes containing no additive (Sarstedt, Inc., Newton,
NC, USA), and were allowed to clot at room tempera-
ture for 30min prior to centrifugation at 1500g for
20min at 4°C. Isolated serum was stored at —80°C
until analyzed for cytokine concentrations. Whole
blood for flow cytometry and neutrophil gene expres-
sion was collected into BD vacutainer tubes containing
sodium heparin (Becton Dickinson, Franklin Lakes,
NJ, USA) at —1, 4 and 8 h relative to the LPS challenge
and processed immediately for neutrophil extraction
and flow cytometry.

Sickness behavior scores

A trained observer assessed and recorded each heifer’s
SBS by visual observation following the collection of
each blood sample. Heifers were scored on a scale of
1 to 4 using 0.25-unit increments. Specifically, heifers
scored as 1 maintained normal maintenance behavior;
heifers scored as 2 were calm but with head distended
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and increased respiration; heifers scored as 3 displayed
clinical signs of sickness, increased respiration and
drool; heifers scored as 4 were observed lying on side
with labored breathing and frothing at the mouth.
Intervention would occur on any heifer with a SBS
of 4. Heifers were scored by the same observer through-
out the study who has over 23yr animal behavior
experience and 10yr experience in observing sickness
behavior in cattle.

Cytokine analysis

Serum cytokine concentrations (TNF-o, IFN-y
and IL-6) were measured in duplicate and were deter-
mined by a custom bovine 3-plex sandwich-based
chemiluminescence ELISA kit (Searchlight-Aushon
BioSystems, Inc., Billerica, MA, USA). The minimum
detectable concentrations were 0.5, 0.1 and 3.3 pg/ml
for TNF-a, IFN-y, and IL-6, respectively. All intra-
assay coefficients of variation were <5.6% and all
inter-assay coefficients of variation were < 16.0% for
all assays.

Flow cytometry

The concentrations and percentages of leukocytes in
whole blood collected at —1, 4 and 8h relative to the
LPS challenge were determined by flow cytometry. One
ml heparinized whole blood was centrifuged at 650 g for
Smin at 4°C. RBCs were removed by mixing the cell
pellet with 1 ml ice-cold hypotonic RBC lysis buffer
(10.6mM Na,HPO,, 2.7mM NaH,PO,, pH 7.2;
Fisher Scientific, Waltham, MA, USA) for 1 min on
ice, followed by addition of 0.5ml restoring buffer
(10.6 mM Na,HPO,, 2.7mM NaH,PO,4, 462mM
NaCl, pH 7.2). Cells were pelleted by centrifugation
at 650 g for 10 min at 4°C. The procedure was repeated
twice to remove RBC. Cells were then re-suspended
in 100pl staining buffer (Dulbecco PBS, Life
Technologies, Carlsbad, CA, USA), 5% heat-inacti-
vated FBS (Hyclone, Logan, UT, USA) and 0.1%
NaNj; containing 0.1 pg FITC-conjugated mouse anti-
human CDI14 Ab (Tiik4 clone; Life Technologies).
Samples were incubated in the dark on ice for 30 min,
then washed with 1 ml staining buffer, followed by cen-
trifugation at 650 g for S5min at 4°C. Cells were then
incubated with PBS containing 2% paraformaldehyde
at 4°C overnight (12-18h), centrifuged and re-
suspended in 1 ml PBS. Cells were analyzed the next
day on a BD Accuri'™ C6 flow cytometer (Becton
Dickinson) equipped with 488 nm and 633 nm lasers.
For each sample, 100 ul of sample was analyzed and cell
populations were determined using FlowJo analysis
software (Version 10.0.6; FlowJo, LLC, Ashland, OR,
USA). Gates for CDI14-positive cells were set using a
non-stained control sample. The cell count and percent-
age of CDIl4-positive cells for mononuclear and

granulocyte populations were determined from the
event counts in the respective gates.

Neutrophil gene expression

Whole-blood samples collected into 10-ml heparin
tubes were centrifuged at 1500¢ for 20 min, and the
plasma and buffy coats were then removed. The RBC
pack was re-suspended in 10ml cold hypotonic lysis
buffer, mixed gently for 1min, followed by addition
of 5ml restoring buffer and centrifugation at 650 g for
Smin at 4°C. The RBC lysis step was repeated twice
and then remaining neutrophil pellets were placed on
dry ice before storage at —80°C.

Total RNA was extracted from neutrophil samples
by using Trizol Reagent (Life Technologies), and
reconstituted with 50 pl RNase-free water. RNA was
quantified using a BioTek Synergy HT plate reader
with a Take3 Micro-Volume plate. RT-PCR was per-
formed using the High Capacity cDNA Reverse
Transcription Kit (Life Technologies) in a 20-ul
reactions that contained 10l RNA sample, RNase
inhibitor and random primers. Reactions were incu-
bated at ambient temperature for 10min, followed
by 2h at 37°C and 5min at 85°C. The cDNA samples
were diluted 1:10 with DNase-free water and stored
at —20°C.

Quantitative real-time PCR was performed using a
7300 Real-Time PCR System (Applied Biosystems,
Carlsbad, CA, USA) for bovine neutrophil B-defensin
3 (BNBD3), BNBD4, BNBD7, BNBDI0, ILIB and IL8
genes using primers listed in Table 1. Each reaction
contained 10 ul SYBR Select gPCR master mix (Life
Technologies), 0.5ul each of 10uM forward and
reverse primers, and 9pul 1:10 diluted cDNA sample.
Reactions were incubated at 95°C for 10 min followed
by 40 cycles of 95°C for 15s and 60°C for 1min.
Specificities of primer sets were verified by evaluation
of the qPCR product melting curves and gel electro-
phoresis. The threshold cycle (C,) for each gene of
each cDNA sample was normalized to the C, of ribo-
somal protein S9 (RPSY) for each sample using the for-
mula [C(gene of interest) — C{(RPS9) = AC,]. The AC;
values for each gene were used for statistical analysis.
The mean AC, (£SEM) for each treatment was trans-
formed using the formula [272"] to indicate transcript
abundance relative to RPS9.

In vitro fibroblast challenge

Skin biopsies were obtained from the ears of heifers at
462 £22d of age using an ear notcher. Prior to collec-
tion, the skin site was clipped and thoroughly cleaned
with alternating application of betadine scrub and 70%
alcohol. The ear-notch sample was placed into a 50-ml
tube containing 30 ml transport media [PBS with anti-
biotic/antimycotic (100 U/ml penicillin, 100 pg/ml



100

Innate Immunity 23(1)

Table 1. Primer sequences for qPCR.

Gene® Accesion no.” Strand Sequence (5'-3')
BNBD3 NM_001282581.1 Fwd CTCCTCGCACTCCTCTTCCT
Rev GCATCTTCGCCTTCTTCTACCACGA
BNBD4 NM_174775.1 Fwd TCCTCGCAGTCCTCTTCCT
Rev GGCACAAGAACGGAATACAGA
BNBD7 NM_001102362.2 Fwd TCTTCCTGGTCCTGTCTGCT
Rev GGTGCCAATCTGTCTCCTGT
BNBDI0 NM_001115084.1 Fwd CTCCTCCTGCTCCTCTTGGT
Rev TGCCAATCTGTCTCATGCGT
ILIB NM_174093 Fwd GCCTTGGGTATCAAGGACAA
Rev TTTGGGGTCTACTTCCTCCA
IL8 NM_173925 Fwd TGCTCTCTGCAGCTCTGTGT
Rev GGTGGAAAGGTGTGGAATGT
RPS$93 NM_001101152.2 Fwd GTGAGGTCTGGAGGGTCAAA
Rev GGGCATTACCTTCGAACAGA

*Nomenclature for the B-defensins is based on their original definitions.?” Alternative names for BNBD genes are DEFB3, DEFB4A, DEFB7 and DEFBI0.

PAccesion numbers from NCBI database http://www.ncbi.nlm.nih.gov.

streptomycin and 0.25 pg/ml amphotericin (Hyclone)]
and placed on ice. Samples were then shipped on ice
by overnight courier to the University of Vermont.
Dermal fibroblast cultures were established by collage-
nase digestion and cryopreserved as previously
described.'" Aliquots of cells were revived from cryo-
preservation, expanded and fourth passage cells were
then seeded into six-well plates (2.5 x 10° cells/well) in
DMEM containing 5% FBS (Hyclone), 1 x insulin-
transferrin-selenium (Mediatech Inc., Herndon, VA,
USA) and 1 x antibiotic cocktail. Following a 24-h
incubation, media were removed and replaced with
2ml fresh media (negative control), or media contain-
ing either 10ng/ml recombinant bovine IL-13 (AbD
Serotec, Raleigh, NC, USA) or 100ng/ml ultra-pure
LPS isolated from E. coli 0111:B4 (Sigma-Aldrich).
Media was harvested 36 h later and stored at —20°C
until analysis. Some cultures did not revive from cryo-
preservation, leaving only eight cultures per treatment
group for complete analysis. Media concentrations of
IL-8 and IL-6 were determined by ELISA using com-
mercially available kits from Mabtech and Thermo
Scientific, respectively. The minimum detectable con-
centrations were 150 pg/ml.

Statistical analysis

Blood parameters, flow cytometry and neutrophil gene
expression data were analyzed by the MIXED proced-
ure of SAS specific for repeated measures (SAS
Institute Inc., Cary, NC, USA). Treatment, time and
their interaction were included as fixed effects with hei-
fers within treatment as the subject. Due to treatment
differences in basal values, vaginal temperature was fur-
ther analyzed as the change in vaginal temperature

relative to Oh values. Dermal fibroblast data were
analyzed using the MIXED procedure of SAS, with
prenatal treatment as a fixed effect. Specific treatment
comparisons were made using the PDIFF option
in SAS, with P <0.05 considered significant and
0.05 < P <0.10 considered a tendency. All data are pre-
sented as the LSM £+ SEM.

Results

There was a treatment x time interaction (P <0.001)
for vaginal temperature. Specifically, vaginal tempera-
ture was greater in Control than PIS heifers from —115
to 285 min (P <0.04), at 660 min (P =0.04), at 670 min
(P=0.05), from 685 to 720 min (P <0.04), from 745 to
1040 min (P <0.05) and from 1050 to 1075min
(P <0.05; Figure 1). There was also a time (P <0.001)
and treatment effect (P <0.001) where Control heifers
had greater overall vaginal temperature compared with
PIS heifers (39.11 vs. 39.09 £0.004°C, respectively).
Upon further analysis, a treatment effect was observed
(P <0.001) for vaginal temperature in the 12-h baseline
period prior to the LPS challenge. Specifically, vaginal
temperature was greater in Control heifers
(38.92+0.01°C) as compared with PIS heifers
(38.854+0.01°C). Due to the treatment differences
prior to the challenge, vaginal temperature was ana-
lyzed as the change in vaginal temperature relative to
Oh values. There was a treatment x time interaction
(P <0.001) for the change in vaginal temperature rela-
tive to 0 h. The change in vaginal temperature was less
in PIS heifers from 150 min to 250 min, yet was greater
from 355 to 440 min, from 575 to 1125min and from
1140 to 1145min compared with Control heifers
(P <0.05). There was also a time (P <0.001) and a
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Figure |. Effect of prenatal LPS exposure (0.1 pug/kg BM at 233 £ 19d of gestation) on the vaginal temperature response to a
postnatal LPS challenge (0.5 pg/kg BM). Control n=11, PIS, n=12. Data are presented as the LSM. SEM is £ 0.09 for Control and
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Figure 2. Effect of prenatal LPS exposure (0.1 pg/kg BM at 233 £ 19 d of gestation) on the sickness behavior response to a postnatal
LPS challenge (0.5 pig/kg BM). Control n=11, PIS, n=12. Data are presented as the LSM & SEM. *Treatments differ P <0.05.

treatment effect (P <0.001) such that the change in
vaginal temperature was greater in PIS heifers
(0.36 £0.01°C) than in Control heifers (0.10 £0.01°C).

Sickness behavior scores were affected by a treat-
ment x time interaction (P=0.021; Figure 2). While
sickness behavior was greater Control heifers at 0.5h
(P=0.040), an extended sickness behavior was
observed in PIS heifers such that SBS were elevated

from 2.5 to 4h in PIS heifers compared with Control
heifers (P <0.05). Thus, there were time (P <0.001)
and treatment effects (P =0.002), with PIS heifers pro-
ducing greater SBS (1.15+£0.01) than Control heifers
(1.10£0.01).

Serum concentrations of IFN-y were not affected by
treatment (P=0.327) or by a treatment X time inter-
action (P=0.598). However, there was an effect of
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Figure 3. Effect of prenatal LPS exposure (0.1 pig/lkg BM at 233 £ 19 d of gestation) on the IFN-y response to a postnatal LPS
challenge (0.5 ng/kg BM). Control n=11, PIS, n=12. Data are presented as the LSM & SEM.

time (P < 0.001; Figure 3), where IFN-y increased at 3 h
post-LPS (P =0.050; 0 h vs. 3h), and remained elevated
until 4h post-LPS (P=0.486; O0h vs. 4h). Similarly,
there was no effect of treatment (P =0.396) or treat-
ment x time (P=0.912) for TNF-a, but there was an
effect of time (P <0.001; Figure 4). Concentrations of
TNF-a increased within 1h (P <0.001; 0h vs. 1 h), and
remained elevated until 3.5h post-challenge (P =0.563;
0h vs. 3.5h). There was also a tendency (P =0.056) for
a treatment x time interaction for serum IL-6 concen-
trations, such that IL-6 was greater in PIS heifers from
5.5 to 6h (P<0.050) and from 7h to 8h (P <0.037;
Figure 5). There was a treatment (P <0.001) and time
(P <0.001) effect, with PIS heifers producing greater
serum IL-6 (45124 134pg/ml) than Control heifers
(3788 £ 118 pg/ml).

The number of mononuclear cells and granulocytes
in blood along with the percentage of each population
that were positive for CD14 were not affected by treat-
ment (P>0.45) or treatment x time interaction
(P >0.62). There was an effect of time on the number
of mononuclear cells and granulocytes in blood
(P<0.001), and the percentage of each population
that were positive for CD14 (P <0.001), where the
number of mononuclear cells and granulocytes and
the percentage of mononuclear cells in both treatment
groups that were positive for CD14 was substantially
less at 4h and 8 h post-LPS challenge compared with
—1h pre-challenge (P <0.001, —1h vs. 4h). In contrast,
the percentage of granulocytes positive for CD14 in
both groups increased from just over 10% at —1h to
approximately 70% at 4h (P<0.001, —1h vs. 4h;
Figure 6) and 50% at 8h relative to LPS challenge

(P<0.001, —1h vs. 8h; Figure 6). There was a ten-
dency for a treatment x time interaction for the
number of CDI4 " monocytes in blood, where the
PIS group had fewer CDI4 " monocytes than the
Control group at —1 h (P =0.012) but no difference at
4h (P=0.993) and 8h (P=0.747) post-LPS challenge.

Expression of the host defense gene BNBD3 in neu-
trophils was not affected by time (P=0.407) or treat-
ment x time interaction (P=0.112). However, at 8h
post-LPS challenge neutrophil BNBD3 expression was
threefold greater in the PIS group than the Control
group (P=0.051) and there was a tendency for
BNBD3 to increase with time in the PIS group
(P=0.058; —1h vs. 8h) but not the Control group
(P=0.356, —1h vs. 4h; P=0498, —1h vs 8h).
BNBD4 expression in neutrophils was not affected by
treatment (P=0.426) or treatment x time interaction
(P=0.731), but increased approximately 20-fold at
4h post-LPS challenge in both groups (P <0.001,
—1h vs. 4h) and remained elevated at 8 h post-LPS
challenge (P <0.001, —1h vs. 8h). There also was an
effect of time on neutrophil BNBD7 expression
(P=0.023), and even though there was not a treat-
ment x time interaction for BNBD7 (P=0.235),
BNBD7 only increased in neutrophils from the PIS
group (P=0.002, —1h vs. 8 h; Figure 7), while it was
not affected in the Control group (P=0.480, —1 h vs.
4h; P=0.445 —1 vs. 8 h; Figure 7). In addition, at 8 h
post-LPS challenge neutrophil BNBD7 expression was
threefold greater in the PIS group than the Control
group (P =0.047). Expression of BNBDI(0 in neutro-
phils was affected by time (P<0.001) and treat-
ment x time interaction (P =0.002). Expression of
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Figure 4. Effect of prenatal LPS exposure (0.1 pug/kg BM at 233 £ 19d of gestation) on the TNF-o response to a postnatal LPS
challenge (0.5 ng/kg BM). Control n=11, PIS, n=12. Data are presented as the LSM & SEM.
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Figure 5. Effect of prenatal LPS exposure (0.1 pg/kg BM at 233 £ 19 d of gestation) on the IL-6 response to a postnatal LPS challenge
(0.5 pg/kg BM). Control n=11, PIS, n=12. Data are presented as the LSM 4 SEM. *Treatments differ P < 0.05.

BNBDI0 was less in the PIS group compared with the
Control group at —1h (P <0.009; Figure 7), not differ-
ent between groups at 4h (P=0.360; Figure 7) but
threefold greater in the PIS group compared with the

Control group at 8h post-LPS challenge (P=0.016;
Figure 7). Neutrophil BNBDI0 expression increased
substantially (> 60-fold) from —1h to 4h post-LPS
challenge in both groups (P <0.001, —1h vs. 4h;
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CD14. (B) Cell counts/ml of blood and percentage of CD |4-positive cells are presented as the LSM &= SEM. Controln= 11, PIS,n=12.
*Treatments differ P <0.05.

-6~ Control -e— PIS
BNBD3 BNBD4 BNBD7
10 10 10
@ @ @
Qa1 Qa1 a1
@ 0.1 % 0.1 0.1
= : 5 o]
Q Q Q
0.01 r T T 0.01 T T T 0.01 T T T
-1 4 8 —1 4 8 —1 4 8
Time relative to LPS challenge (h) Time relative to LPS challenge (h) Time relative to LPS challenge (h)
BNBD10 . IL1B IL8
10 10 10
3
(o))
& 1 . 1
S T &
3 ** @ S
@ 01 3 0.1 3 0.1
2 -
Q
0.01 T T T 0.01 T T T 0.01 T T T
—1 4 8 -1 4 8 -1 4 8
Time relative to LPS challenge (h) Time relative to LPS challenge (h) Time relative to LPS challenge (h)

Figure 7. Effect of prenatal LPS exposure (0.1 pg/kg BM at 233 &+ 19 d of gestation) on expression of bovine neutrophil -defensin 3
(BNBD3), BNBD4, BNBD7, BNBD 0, ILIB and IL8 during a postnatal LPS challenge (0.5 jig/kg BM). Neutrophils were collected from
Control (n=11) and PIS (n=12) heifers at —| h, 4h and 8 h relative to postnatal LPS challenge. Data are presented as the LSM 4 SEM
expression of each gene relative to ribosomal protein S9 (RPS9) gene expression. *Treatments differ P < 0.05, **Treatments differ
P<0.0l.
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Figure 7), and while it did not change from 4h to 8 h in
the Control group (P=0.162, 4h vs. 8 h; Figure 7), it
continued to increase from 4h to 8h in the PIS group
(P=0.048; 4h vs. 8 h; Figure 7).

Expression of the [LIB gene in neutrophils
decreased with time in both groups (P <0.001), such
that it was ninefold less at 8 h post-LPS challenge com-
pared with —1h in the Control group (P <0.001; —1h
vs. 8 h; Figure 7) and threefold lower at 8 h post-LPS
challenge compared with —1h in the PIS group
(P=0.013; —1h vs. 8h; Figure 7). There were no dif-
ferences in /LIB between groups at any time point
(P>0.15; Figure 7) and there was not a treat-
ment x time interaction for /L/B (P=0.273). There
was a tendency for an effect of time on /L8 expression
in neutrophils (P=0.155; Figure 7) but no effect of
treatment (P =0.998) or treatment x time interaction
(P=0.155). However, while /LS increased nearly eight-
fold from —1h to 8h post-LPS challenge in the PIS
group (P=0.004; —1h vs. 8h; Figure 7) it was not
increased in the Control group (P=0.356, —1h vs.
4h; P=0.844, —1 h vs 8 h; Figure 7).

Dermal fibroblasts produced substantial quantities
of IL-8 in response to LPS and even more in response
to IL-1B (Figure 8), but there was no difference
between treatment groups. Production of IL-6 by
fibroblasts from PIS heifers was numerically less
than that produced by Control heifers (Figure 8),
although the difference was not significant (P =0.15).
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Figure 8. Effect of prenatal LPS exposure (0.1 pg/kg BM at
233 £ 19 d of gestation) on IL-8 and IL-6 concentration in culture
media using a LPS or IL-IB challenge model of dermal fibroblasts.
Dermal fibroblasts were collected from Control (n=8) and PIS
(n=8) heifers at 462 22 d of age. Data are presented as the
LSM + SEM.

Fibroblast response to the challenge dose of IL-1B was
greater than the response to the challenge dose of LPS,
but there was no effect of prenatal treatment on fibro-
blast response.

Discussion

Cattle are exposed to stressors and immunological
challenges throughout the production cycle, not
excluding gestation. Mature cycling cows spend most
of their lives pregnant; thus, factors that can influence
the cows can have implications on calves and therefore
the entire herd. While multiple prenatal stress studies
have been conducted utilizing rodent models, there are
few studies that utilize cattle, and even fewer that
have investigated the potential effects of prenatal
immune stimulation. After review of the literature,
this study appears to be the first to demonstrate that
a single low-dose injection of LPS to cattle during late
gestation can affect the postnatal APR of subsequent
offspring.

Various physiological signs are monitored by produ-
cers in order to identify cattle that are ill, including
body temperature and cattle behavior. Previous studies
have demonstrated that administration of LPS initially
results in an increase in body temperature, followed by
a gradual decrease that, if followed for 12-24h, will
decrease below baseline values.®® These changes are
similar to what was observed in the current study.
Peak vaginal temperature values were greater in
Control than PIS heifers, suggesting an attenuated
response to LPS in the PIS heifers. Also, it is interesting
to observe the extended elevation in vaginal tempera-
ture in PIS heifers in this study. A study in which sows
were exposed to heat stress in utero, and subsequent
piglets were exposed to heat stress postnatally,
observed an increase in rectal temperature compared
with control pigs.'” Also, rats exposed to restraint
stress during gestation produced a greater body tem-
perature response to postnatal LPS exposure.'* In con-
trast, LPS administration to adult rats, born from dams
administered LPS in utero, had an attenuated febrile
response.'* While there are certainly species differences
between rodents and cattle, in the aforementioned
study the dams were given a larger does than the adult
offspring, while the opposite is true for the current study.
Mouihate'® reported that there are long-lasting effects of
viral and bacterial infection in utero, such as the one
mimicked by administration of LPS in the current
study. A study in pigs administered cortisol in utero
found that a postnatal LPS challenge induced a greater
ear temperature response when cortisol was adminis-
tered in the first or third gestational period compared
with the second gestational period or control pigs.'®
Thus, in several species, it appears that prenatal stress
can influence the postnatal temperature response to an
immune challenge.
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It is important to note that the changes observed in
vaginal temperature were relatively small, and the ques-
tion arises as to the biological significance of this
change. Baseline differences in vaginal temperature
between Control and PIS heifers were 0.07°C, while
the overall average change in vaginal temperature
response was 0.26°C between Control and PIS heifers.
However, while these differences appear minimal, it
could still lead to significant consequences within the
ability of cattle to recover from such a challenge.
Kluger and Rothenburg!” reported that increasing
body temperature by 1°C requires a 10-13% increase
in metabolizable energy. This does not account for the
energy needed for other aspects of the immune
response, including activation of immune cells and pro-
duction of acute-phase proteins and immunoglobulins.
Thus, other more recent reports in a variety of species
suggest that the amount of metabolizable energy
needed for an immune response is much higher,
around 30-50%,'%1° although, clearly, this is an esti-
mate as there are no methods that can truly estimate
this cost. Therefore, alterations in the febrile response,
even if small, could have significant implications on the
energy available for activation and maintenance of the
immune response, and thus influence the recovery of an
animal from such a challenge. Furthermore, a better
orchestrated and efficient response to an infection, per-
haps through prenatal programming, could result in
reduction in use of energy resources, thus promoting
a faster recovery, as suggested in companion data.”

Coincident with changes in body temperature,
behavioral indices are frequently monitored for signs
of illness. Administration of LPS to cattle typically
results in decreases in feed and water intake, increased
time spent lying down and increased respiration rate,
among other symptoms.”?!>> Few studies have mea-
sured sickness behavior in prenatally stressed animals.
Studies in pigs have found differences in behavior,
including decreases in aggressive behavior in piglets
born to sows exposed to social mixing during the
second or third gestational periods.”® Also, prenatally
stressed Brahman bulls had increased SBS compared
with control bulls.® In the current study, an elevated
and extended sickness behavior response was observed
in the PIS heifers compared with Control heifers, which
is similar to the observed vaginal temperature response.
Studies in prenatally stressed mice exposed to a post-
natal LPS challenge observed decreases in exploratory
behavior and distance traveled.>* Additionally, Enayati
et al.> reported a link between serum concentrations of
IL-6 and cortisol concentrations in rat dams exposed to
LPS during late gestation, and anxiety and depressive
behaviors in male offspring, suggesting that the changes
observed in dams in response to LPS during gestation
altered offspring behavior. The increased sickness
behaviors, as well as the elevated IL-6 and cortisol
responses (reported previously?’) would support this

link in cattle. However, the sickness behavior response
observed in response to LPS in the current study was
minimal, with heifers mainly displaying increases in res-
piration and distention of the head (i.e. scores between
1 and 2), with no severe behaviors observed. While the
differences observed between Control and PIS heifers
was statistically significant in the current study,
whether the differences observed in the current study
are of biological significance is questionable. However,
combined with the other findings in this study, the dif-
ferences in sickness behavior support the overall effects
of PIS on the response to a postnatal challenge.
Cytokines, such as TNF-a, IL-1p and IL-6, play a
major role in the initiation of fever.'” The lack of an
effect of PIS on the TNF-a response to postnatal LPS
challenge is similar to what was observed in weaned
pigs exposed to restraint stress in utero.?® The increased
and extended IL-6 response is very similar to the
extended and increased vaginal temperature response
observed in PIS heifers, which suggests that this cyto-
kine may have a strong influence on the temperature
response to LPS in the current study. Additionally,
stress hormones can stimulate an increase in body tem-
perature, which is supported by the elevated cortisol
concentrations observed.”> While elevation of body
temperature is considered a necessary response to infec-
tion, as it aids in the clearance of bacterial pathogens,
an extended response may be detrimental to the body
such that it continues to require a large amount of
energy. Kluger and Rothenburg'” reported that a
10-13% increase in metabolizable energy is required
in order to increase body temperature 1°C. Elevation
of body temperature for an extended period of time will
utilize a greater amount of energy, and is supported by
the decreased glucose and non-esterified fatty acid and
increased blood urea nitrogen observed in response to
LPS in the current study, as previously reported.*
The bovine [-defensin genes BNBD3, BNBDA4,
BNBD7 and BNBDI0 encode for a group of host
defense peptides that are bactericidal towards Gram-
negative and Gram-positive bacteria. Little is known
about the factors that regulate their expression in
cattle. The peptides are abundant in neutrophil gran-
ules,27 and expression of the BNBD4, BNBD7 and
BNBDI10 genes are upregulated in the mammary
tissue during mastitis in dairy cattle. Intra-mammary
LPS challenge stimulates secretion of lingual anti-
microbial peptide,”® a closely related member of the
B-defensin cluster, and, in vitro, LPS also stimulates
expression of two other B-defensin genes, BNBD5 and
TAP, in tracheal and mammary epithelial cells.?~° In
the present study, BNBD3, BNBD4, BNBD7 and
BNBDI0 were increased in peripheral blood neutro-
phils in response to the postnatal LPS challenge.
Interestingly, the prenatal LPS challenge affected
expression of the BNBD3, BNBD7 and BNBDIO
expression in response to the postnatal LPS challenge
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in a manner similar to what was observed for vaginal
temperatures, sickness behavior and serum IL-6 con-
centrations. Whether or not increased pB-defensin gene
expression in peripheral blood neutrophils has any
bearing on neutrophil bactericidal capabilities is far
from certain, yet the data in the current study collect-
ively seem to indicate that prenatal LPS exposure pro-
grams neutrophils to be more responsive to LPS.

Considerable animal-to-animal variation exists in
the ability of their dermal fibroblasts to respond to
LPS or IL-1p.'"3! Responses of this model cell type
are related to in vivo intra-mammary responses to mas-
titis pathogens. Animals with greater responding fibro-
blasts develop an enhanced response to the induced
infection, resulting in greater leakage of BSA into
milk during the acute phase of the infection. The fibro-
blast responsiveness is also developmentally regulated
in that fibroblasts from 16-mo-old animals are much
more responsive than fibroblasts obtained at an earlier
age from the same animals.>? This age-dependent dif-
ference suggests an epigenetic component to regulation
of the innate immune response that may be affected by
differences in prenatal environment. In the current
study, fibroblasts were collected from the prenatally
challenged and Control heifers when they were approxi-
mately 15mo of age, to determine if the prenatal chal-
lenge had generated long-term effects on the ability of
this model cell type to respond to stimulation with LPS
or IL-1B. Such effects could then be further investigated
in additional cultures from cryopreserved cells.
However, there was no significant effect of PIS on the
fibroblast response to LPS due to considerable animal-
to-animal variation. The lower, although not significant,
in vitro fibroblast IL-6 response to LPS from the PIS
heifers is in keeping with a depressing effect of prenatal
LPS on the innate response to LPS that has been
observed in mice.* In that study the mouse dams were
injected with LPS on the day of zygote formation as
compared with the current study’s late gestation treat-
ment, suggesting that PIS occurring earlier in gestation
may have greater effects on the innate immune system of
the developing offspring.

Studies in humans have found that increased stress
during gestation was associated with elevated concen-
trations of serum IL-6 and decreased IL-10 in women,
and increased lymphocyte production of IL-6 and
IL-1p.** This is interesting considering that the heifers
exposed to PIS in utero had an increased IL-6 response
to postnatal LPS challenge in the current study.
Additionally, pigs exposed to restraint stress in utero
and administered LPS post-weaning had greater
serum IL-6 concentrations than non-stressed con-
trols.’® Also, a study found that pregnant ewes admin-
istered LPS at 138d of gestation had greater IL-6
concentrations than control and non-pregnant ewes.
Further, cytokines play a major role in the development
of the central nervous system during gestation.™

Thus, alterations in cytokine concentrations in the
maternal environment induced by LPS administration
may have profound effects on neural development
during late gestation, potentially affecting neural
responses associated with stress, behavior and
immune function. However, further research is neces-
sary to confirm alterations in neural responses. As dis-
cussed earlier, studies in rodents have found a link
between elevated maternal IL-6 concentrations and
behavior.>>*¢ Furthermore, after maternal immune acti-
vation in mice with Poly(I:C), Hsiao and Patterson®®
reported increased IL-6 in the placenta of pregnant
mice. Therefore, prenatal exposure to LPS may have
had profound effects on the immune system of calves.

Conclusion

Prenatal LPS exposure altered several aspects of the
APR to postnatal LPS challenge. Specifically, PIS heifers
had a prolonged increase in vaginal temperature and
sickness behavior responses, had an increased and
extended IL-6 response, and changes in [-defensin
gene expression in isolated neutrophils. These results
demonstrate that the postnatal APR can be significantly
altered with a single low-dose exposure to LPS in utero.
Additionally, this study warrants further investigation
into the potential to program prenatally the immune
system of beef cattle in a manner that would improve
postnatal immune function and overall animal health.
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